
Master thesis of

Automatic Control and Robotics

SLAM with the Sphero robot

Xiaoxuan Hu

Supervisors:

Thomas, Federico

Porta, Josep Maria

Universitat Politècnica de Catalunya

Escola Tècnica Superior d’Enginyeria Industrial de Barcelona

Spain

2018

SLAM with the Sphero robot 3

Contents

Index 2

Index of figures 5

Index of tables 7

1 Introduction 9

2 Probabilistic Approach 13

2.1 Notation . 13

2.2 Introduction to the Basic Assumptions . 13

2.2.1 Markov assumption . 13

2.2.2 Independent errors in actions . 14

2.2.3 Independent errors in observations . 14

2.2.4 Uncorrelation between actions and observation 14

2.2.5 Map is static . 15

2.3 General Framework . 15

2.4 State of Art . 16

2.4.1 Kalman filter . 16

2.4.2 Information filter . 16

2.4.3 Pose SLAM . 16

2.4.4 Particle filter . 16

2.5 Particularize the derivation for Kalman case . 17

2.5.1 Motion model . 17

2.5.2 Observation model . 17

2.5.3 Data association . 19

4 CONTENTS

2.6 Application to the Sphero robot . 19

2.6.1 Map Description and initialization . 20

2.6.2 Robot motion model . 20

2.6.3 Prediction . 22

2.6.4 Observation . 23

3 Set Theoretic Approach 25

3.1 Basic Definitions . 26

3.1.1 Uncertainty representation . 26

3.1.2 Propagation operation . 26

3.1.3 Fusion operation . 26

3.2 Set theoretic approaches . 27

3.2.1 Ellipsoidal approach . 27

3.2.2 Bounding box approach . 31

3.3 Set Theoretic Applied SLAM with Sphero . 32

4 Sphero 35

4.1 Hardware of Sphero . 35

4.2 Sphero Control . 37

4.2.1 Connection to Computer . 37

4.2.2 Calibration . 39

4.2.3 Sphero Movement . 40

5 Experiments 43

5.1 Wall-following strategy . 43

5.1.1 Experimental Environment . 44

5.2 Experimental results . 46

5.2.1 The simple environment . 46

5.2.2 The complex environment . 51

6 Summary and Future Work 55

SLAM with the Sphero robot 5

List of Figures

1.1 Sphero robot . 9

1.2 Example of the type of environments explored and mapped in this thesis. . . . 10

2.1 Using a general Bayesian network. 14

2.2 Using Bayesian network simplified by Markov assumption. 14

2.3 Slide mode and simple rectilinear environment. 20

3.1 Propagation operation . 26

3.2 Fusion operation . 27

3.3 Ellipsoid with overlap and without overlap . 30

3.4 Bounding box with overlap and without overlap 32

3.5 the genera idea of Set Theoretic Approach in Sphero SLAM problem 33

4.1 Wireless charging of Sphero robot . 35

4.2 Inside of Sphero robot. See Table 4.1 for a description of the components . . . 36

4.3 Sphero connection through VNC server . 37

4.4 Reference flames in the Sphero robot . 39

4.5 Sphero movement along the wall . 41

5.1 Concave corner solution. 44

5.2 Collision and corner based wall-following strategy. 45

5.3 Simple map environment. 46

5.4 Complex map environment. 47

5.5 Raw sensor data in simple environment . 48

5.6 Raw sensor data in complex environment . 48

6 LIST OF FIGURES

5.7 KF approach in simple environment.

Left: Before closing the loop. Right: After closing the loop. 49

5.8 ellipsoidal approach in simple environment.

Left: Before closing the loop. Right: After closing the loop. 49

5.9 Bounding Box approach in simple environment.

Left: Before closing the loop. Right: After closing the loop 50

5.10 Error size of three approach in simple environment 51

5.11 KF approach in complex environment.

Left: Before closing the loop. Right: After closing the loop. 52

5.12 Ellipsoidal approach in complex environment.

Left: Before closing the loop. Right: After closing the loop. 52

5.13 Bounding Box approach in complex environment.

Left: Before closing the loop. Right: After closing the loop. 53

5.14 Error size of three approach in complex environment 53

SLAM with the Sphero robot 7

List of Tables

4.1 Inner parts list of Sphero robot . 37

SLAM with the Sphero robot 9

Chapter 1

Introduction

The Simultaneous Localization and Mapping (SLAM) problem for mobile robots aims at build-

ing a map of an unknown environment while simultaneously determining the robot’s position

within this map. In the robotics community, SLAM is considered a solved problem in the most

common settings [1], but an approach to the SLAM problem using minimal sensing information

is still relevant both from the theoretical and practical point of view.

In this context, this M.Sc. thesis aims at studying and implementing a special type of SLAM

solely based on the information provided by the on-board Inertial Measurement Unit (IMU)

from a spherical mobile robot called Sphero, developed by Orbotix(see Fig. 1.1.)

Figure 1.1: Sphero robot

This IMU permits detecting impacts with the environment and performing odometry subject

to significant errors. Thus, the SLAM problem will be restricted to environments defined by

10 CHAPTER 1. INTRODUCTION

Figure 1.2: Example of the type of environments explored and mapped in this thesis.

closed regions bounded by orthogonal walls meeting at convex and concave corners (see Fig.

1.2). In this kind of environments, the robot can follow a motion in contact with the walls,

while detecting corners, till it considers that it has returned to the initial point. As a result, a

map of the environment is completed.

We will show how it is possible to define the location of the corners or landmarks of the

rectilinear environments from changes in the robot’s speed. A map representation, that consist

of the location of the landmarks, their uncertainty, and their connection through straight walls,

is defined. Three uncertainty models have been used and compared: a probabilistic model

and two bounded-error models. Two basic operations have been implemented for the three

uncertainty models: propagation and fusion.

Propagation is the basic operation that permits assigning an uncertainty to the location of

a landmark, given the location and uncertainty of the previously visited landmark and the

estimated error committed in the odometry. If this new landmark has already been visited, it

has a previous assigned uncertainty. This uncertainty has then to be updated given the new

uncertainty using a fusion operation. This concept of fusion and propagation of uncertainty

applies to the three mentioned methods, they only differ in their implementation.

The probabilistic approach has dominated much of the work on low-level sensing processes

CHAPTER 1. INTRODUCTION 11

handling uncertainty. Although probabilistic models which assume a uniform distribution inside

a range [5] have been used, the computational tractability of low-level sensing processes, under

this approach, requires the general assumption that the experimental error is simply an additive

term with Gaussian distribution, and the fusion operation is essentially that of maximum

likelihood estimation. Nevertheless, it is difficult to give complete error analysis because the

complexity of the process of extracting low level data. Instead, when using bounded-error

models, every measurement is assumed to lead to an uncertainty set in the space of parameters

where the actual value is bound to be, and the fusion operation essentially reduces to find a

bound for the intersection of two sets.

We will show how the two bounded-error models are of interest in those situations in which

no probabilistic description of errors is available, only bound on them are known. Thus, these

models are of particular interest in minimalist robotics. Actually, one important goal of this

thesis has been to show how, using simple sensor information, it is possible to solve complex

tasks, such as computing a map of the boundaries of an office-like environment. Thus, we

have tried to answer the basic question raised by minimalist robotics: How simple can a robot

be while nevertheless accomplishing interesting tasks? There are at least three important

reasons to focus on minimalist robots: (1) it encourages us to find what is the least amount of

information needed to solve a certain task, giving insights into the task’s inherent complexity;

(2) it also encourages us to use inexpensive sensors providing very limited or noisy sensing; and,

finally, (3) it may allow us to manufacture inexpensive robots with low energy consumption.

This thesis is structured as follows. Chapters 2 and 3 describe the basic theory behind the

mapping solutions relying, respectively, on the Kalman filter an on the set theoretic approaches.

Then, Chapter 4 describes the hardware and software of the Sphero robot, including the robot’s

control, motion and calibration. Chapter 5 presented the implementation and the experimental

results. Finally, Chapter 6 includes the conclusions and indicate possible extensions of this work.

SLAM with the Sphero robot 13

Chapter 2

Probabilistic Approach

In this chapter, the probabilistic approach to the corner-based SLAM problem is discussed.

First we introduce the notation used in this chapter, in Section 2.2 the state of art solutions are

presented, along with their strong points and drawbacks. Then, Section 2.3 details the Kalman

Filter solution applied in the Sphero case.

2.1 Notation

For a given time ’t’, the notation we are going to use is:

rt : Pose of robot at time t

Mt : Map{l1, ...lt}, where li is the position of the i− th corner.

xt = (rt,Mt) state to estimate

ut : Action

zt : Observation

We use the notation u1:t to z1:t to denote the actions and the observations from time 1 to t.

2.2 Introduction to the Basic Assumptions

2.2.1 Markov assumption

Markov assumption is a concept in probability theory named after the Russian mathematician

Andrey Markoff. For computational efficiency, the state transition probability assumes Markov

propagation in the system state. The Markov assumption states that instead of the previous

state sequence, only the previous state influence on the probability distribution of the new

14 CHAPTER 2. PROBABILISTIC APPROACH

Figure 2.1: Using a general Bayesian network.

Figure 2.2: Using Bayesian network simplified by Markov assumption.

state. The expression is as follows:

P (rt|r1:t) = P (rt|rt−1) (2.1)

In our project Markov assumption could simplify the probability calculation. Figure 2.1 and

figure 2.2 show the sequence of Markov w2assumption. If we don’t use Markov assumption,

the current robot pose is based on not only the previous state but all the rest states.

2.2.2 Independent errors in actions

The errors in actions comes from the robot movement from one corner to another. It is a

random value and only related to the wall length between the two corners. The action error is

independent of previous robot’s actions.

2.2.3 Independent errors in observations

The errors in observations comes from the detection of corners. A random observation error is

obtained when the robot re-observe a corner it met before

2.2.4 Uncorrelation between actions and observation

The actions and observation is independent from each other.

CHAPTER 2. PROBABILISTIC APPROACH 15

2.2.5 Map is static

In the experiment, we only consider the map with static obstacles.

2.3 General Framework

The goal of this section is to estimate the probability distribution of possible maps and robot

pose (i.e. positions and orientations) based on observation and control. Here the state estima-

tion distribution in a general way is presented,

P (xt|u1:t, z1:t, x0) ∝ p(zt|xt, z1:t−1, u1:t, x0) · p(xt|z1:t−1, u1:t, x0) (2.2)

By applying the hypothesis in the previous section, we could rewrite the formula as below.

1. Uncorrelation between actions and observation, Markov assumption and independence

between observation

P (xt|u1:t, z1:t, x0) ∝ p(zt|xt) · p(xt|z1:t−1, u1:t, x0) (2.3)

2. Current state is based on integrating over all possible previous maps and states

P (xt|u1:t, z1:t, x0) ∝ p(zt|xt) ·
∫
p(xt|xt−1, z1:t−1, u1:t, x0) · p(xt−1|z1:t−1, u1:t)dxt−1 (2.4)

3. The map is static

P (xt|u1:t, z1:t, x0) ∝ p(zt|xt) ·
∫
p(rt|xt−1, z1:t−1, u1:t, x0) · p(rt−1|z1:t−1, u1:t)dxt−1 (2.5)

4. Conditional probability and Markov assumption

P (xt|u1:t, z1:t, x0) ∝ p(zt|xt) ·
∫
p(rt|rt−1, ut) · p(rt−1|z1:t−1, u1:t)drt−1 (2.6)

In this equation we can see that, the current state distribution P (xt|u1:t, z1:t, x0) depends on

the observation model, the motion model and all the previous states estimation. The integral in

equation 2.6 corresponds to a propagation operation and product with the observation model

is a fusion operation. This recursive estimation can be implemented in several ways, detailed

next.

16 CHAPTER 2. PROBABILISTIC APPROACH

2.4 State of Art

In the different SLAM approach, we represent the uncertainty and implement the propagation

and fusion operation in different ways.

2.4.1 Kalman filter

The Kalman filter method is based on Gaussian a representation of the uncertainly. It is widely

used especially in case where the system has random perturbations or there exist white noise

in the source of measurement. In linear systems, it produces the best estimation given the

system model and the measurement. But in the Kalman filter theory, it is assumed that the

measured and estimated noise are all white noise and conforms to a Gaussian distribution.

Such assumption, constrain the usage of the method.

2.4.2 Information filter

From the analytical viewpoint, the information filter is similar to the Kalman filter, the only

difference is that instead of estimating the covariance, the information filter use the information

matrix, which is the inverse of the covariance. The advantage of information filter is that the

information matrix is almost sparse and thus the computational complexing can be reduced by

using sparse approximation of the information matrix.

2.4.3 Pose SLAM

In the pose SLAM, the robot trajectory is the only parameter estimated, the landmarks are

only used as a tool to generate the relative constraints among the robot poses. In addition,

observations appear in the form of relative motion measurements from robot pose. The mapping

approach presented in this thesis can be seen as a pose SLAM solution since the features in the

map are actually previous poses of the robot.

2.4.4 Particle filter

In the particle filter method, the estimated robot pose is represented using particles. For

instance, in [7], a Rao-Blackwellized particle filter is used. In this study, we could see there

exists some problem in the particle filter. The computational efficiency is relatively low because

the number of the particles grows exponentially in high-dimensional spaces with the dimension

of the state space and thus it is hard to obtain accurate solution.

CHAPTER 2. PROBABILISTIC APPROACH 17

2.5 Particularize the derivation for Kalman case

Although the Kalman filter approach has weakness, we decide to use it due to its simplicity and

because our model are linear. When we particularize the general framework to the Kalman filter

case, one extra assumption is needed. It is necessary to assume the probability distributions

for all states are Gaussians. Which could be presented as,

P (xt|u1:t, z1:t, x0) ∼ N(µx,Σx), (2.7)

where N is a normal distribution, µx is the mean (robot pose) and Σx is the covariance,

represents the noise corresponding to that position.

2.5.1 Motion model

The robot motion model could be described as,

P (rt|rt−1, ut, x0) = fr(rt−1, ut) + wt, (2.8)

where f is a generic time-update movement function, wt is the motion noise that wt ∼ N(0, Qt)

Since f only affects r in x, for convenience, we can also write the formula as,

P (xt|xt−1, ut, x0) = fx(xt−1, ut) + wt, (2.9)

when the state changes, the prediction step is the motion model updates the current Gaussian

[11]. As, {
µ̂t = fx(µt−1, ut)

Σ̂t = ∇fx · Σt−1 · ∇fTx +Qt

(2.10)

Where ∇f = ∂fx
∂r = (∂fx∂r ,

∂fx
∂m) = (∂fr∂r , 0).

2.5.2 Observation model

There are two possibilities when robot observing one landmark. One possibility is that the robot

re-observes a known landmark. The loop should be closed at this time. The robot position,

map and covariance should be updated according to this observation. Another possibility is

that the robot observes a new landmark. Then the new landmark should be added in the states.

In this section, the two possible cases are presented.

18 CHAPTER 2. PROBABILISTIC APPROACH

The robot re-observes a known landmark

The observation model could be written as,

zt = h(xt) + vt, (2.11)

where h is a generic time-update observation function, vt is the noise in measurement, vt =

N(0, Rt).

When re-observing a known landmark, the states will be re-updated taking into account the

closure loop state (current robot pose). The updates of the mean and covariance at time t

could be described as,
µt = µ̂t +Wt · (zt − h(xt)),

Σt = Σ̂t −Wt · St ·W T
t ,

(2.12)

where Wt is the Kalman gain, Wt = Σ̂t · ∇S−1t and zt − h(xt) is the error in observation.

St = ∇h · Σ̂t · ∇hT +Rt, and ∇h = ∂h/∂x.

The robot observes a new landmark

When the robot finds a landmark which not yet been mapped, the landmark initialization is

needed. Here the inverse observation model could be formed as,

l = g(xt, zt). (2.13)

Where l is the position of landmark, xt is the state(only rt), zt is the observation.

The formula is update,

µx = (µ̂x, l)

Σx =

[
Σ̂t ΣT

xe,

Σxe Σe,

]
(2.14)

where Σxe = ∇gxΣx, Σe = ∇gxΣx∇T
gx + ∇gzRt∇T

gz, ∇gx = ∂g
xt

= (∂g
∂rt
, ∂g
∂Mt

) = (∂g
∂rt
, 0),

∇gz = ∂g
∂zt

CHAPTER 2. PROBABILISTIC APPROACH 19

2.5.3 Data association

We re-observe a landmark li for a given norm‖ · ‖ and threshold s if

‖g(xt, zt)− li‖ < s. (2.15)

In the Kalman filter approach the used distance is Mahalanobis distance:

(µi − g(xt, zt))
T · [Σi + Σe]

−1 · (µi − g(xt, zt)) < s, (2.16)

where µiis mean position of li, g(xt, zt) is the observation model, Σe = ∇gxΓx∇T
gx +∇gzRt∇T

gz

and Σi is the block diagonal taken from Σx. In experiment, we tune the threshold s to use

Mahalanobis distance to identify if the robot re-observes a landmark. If the Mahalanobis

distance is bigger than a threshold, we consider it is a new landmark and we do the landmark

initialization. On the contrary, we consider that the robot re-observes a known landmark, it

closes the loop, and corrects the map.

2.6 Application to the Sphero robot

In this section, we particularize the Kalman filter approach for Sphero robot. The filter will

be used to estimate the pose of the robot and the map will be used to improve the noisy

estimations produced by the dead-reckoning algorithm. The correction is applied each time the

robot reaches a corner already in the map.

In the corner-based SLAM problem, the robot Sphero slides along the wall (with robot

orientation θ) in the given rectilinear environment until it meets the corner, then rotates itself

according to the corner type. In figure 2.3 we show an simple environment with robot orientation

angle. The red ball is the robot, the yellow squares are the corners(here we only show convex

corners), the X and Y are the axes in the world frame, θ is the robot orientation (the angle

between the robot heading and the X axes in the world frame). First of all, we introduce the

notation in this section:

1. rt = (xt, yt) Pose of robot at time t

2. li = (xi, yi) Pose of Landmark i (corner i)

3. Mt = (l1 · · · lt) Landmarks(Map), corners seen so far

4. rt+1 = f(rt, ut) Motion model

20 CHAPTER 2. PROBABILISTIC APPROACH

Figure 2.3: Slide mode and simple rectilinear environment.

2.6.1 Map Description and initialization

In this situation, the map estimation could be described as M = {µ,Σ} Where µ is a 2 × t
matrix which contains all the pose of landmarks and

∑
is a 2t × 2t matrix representing the

robot’s and landmark’s noise and the cross-covariances between them.

µ =


µ1

µ2
...

µt

 (2.17)

Σ =


ΣL1L1 · · · ΣL1Lt

...
. . .

...

ΣLtL1 · · · ΣLtLt

 (2.18)

Where µi = (xi, yi) is the position of the ith corner. The matrix Σ is symmetric, ΣT = Σ.

2.6.2 Robot motion model

The on-board accelerometer sensor continuously tracks the acceleration of the Sphero robot in

both X and Y direction. The coordinates of the robot in both X and Y axes from the initial

value [0, 0], are available through API from on-board odometer computed by dead-reckoning

CHAPTER 2. PROBABILISTIC APPROACH 21

method. From one corner to another, the robot starts with the initial velocity equals to zero.

So, the increment of the coordinates is

∆x =

n∑
i

ax · δti +
1

2
· ax · cos(θ) · δt2i , (2.19)

∆y =
n∑
i

ax · δti +
1

2
· ay · sin(θ) · δt2i , (2.20)

where ∆x and ∆y are the coordinates increment from one corner to another in X and Y axes,

δt is the sample time, ax and ay are the mean acceleration during the sample time δt.

From here the movement of the robot can be simply described as a unicycle. We could use two

specific model to analyze the system. One is a speed based model, and another is a distance

based model. Both model are based on the discrete time events and they are adequate to

describe the motion and deal the un-modeled dynamics and uncertainties. Speed model use

speed and heading (angle) as input, output is the calculated Map and trajectory. Distance based

model use the odometry from Sphero robot, the input for our model is the incremental part of

odometry, in Sphero case an assumption is displacement of the odometry, and output is still the

Map and trajectory. We know that when we model the system, we cannot get a deterministic

model. We need to take into account the uncertainty in the system. There is a subtle connection

between model complexity and system uncertainty. If we use a more complete model (more

complex), there will be less underlying phenomena we didn’t consider, the system will behave

more similar to the real situation. Otherwise, we will have more uncertainty of the system. But

from another point of view, the more complex model require a higher computational complexity.

When it comes to the probabilistic robot model, the most important thing is to get an accurate

model of the uncertainties both in the robot movement and observation while minimize the

computational complexity.

Speed based model

As we could get the velocity from on-board sensor, one possible way is to the velocity and

calculated robot pose (position and orientation) as the state according to the sample time,

from time to time, we renew the robot pose using the controls from the robot based frame by

applying several sequences of rotation and translation approaches. In the speed based model,

we assume the motion data is from the speed and angle data given to the Sphero robot. The

velocity (in centimeter) and the heading (θ in degree) are the inputs for Sphero robot when we

22 CHAPTER 2. PROBABILISTIC APPROACH

control (see more in Section 4.2). This one requires a more accurate sensor and shorter sample

time.

Distance based model

Because the Sphero robot moves from corner to corner, the output of this module for sphero

robot is a vector (∆x,∆y) with the estimated motion distance between the two corners. Since

the walls are aligned with X or Y , we know that the actual movement is either (∆x, 0) or

(0,∆y), so the state simply is the position of the robot. S = (x, y), where x and y are the

coordination of the robot position. Here our model is simpler and we have more toleration to

the poor quality sensor. In addition, get distance data directly from IMU board

We compared the two different models, the speed based model is more reasonable to describe

the reality, but considering the sensor we have is only the accelerometer, the distance based

model is less computational complex and easier to achieve. In the practical point of view, the

accuracy of the motion model is not very relevant, the distance based model is sufficient to

accurately describe the dynamic of the motion. So here we choose the distance based model to

the later stage. A more complex and accurate model may be considered as the future work.

2.6.3 Prediction

Once we hit a corner or detect there is an ending wall, we update the state at that point. The

prediction only affects part of the state and covariance, we update the robot pose at time t+ 1

as,

rt+1 = rt + ut (2.21)

Because the distance based model is considered, the ut could be represented as,

ut =

{
(δx, 0) x direction

(0, δy) y direction
(2.22)

Where the displacement ∆x and ∆y are actual movement described in section 2.6.2.

CHAPTER 2. PROBABILISTIC APPROACH 23

2.6.4 Observation

When the current robot position is associated with one landmark through data association, the

observation is the current robot position could be described as the function,

zt = h(xt) = rt, (2.23)

where zt is the observation, xt is the current state xt = (rt,Mt) and h is the observation

function which is linear. This equation could be simplified from equation 2.12 since ∇h =
∂h
xt

= (∂h
∂rt
, ∂h
∂Mt

) = (I2, 0). I2 is a identity matrix of size 2. Then by applying the Kalman filter

approach, the current robot position, landmarks position and covariance are all updated by the

correction.

Because the current robot position is always the same as a corner position, so if the robot

reaches a new corner it didn’t meet before, it will be added to the map through landmark

initialization. This procedure uses the inverse observation model,

l = g(xt, zt) = rt, (2.24)

where l is a new landmark, g is the inverse observation model, zt is the observation. This

equation is simplified from equation 2.14 since ∇gx = ∂g
xt

= (∂g
∂rt
, ∂g
∂Mt

) = (I2, 0), ∇gz = 0. At

the time robot meets a new corner, both the landmarks and covariance increase its size to n+1

add the new observation of the new landmark at current robot pose, l = rt.

SLAM with the Sphero robot 25

Chapter 3

Set Theoretic Approach

Normally we always model the uncertainty as Gaussian white noise. But in real world, we know

there exists a lot of uncertainty which is non-Gaussian, non-white noise and also systematic

errors. In the set theoretic approach, we explain the uncertainty as a bounded region(i.e., an

ellipsoid, a bounding box, ect.) [9]. Those bounding region could easily explain the uncertainty

of the estimate position in the SLAM problem.

There are already several applications based on set theoretic approach related to SLAM prob-

lem. One is Cuik-SLAM [8], it based on an interval-based kinematic method to formalize a

SLAM problem, the constrains even nonlinearities could be modeled effectively because of the

structure imposed by the motion and sensing capabilities of the robot. In [3], a set-valued

methods to solve the localization and mapping problem is introduced. Also, Jaulin [6] proposes

a interval analysis way of set membership method as another SLAM solution in set theoretic

approach. They convert the SLAM problem to a constraint satisfaction problem, using propa-

gation method and test the approach in an underwater robot.

Here we proposed another set theoretic approach to solve the SLAM problem. By using differ-

ent methods to model the uncertainty, we use propagation to model the robot movement and

and fusion to achieve data association and loop closure state update

In Section 3.1 we give the basic definitions related to this chapter. In Section 3.2 some state

of art are discussed. Then, in Section 3.3 we apply the set theoretic approach to the case of

SLAM with the Sphero.

26 CHAPTER 3. SET THEORETIC APPROACH

Figure 3.1: Propagation operation

3.1 Basic Definitions

3.1.1 Uncertainty representation

In set theoretic approach, uncertainty is described as a bounded region. The region could be

represented as a set p(x) = 1
|S| . Where |S| is the volume of set S, p is the probability, x is a

parameter, in our case is the robot position. The probability of all x in the set S equals 1, i.e∫
s p(x) · dx = 1. We could assume the true position of robot will be anywhere in this region

with the same possibility.

3.1.2 Propagation operation

The propagation is the estimation of the effect of a function on variables. The propagation

of uncertainty for a given function f and set S, if x ∈ Sx then f(x) ∈ Sf , where Sf is the

propagation result, an approximation of the actual set f(x).

The figure 3.1 shows the propagation operation. f(x) is the actual set of propagation and Sf
is the approximation of that set. Different methods may lead to different accuracies in the

approximation of a given function.

3.1.3 Fusion operation

Fusion operation estimates the common area of two different set. We assume Sx, Sy are the two

sets, Sxy is the fusion result of those two different sets, we could Sx ∩ Sy ⊂ Sxy. Which could

CHAPTER 3. SET THEORETIC APPROACH 27

Figure 3.2: Fusion operation

be described by figure figure 3.2. Different methods in fusion operation will provided different

accuracies on the approximation.

3.2 Set theoretic approaches

We present two set theoretic approaches in this section, one is the ellipsoid approach and

another is the bounding box approach. Here we propose two different way to represent that

range. One is ellipsoid, another is bounding box.

For such approaches, the set representation and the volume of each set in 2-D space is present.

Then, the particular propagation and fusion operators are detailed.

3.2.1 Ellipsoidal approach

The 2-D Ellipsoid could be defined by a vector and a matrix,

x ∼ ξ0(x0, E0) (3.1)

28 CHAPTER 3. SET THEORETIC APPROACH

Where x0 is a vector 2 × 1, x ∈ <2 and E0 is a semi-definite matrix 2 × 2. The points inside

this region Sx are

Sx = {x|(x− x0)T · E0 · (x− x0) ≤ 1}. (3.2)

The volume of the ellipsoid is,

V =
vn√
|E|

. (3.3)

Where vn is the volume of unit circle in <2. In some sense the E here is the inverse of the

covariance matrix Σ in Kalman filter. In probabilistic approaches, Σ−1 is devoted by Λ, the

information matrix, which is equivalent to E here.

Minkowski sum and difference of ellipsoids

Minkowski sum and difference of ellipsoids operations are introduced here since they are later

used in the fusion operation. It assumed that we know two ellipsoid x and y where x ∈ ξ(x0, E1),

y ∈ ξ(y0, E2), the Minkowski sum of those two could be described as z = x⊕y, could be formed

into,

(I2, I2)v − z = 0 (3.4)

where v is associated with the uncertainty region, v = (x, y) =

(
x

y

)
. Since E1 and E2

are nonsingular matrices, rank(E1) = rank(y) = 2, we could easily know that rank(v) =

rank(x) + rank(y) = 4.

By applying the ellipsoid fusion formula [10], we could get,

v ∈ ξv(v0, E0) v0 = (x0, y0)

E0 =

(
E1/2 0

0 E2/2

)
(3.5)

Minkowski difference of ellipsoids is similar to the Minkowski sum, if we want to get the dif-

ference between x ∈ ξx(x0, E1) and y ∈ ξy(y0, E2), we could get it from Minkowski sum of

x ∈ ξx(x0, E1) and y ∈ ξy(y0, E2). Will be,

v ∈ ξv(E0, v0)

v0 = (x0,−y0)

E0 =

(
E1/2 0

0 E2/2

) (3.6)

CHAPTER 3. SET THEORETIC APPROACH 29

Propagation of ellipsoids

The new estimate pose of robot is the movement from the previous pose through the motion,

the robot pose in time t could be expressed as rt ,

r̂t+1 = rt + wt, (3.7)

where rt ∼ ξ(rt, Ert), wt ∼ ξ(0, Ewt), Here in our case the motion is linear, r̂t+1 = f(rt, Et). For

ellipsoidal approach, the propagation is based on the Minkowski sum/difference, here first we

define the linear function is Ax+Cy+ d = 0. y ∼ ξy(y0, F). In our case y = rt ∼ ξt+1(r̂t+1, F)

In our case, d is 0, C is

(
1 0

0 1

)
and A is

(
1 0 1 0

0 1 0 1

)
, which means,

r̂t+1 = rt + wt ⇔ (I2, I2) +

[
rt

wt

]
(3.8)

By applying the Minkowski sum, we could easily get r̂t+1 would be expressed as,

r̂t+1 ∼ ξ̂rt+1([rt, Et],

[
Ert/2 0

0 Ewt/2

]
) (3.9)

Because F = CTGC, where G = (A#)T ·Et ·A#− (A#)T ·Et ·NA · (NT
A ·Et ·NA)T ·NT

A ·Et ·A#,

C = −I. and A# = AT (AAT)−1. We simplify the F formula we could get,

F = G = 1/8(Ert + Emt)− 1/8(−Ert + Emt)(Ert + Emt)
−1(−Ert + Emt) (3.10)

Then we implement the new robot pose. We will get,

r̂t+1 = rt +mt

F = G = 1/8(Ert + Emt)− 1/8(−Ert + Emt)(Ert + Emt)
−1(−Ert + Emt)

(3.11)

Fusion of ellipsoids

The intersection of two ellipsoids determines common range of two ellipsoids. The fusion is to

find a minimum volume ellipsoid to describe that common range. For example x ∈ ξx(x0, E1)

30 CHAPTER 3. SET THEORETIC APPROACH

Figure 3.3: Ellipsoid with overlap and without overlap

and y ∈ ξy(y0, E2) are two ellipsoid, we explain get the fusion f ∈ ξf (x,E)in the following way,

k(|X|)tr([X](E1−E2))−n(|X|)2×(2xTE1x0−2xTE2y0+xT (E2−E1)x−xT0E1x0+yT0 E2y0) = 0

(3.12)

Because in our case, rank(E1) and rank(E2) are full rank, rank(E1)+rank(E2) = rank(E1, E2) =

2 , so f ∈ ξf (x,E) could be written as,

x = (E2
1 + E2

2)−1(E2
1x0 + E2

2y0)

E = 1
2E1 + 1

2E2

(3.13)

The fusion operation in ellipsoid case is illustrated in figure 3.3. The S1, S2 are the two ellipsoids

and S3 is the intersection between the two area S. If S3 = ∅, which means there is no overlap

of S1 and S2, the fusion is ∅.

Data association for ellipsoidal approach

Data association is to determine the best match. In set theoretic approach it is based on

uncertainty overlap. In our situation, W will be a score giving the similarity: the higher W ,

the higher the similarity of the landmarks.

Because it is hard to calculate the area of S3 directly, we use fusion to get one ellipsoid S4 with

minimum volume (V4) which could tightly bounds the intersection part (S3) of the two given

ellipsoids (S1 and S2, which volumes are V1 and V2).

CHAPTER 3. SET THEORETIC APPROACH 31

Here we could define the score W as,

W = max(
V4
V1
,
V4
V2

) =
V4

min(V1, V2)
. (3.14)

Here we use ratio of intersection to the ellipsoid / bounding box instead of using the area

directly because the uncertainty range of initial position (first landmark) is very small. If the

robot meets the first landmark, the intersection between the current position and first landmark

will be very small too.

The score W is between [0− 1], W = 0 means there is no overlap, W = 1 means the overlap

is 100%, one set is included in another. If W is above a certain value, we consider the two

landmarks are the same.

3.2.2 Bounding box approach

In this approach, we describe the error sets Sx as a box. The set will always be constrained in

a lower and upper bound,

Sx = {x|∀i=1...n li ≤ xi ≤ ui}, (3.15)

xi is the ith component of x, li is the lower bound, ui is the upper bound. Sx can also be

represented with (l, u), where l = (l1, ..., ln) and u = (u1, ..., un). The volume of a set is,

V =
n∏

i=1

(ui − li). (3.16)

Propagation and fusion operation

For the bounding box approach, the propagation and fusion are simple. We only need to adapt

the length and width by sum or subtract from the previous bound to get the new one. The

propagation could be described by,

Sf = (lfi , u
f
i)

lfi = min(fi(x))

ufi = max(fi(x)).

(3.17)

32 CHAPTER 3. SET THEORETIC APPROACH

Figure 3.4: Bounding box with overlap and without overlap

Fusion operation could be formed as,

Sxy = (lxy, uxy)

lxy = max(lx, ly)

uxy = min(ux, uy).

(3.18)

where min/max are applied element wise.

Fusion operation for bounding box is illustrated in figure 3.4 The S1, S2 are the two bounding

boxes and S3 is the intersection between the two area S. The fusion of two bounding box could

be ∅ as well.

For data association in the bounding box approach, the equation is the same as Eq. 3.14.

The only difference is that the volume of the set is computed using Eq. 3.16 instead than Eq.

3.3.

3.3 Set Theoretic Applied SLAM with Sphero

In Sphero case, we use a graph with nodes to represent the map, where at each node is a set

(ellipsoid/box) representing the corner coordinates. Each edge in the graph has the information

about the displacement (the parameters of the function f in propagate step from one corner

to the next). The ‘back-propagation’ process as a backward exploration of the graph until all

nodes are visited propagating using f−1 (i.e. the inverse of the function f stored in the edges).

We could use flowchart to display the genera idea of the strategy applied in Sphero case as

figure 3.5,

In the Sphero SLAM case, from the initial point, the robot position and error are propa-

gated through the motion model to generate a new robot pose with the ellipsoid uncertainty

CHAPTER 3. SET THEORETIC APPROACH 33

Figure 3.5: the genera idea of Set Theoretic Approach in Sphero SLAM problem

region, which is similar to the ’prediction’ in probabilistic approach. Then, every time when

the robot arrive at a new state, by applying the data association, we check if loop is closed.

If not, we continue the movement and the propagation. If yes, we stop the robot and do back

propagation, then apply fusion to each state in order to reduce the error.

To be more specific, the Sphero robot will always move along a wall. When it detect there is

a corner, it applies the propagation step. The current estimation of the robot pose (the set)

changes according to function f representing the displacement. The following step is data asso-

ciation. The current robot position will be saved and checked if it is a new corner (landmark)

or it is one that already in the map. If the corner is a new one, that corner will be added in

the map, the robot will be rotated to continue following another wall. If the corner is already

in the map, the back-propagation will be performed with the fusion operation.

Data association in this case is the one explained in Section 3.2.1. The similarity of two sets

could be calculate through formula 3.14, where the volume is computed using Eq. 3.3 and Eq.

3.16 respectively. Then, data association could be easily identified by a threshold.

SLAM with the Sphero robot 35

Chapter 4

Sphero

4.1 Hardware of Sphero

Sphero is a ball-shaped robot of 74mm of diameter designed by Ian Bernstein and produced by

the company Orbotix. This company already made two version of the Sphero, the Sphero 1.0

and Sphero 2.0. Both versions could be controlled via bluetooth by a smartphone or a tablet

running Android, IOS or a Windows phone. The users can program the robot through an app

named Macrolab, using a C-based language macros or orbBasic. For this reason, this robot

could be easily used by children to learn coding or play games. Also it safe for children because

it has no sockets either small parts on the shell, the battery are inside the ball and use wireless

charge through a charging base, shown in figure 4.1. The outlook of the two version of Sphero

Figure 4.1: Wireless charging of Sphero robot

36 CHAPTER 4. SPHERO

Figure 4.2: Inside of Sphero robot. See Table 4.1 for a description of the components

are the same. The robots are covered by a 3-D printed shell which protect the rolling device

and the sensors inside. The robot itself is waterproof, which helps the robot easily to move on

a variety of complex terrains. ,

The robot has a very compact internal composition. The internal mobile robot touches

the shell with four rubber wheels. Two motors drive the motion of the bottom two wheels

respectively, controlled by a 75 MHz ARM Cortex processor on board.The inside component

are listed in Table 4.1.

The appearance of the Sphero 2.0 looks like the previous generation of products, but in fact,

the internal components have been rearranged: the motion transfer system has been enhanced

to increase the efficiency. A new user interface is provided in Sphero 2.0, the user could use it

to move the ball with different speeds or change the LED light color.

The Sphero 2.0 is the enhanced version of the Sphero 1.0, the led light inside is brighter, it

could roll two times faster (could reach about 2m/s), and the bluetooth range is about 15m.

In addition, compared to Sphero 1.0, Orbotix also highly optimized the sensor, in order to

achieve more accurate control operation.

The inside sensor are only two: a accelerometer and a gyroscope. The gyroscope is used to

self-balance inside robot (using a PID controller). The accelerometer is used to measure the

acceleration, calculate the velocity, and to estimate the distance the ball travels. In the API,

we could only access the accelerometer to have the data with the sample frequency 2Hz. It

CHAPTER 4. SPHERO 37

Table 4.1: Inner parts list of Sphero robot

No. Name Quantity
1 Passive wheel 2
2 Strut 1
3 Plastic gaskets and screws -
4 3-D printed Polycarbonate shell 1
5 ST STM32 F3 microcontroller 1
6 Support frame 1
7 HUATAI HT6292 Battery 2
8 Gear 2
9 Active Wheel 2
10 Motor 2
11 Wireless charging receiver 1

Figure 4.3: Sphero connection through VNC server

is a great challenge to use only this robot to study the SLAM problem without exteroceptive

sensor, it is different from the common SLAM settings.

4.2 Sphero Control

4.2.1 Connection to Computer

Connect through a Raspberry Pi 3

As a first step, we used a Raspberry Pi 3 to connect the Sphero robot to a computer. Raspberry

is used as intermediary for the purpose of communication. Since they already have the apps

developed for Sphero, we tried to use it to get access to Sphero via Bluetooth in order to send

signal for control, the basic idea is as figure 4.3. Here we followed the process in [4] We first

installed the Node.js on Pi3 and Sphero SDK in the computer. Then we connected raspberry

Pi and Sphero by the address in VNC-server. With this setting, we could connect to Sphero

38 CHAPTER 4. SPHERO

with javascript and code to control the movement of Sphero.

However this approach caused several problems. The JavaScript is client a side language which

executes in a browser. In order to manage it we used a Node.js, which is a JavaScript runtime

built on Chrome’s V8 JavaScript engine. It is a more suitable language for developing apps for

the Android devices, but not for our project. In addition, there are only few pre-defined scripts

where available. It would be a complex programming if we want to do experiment through this

connection, that complex programming work is out of the scope of this project.

So, despite devoting a lot of effort and time to this approach, we had finally to abandon it.

Connect through Matlab Interface

An alternative way to control Sphero is using MATLAB. We found three recent works that

focus on the interface to connect sphero using MATLAB:

1. Sphero MATLAB Interface

2. Sphero API MATLAB SDK

3. Sphero Connectivity Package

We tried all of them. The Sphero connectivity package is the more powerful tool. It is the

newest version of sphero connection package to Matlab and it based on the instrument control

box.

The package is mainly based upon a "sphero" class, which in turn relies on the MATLAB

Bluetooth class. The class methods and properties allow us to perform (within MATLAB)

many operations available with the underlying Sphero API, such as connecting, disconnecting,

sleeping, changing LED colors, reading (and/or streaming back) the Sphero’s position and

velocity, and commanding each of the 2 motors independently. An higher-level roll command

can also be used to move the Sphero with a certain speed and direction. The Simulink library

contained in the package also features Simulink blocks for setup, timing, and basic sensing and

actuation. With this package, we could fully access to the sensor data and control robot.

CHAPTER 4. SPHERO 39

Figure 4.4: Reference flames in the Sphero robot

4.2.2 Calibration

The robot should be calibrated every time before staring a new exploration. The calibration

aims at setting the initial position and the orientation to the Sphero robot. As we only work

in a 2-dimensional environment, the current position of Sphero robot is the coordinates of the

point where the shell is touching the ground or any other surface in the reference frame, the

robot heading is the 0◦. We show the reference frame in figure 4.4. Once it calibrated, Sphero’s

current position is (0, 0) and the heading is aligned with the positive direction of the coordinate

Y axis. Calibration sets the frame of the 2-D surface equal to the local frame of Sphero. The

position and rotation are accumulated from the calibration.

We calibrate the robot by checking its backlight LED, the LED light is pointing at 180◦ to

the robot heading. Because of lacking the accurate measurement, the calibration error is not

40 CHAPTER 4. SPHERO

always the same, which increases the system uncertainty. Calibration error mainly exists in

two fields, position error and the orientation error. We have the position error because we are

not sure if we exactly put the point Sphero touching the ground at the position we want. The

orientation error may caused by the wrong placement and also the internal imbalance of the

mobile robot. The calibration error will represented by a small error in the initial position.

4.2.3 Sphero Movement

Sphero could rotate to any direction in 2-D. As we explained in the hardware part of Sphero,

the robot consists of two parts, one part is the inner mobile robot, another part is the outside

plastic shell. The movement of sphero is mainly based on the friction. When the robot wants

to move, the signal is sent the two motors, then the upper and lower rollers rotate at the same

time, the friction between the shell and the wheel force the shell to rotate with it. At the same

time, the friction between the shell and the ground causes the robot to roll.

The speed of the robot could be set from -255.0 to 255.0, this range translates to a maximum

speed of 2m/s, where forward is positive speed, backward is negative speed and when it stops,

the speed is 0. The real-time speed value is also available by encoders on the motors through

bluetooth.

The odometry data is from the integration of the accelerometers readings. It is not accurate.

In particular, it ignores a situation that the Sphero slides along a obstacle, which is the main

method we need to use in this project. In this project we used the ’wall following’ strategy:

the robot always follows a wall when exploring. Once it is in the corner, it will start a new

exploration in another direction. When rolling along a wall, the robot cannot move according

to the command, as shown in figure 4.5. When a command is sent to roll in direction A, the

actual motion will be in the B direction (along to the wall). The angle between direction A

and direction B is the exploration angle Θ. This discrepancy between the untended motion and

the real one invalidates the odometry computed by the Sphero. Therefore we implemented our

own odometry. For example, our exploration angle is Θ = 30◦, in the world frame, the vector
~d = (3.464, 2) is the odometry from the IMU board. We calculate the displacements δx and δy

in both X and Y direction taken in to account the exploration angle Θ,

δx = ‖~d‖ · sin(Θ) δy = ‖~d‖ · cos(Θ) (4.1)

Where ‖~d‖ is computed by ‖~d‖ = 2
√

3.4642 + 22 = 3.99. Because δx is much smaller than δy,

so the odometry is [0, δy] since walls are assigned to be either horizontal or vertical.

CHAPTER 4. SPHERO 41

Figure 4.5: Sphero movement along the wall

SLAM with the Sphero robot 43

Chapter 5

Experiments

In this chapter, we present the experimental evaluation of the approaches described in the

previous chapters. In Section 5.1 the wall-following strategy and the experimental environment

are introduced. In Section 5.2, the results of all approaches are shown and discussed.

5.1 Wall-following strategy

The wall-following strategy is based on ’left-hand rule’ method. This method always follows

the wall in the left side. If the robot meets a corner, rotates to continue following a wall [2]

The method to distinguish the convex and concave corners is provided next. At first, we wanted

to use the collision detection to tell the difference between the corners. The build in collision

is obtained easily through the IMU board sensor.

But when we tried in the experiment, it took us extremely long time to tune the sensitivity

of collision detection due to the sensor’s noise. So, we implement the corner detection based

on speed change. The exploration should maintains the speed 50cm/sec along the direction A

as in Figure 4.5. The actual speed we could get from the sensor (along direction B) would be

lower the actual speed is vB = 50 · α , where α is the cosine of the angle between direction A

and B.

The main idea of this method is we keep tracking the value of velocity vs, when abnormal

velocity occurs, we consider an event (corner) comes. In this situation, only two types of

corners are under our assumptions. (±90◦ corners)

When we consistently detect a reduction of velocity, we are in a convex corner. If the velocity

is increase, it is a concave corner.

44 CHAPTER 5. EXPERIMENTS

Figure 5.1: Concave corner solution.

When an unexpected increment in speed is detected. We stop the sphero, but as shown in

Fig. 5.1, the Sphero robot (blue circle) at point C because of the sensor frequency and actuator

delay. It will be very inaccurate if we consider the corner position at point C. Instead, we use

one sample previous to the detection of the corner.

After the concave corner is detected, the robot rotates 177◦and moves forward until a wall is

detected, in order to reach the wall near the corner (point B in Fig 5.1). Therefore, the robot

trajectory when it meets a concave corner is A → C → B and the angle between vectors ~AC

and ~CB is 177◦. We assume that the obstacles in the environment are large enough so that

this strategy always successfully overcomes convex corners.

In the experiment, we generate the trajectory by using the wall following strategy, save all

the corner datas (time, corner type, coordinates from the odometer). Then we use Kalman

filter approach, the ellipsoidal approach and the bounding box approach to process the dataset.

Those procedure could be simply described as the flowchart 5.2,

5.1.1 Experimental Environment

Figure 5.3 and 5.4 show respectively a simple map environment and a complex map environment

for our Sphero experiment.

The simple experiment is a rectangle,X = 71.3cm, y = 46.3cm with 4 convex corners. The

CHAPTER 5. EXPERIMENTS 45

Figure 5.2: Collision and corner based wall-following strategy.

46 CHAPTER 5. EXPERIMENTS

Figure 5.3: Simple map environment.

robot will start at point A, follow the path A→ B → C → D then go back to point A.

Figure 5.4 shows the complex map environment. This test case includes a pair of each type

of corners. The robots also traverses the environment clockwise. Figure 5.5 and figure 5.6 show

the raw sensor data we get from the Sphero robot by applying our wall-following algorithm.

5.2 Experimental results

In the experimental results, we first shown the results of probabilistic approach and two set

theoretic approaches before and after closing the loop in the simple environment. Then, we

show the results for the complex environment with same order.

5.2.1 The simple environment

Figures 5.7, 5.8 and 5.9 show the results obtained with 3 methods presented in this thesis in

the simple environment. Each figure shows the estimation before and after closing the loop.

From the results we could see that for the open loop, we have similar result with the three

methods. Although the shape of the uncertainty is different, the trend of increasing is the

same. The uncertainty become large and the uncertainty include the real corner. But we can

see that in the ellipsoidal approach the uncertainty estimation grows faster. In other words, it

CHAPTER 5. EXPERIMENTS 47

Figure 5.4: Complex map environment.

is less accurate, which means that if the loop is not closed, the robot could be in anywhere in

the map.

In addition, as described in Chapter 3, we do data association calculation the ratio of inter-

section between the two ellipsoids. But in this case, if the last ellipsoid contains all the rest,

the value W will be 1 for all the corners, i.e, the corner will be associated to the current one.

Then we won’t know where is the robot. To address this issue, the value W is considered not

only the ratio of intersection between the two ellipsoids, but also the distance between the two

centers of the ellipsoid.

DisR = 0.5 ·max(
1

‖xi − xn‖+ ‖yi − yn‖+ δ
, 1) (5.1)

W = 0.5 ·max(
|S3|
|S1|

,
|S3|
|S2|

) +DisR =
|S3|

min(|S1|, |S3|)
+DisR (5.2)

Here DisR is the distance ratio between the two ellipsoids, they are closer if the value is bigger.

We put a constraint that the distance ratio is small or equals to 0.5, which means if the distance

is less than 0.02cm, we consider the two center location has maximum likelyhood. δ is a small

value close to 0 to be sure the denominator is not going to be 0 (current robot position is not

exactly the same as one landmark visited before). In our experiment, we use δ = 0.0001.

48 CHAPTER 5. EXPERIMENTS

Figure 5.5: Raw sensor data in simple environment

Figure 5.6: Raw sensor data in complex environment

CHAPTER 5. EXPERIMENTS 49

Figure 5.7: KF approach in simple environment.
Left: Before closing the loop. Right: After closing the loop.

Figure 5.8: ellipsoidal approach in simple environment.
Left: Before closing the loop. Right: After closing the loop.

50 CHAPTER 5. EXPERIMENTS

Figure 5.9: Bounding Box approach in simple environment.
Left: Before closing the loop. Right: After closing the loop

Here the value of the maximum similarity is still 1. The score W is between [0− 1], W = 0

means there is no similar corner, W = 1 means the current corner is 100% same as a one the

robot been before.

Figure 5.10 shows the error size of different approach in simple environment, the error is cal-

culated by,

e =

t∑
i=1

ei (5.3)

Where ei is the error at corner ′i′. For Kalman filter approach ei is the volume of the ellipsoid

at 99% confidence, for the set theoretic approaches is the volume of the set bounded the

corresponding error. From the results, we could conclude:

1. All the methods are correct, the real corner’s position are all included in the uncertainty

ranges both before and after closing the loop.

2. For all the methods, the uncertainty is reduced when closing the loop, especially for the

loop closure corner and the ones close to it.

3. For all the methods, the loop closure corner has the lowest error. The error increase in

both sides of the trajectory, forwards and backwards from the loop closure corner.

4. For the Kalman filter approach, the error in loop closure corner is not decreased to the

initial uncertainty. The uncertainty is in between the two estimations, since it is a mean

with different weights.

CHAPTER 5. EXPERIMENTS 51

Figure 5.10: Error size of three approach in simple environment

5. For the set theoretic approach, the error in the estimation of the loop closure corner

decreased to exactly the size of initial uncertainty. In our experiments, the ellipsoid ap-

proach and the bounding box approach yield more or less the same results, because we

consider the common part of the current uncertainty is the fusion of the two ellipsoid-

s/bounding box. In addition, the ellipsoid representing the initial uncertainty in the first

corner is included in the ellipsoid representing the uncertainty at the end of the trajectory,

the fusion of the two ellipsoid is the initial ellipsoid.

5.2.2 The complex environment

Figures 5.11, 5.12 and 5.13 show the results obtained with 3 methods presented in this thesis

in the complex environment. Each figure shows the estimation before and after closing the

loop. Figure 5.14 shows the error (see Eq. 5.3) of the different approaches in the complex

environment. For Kalman filter approach, et is the volume of the ellipsoid at 99% of confidence.

In the complex environment, we observe results similar to those in the simple environment.

The uncertainty is accurate enough to include the real corner’s position.

Also, the set theoretic approach is better because it reduces more the uncertainty. The bound-

ing box approach is simpler than the ellipsoidal approach, but it is constrained to a linear

model. If the model is more complex, it would be probably better to use the ellipsoidal ap-

proach.

52 CHAPTER 5. EXPERIMENTS

Figure 5.11: KF approach in complex environment.
Left: Before closing the loop. Right: After closing the loop.

Figure 5.12: Ellipsoidal approach in complex environment.
Left: Before closing the loop. Right: After closing the loop.

CHAPTER 5. EXPERIMENTS 53

Figure 5.13: Bounding Box approach in complex environment.
Left: Before closing the loop. Right: After closing the loop.

Figure 5.14: Error size of three approach in complex environment

54 CHAPTER 5. EXPERIMENTS

SLAM with the Sphero robot 55

Chapter 6

Summary and Future Work

In this thesis, a corner-based wall following strategy is presented and it is used to solve the

SLAM problem in environment with axis aligned walls. Most of the efforts in this thesis

focused on the low level aspects such as the access to the Sphero sensors and controls, the

implementation of a wall following strategy, or the detection of corners on a reliable way.

However this thesis also contributes implementing SLAM strategies based on these different

ways to represent the uncertainly in the problem.

In the experiment, we use Matlab to test and compare the results of Kalman filter approach

and two types of set theoretic approaches running on the same environments. From the results,

the set theoretic approaches could be considered an efficient way to solve the SLAM problem

because they generate better estimations after closing the loop. Nevertheless, the environments

considered in this thesis are simple, e.g., the motion and observation models are linear. Different

results may be obtained in more complex setting with non linear models.

This thesis can be extended in several directions:

1. Better hardware and complex model representation.

The current research is constrained in several ways. However in real life, we need to

consider more possibilities. The path may not limited to rectilinear environment, the

ground may not smooth and sometimes we cannot avoid small obstacles in the path

which may lead to system instability. Some of these problems could be analyzed if we

have better sensor. Also, a more complex model to represent the robot movements and

observations would be necessary.

2. Other types of uncertainty description.

In the thesis, two different ways of modeling the uncertainty are studied in a set-theoretic

56 CHAPTER 6. SUMMARY AND FUTURE WORK

point of view. The the approach is favored due to the non-Gaussian robot pose distribu-

tion. It would be interesting to implement alternative ways to describe uncertainty and

the corresponding propagation and fusion methods.

3. Multiple robot SLAM

In this thesis, only one robot is used in the experiments. It will be interesting to have

multiple robot to reduce the exploration time. For this it would be necessary to develop

tools to fuse the information obtained by each robot.

SLAM with the Sphero robot 57

Appendix

Kalman filter approach

main.m

1 %% main run in sphero

2 % This function is the main function for recording datas

3 % Also the Kalman filter approach result is test directly in this experiment

4 % map and P are the states and the covariance after loop−closing
5 % map1 and P1 are the states and the covariance before loop−closing
6 % After run this file, 'xlog','ylog','t' and 'cornerlog' need to be saved ...

for other approaches.

7

8 %% connect sphero robot and set up the settings

9 sph = connectsph(); % call function 'connectsph' to establish the ...

connection between Matlab and Sphero robot.

10 setsystem(sph); % call function 'setsystem' to set systematic ...

parameters.

11

12 %% parameter declaration

13

14 idx=1; % the index i−th of wall the robot following

15 label=0; % lable is to declare if the new state is part of mapped states

16 loop = 1; % times of loops −−> for balancing the time for recording the ...

data and the motion timeout

17

18 % parameter for corners

19 punishment = 0; % for detecting the low speed, corner type 1

20 signal_wall = 0; % for detecting the high speed, corner type 2

21 corner_type = 0; % corner type signal: corner_type = 0 −−> no corner ...

detected

58 CHAPTER 6. SUMMARY AND FUTURE WORK

22 % corner_type = 1 −−> corner type 1 detected

23 % corner_type = 2 −−> corner type 2 detected

24 cornerlog = []; % List of all the corner type from the initial robot ...

position

25

26 % Sensor paramters initialization:

27 % After calibration(in function'setsystem'), initialize the sensor ...

parameters.

28 [xstart, ystart, ¬, ¬, groundspeed] = readLocator(sph);

29 [accX, accY, accZ] = readSensor(sph, {'accelX', 'accelY', 'accelZ'});

30 % temporary parameters, because the values from sensor are integer.

31 xcur = double(xstart); % initial robot position x

32 ycur = double(ystart); % initial robot position y

33 senpx = 0; % position x from sensor

34 senpy = 0; % position y from sensor

35 senvx = 0; % velocity vx from sensor

36 senvy = 0; % velocity vy from sensor

37

38 % recording parameters

39 xlog = xcur;

40 ylog = ycur;

41

42 % Parameters for SLAM

43 % Map after closing the loop

44 P = [0.1 0;0 0.1]; %initial covariance ;

45 map = [xcur;ycur]; % map % initial map (allhe states) [Robot x ;robot ...

y;Landmark1 x ;y;L2 x;y]

46 % MAP before closing the loop, for the comparation

47 P1 = [0.1 0;0 0.1];

48 map1 = [0;0];

49

50 % parameters for the system

51 tfinal = 90; % Time limit on the motion of the Sphero

52 espeed = 60; % exploration speed

53 angle = −25; % initial angle for exploration

54

55 % timers

56 t = 0;

57 t0 = cputime;

58 tt1 = t0;

59

CHAPTER 6. SUMMARY AND FUTURE WORK 59

60 %% the main loop for exploration

61 tic % start timer

62 while (toc < tfinal) % main loop

63

64 % movement command, towards initial heading 'angle' direction, with ...

initial exploration speed

65 result = roll(sph, espeed, angle);

66

67 % 9s per each small loop because we set the motion timeout as 10s

68 while (signal_wall==0 && toc < loop*9 && toc < tfinal)

69

70 % if events not happend, keep recording the pos,velocity

71 % save the locator in the fastest speed in order to detect if wall ends

72 [x,y,vx,vy,¬] = readLocator(sph);

73 senpx(end+1) = double(x);

74 senpy(end+1) = double(y);

75 senvx(end+1) = double(vx);

76 senvy(end+1) = double(vy);

77

78 % Corner type detection 1) Continuesly Low velocity: in the ...

corner type 1

79 % 2) The Velocity increase instantaneously: ...

in the corner type 2

80

81 %% corner type 1

82 if (length(senvx)>2) && (abs(senvx(end)−senvx(end−1)) ...

83 +abs(senvy(end)−senvy(end−1)) < 5)

84 punishment = punishment+1;

85 if punishment ≥ 5 % if continuesly Low velocity

86 corner_type = 1;

87 [map,P,map1,P1,t,angle,xlog,ylog] = ...

newevent(sph,angle,map,map1,P,P1,xlog,ylog,t,tt1,idx);

88 % if we detect a corner, we reset the angle and break this loop

89 % rotate 90 degree to continue exploration

90 [angle,corner_type,idx,cornerlog] = ...

angle_change(angle,corner_type,idx,cornerlog);

91 break

92 end

93 end

94

95 %% wall ends ? (corner type2)

60 CHAPTER 6. SUMMARY AND FUTURE WORK

96 % if the velocity increase instantaneously −−> signal_wall = 1, or ...

else the signal will remain 0.

97 if (length(senpx)>2)

98 direction = getdirection(senpx,senpy,angle);

99 % tracking the position,velocity and check if the velocity change ...

instantly.

100 [senpx,senpy,senvx,senvy,signal_wall] = ...

check_if_wall_ends(sph,senpx,senpy,senvx,senvy,direction);

101 end

102 if signal_wall==1

103 % if wall ends detect, go back to the wall

104 signal_wall = back_to_wall(sph,angle);

105 % the new event is in the remembered position

106 [map,P,map1,P1,t,angle,xlog,ylog]= ...

107 newevent(sph,angle,map,map1,P,P1,xlog,ylog,t,tt1,idx);

108 corner_type=2;

109 % rotate −90 degree to continue exploration

110 [angle,¬,idx,cornerlog] = ...

111 angle_change(angle,corner_type,idx,cornerlog);

112 break

113 end

114 end

115 % reset punishment and increase the loop size

116 punishment = 0;

117 loop = loop+1;

118 end

119 brake(sph); % when the exploration succeed, release sphero obeject.

120

121 %% plot

122 plotfigure(map,P); % plot after closing the loop

123 figure,plotfigure(map1,P1); % plot before closing the loop

mainsim.m

1 %% main run simulation with record datas

2 % This function is the main function for kalman filter approach

3 % map and P are the states and the covariance after loop−closing
4 % map1 and P1 are the states and the covariance before loop−closing
5

6 % initialize the map and covariance

7 map = [0;0]; % map [Robot x ; robot y; Landmark1 x ; y; Landmark2 x; y ...

CHAPTER 6. SUMMARY AND FUTURE WORK 61

... Landmarkn x; y]

8 P = [0.1 0;0 0.1]; %initial covariance ;

9 % for the comparation(before loop−closing)
10 map1 = [0;0];

11 P1 = [0.1 0;0 0.1];

12

13 % load('**.mat'); % load data

14

15 % Parameters for looping

16 xlog = x(1);

17 ylog = y(1);

18 angle = −25; % initial angle for exploration

19

20 % Main loop

21 for i = 2:length(x)

22 delt = t(i)−t(i−1); % ∆ t

23 xlog = [xlog,x(i)]; % sensor position x

24 ylog = [ylog,y(i)]; % sensor position y

25 % Get estimate change of P, R robot, Prr, estx, esty

26 [P,map] = getchange(angle,map,xlog,ylog,delt,P);

27 [P1,map1] = getchange(angle,map1,xlog,ylog,delt,P1);

28 if i<3

29 % add statas(the first landmark) to map

30 [map,P] = addtostate(map,P,i−1);
31 map1 = map;

32 P1 = P;

33 else

34 % Pridiction, form the P covariance.

35 [map,P] = prediction(map,P);

36 [map1,P1] = prediction(map1,P1);

37 % see if position now is part of the mapped landmark

38 [label,corl] = ifnewstate(map,P);

39 if label==0 % never seen this state

40 [map,P] = addtostate(map,P,i−1);
41 % compared map

42 [map1,P1] = addtostate(map1,P1,i−1);
43 else

44 [map,P]=correctmap(map,P,corl);

45 % compared map

46 [map1,P1]=addtostate(map1,P1,i−1);
47 end

62 CHAPTER 6. SUMMARY AND FUTURE WORK

48 end

49 % rotate for next wall fllowing

50 corner_type=cornerlog(i−1);
51 [angle,¬,idx,cornerlog] = ...

52 angle_change(angle,corner_type,i−1,cornerlog);
53 angle = mod(angle, 360);

54 end

55 % plot

56 figure,plotfigure(map1,P1); % plot before closing the loop

57 figure,plotfigure(map,P); % plot after closing the loop

connectsph.m

1 %% Create a Sphero object (if it does not exist)

2 % Connect Matlab with Sphero robot

3 % % This function only used in the real robot exploration

4

5 % Output

6 % sph − Sphero robot object

7

8 function sph=connectsph()

9 % if the object doesn't exist, Create a Sphero object

10 if ¬exist('sph','var')
11 sph = sphero();

12 end

13

14 % Set up connection

15 connect(sph);

16

17 % ping

18 result = ping(sph);

19

20 % interrupt the example if ping was not successful

21 if ¬result
22 disp('Example aborted due to unsuccessful ping');

23 return,

24 end

25 end

setsystem.m

CHAPTER 6. SUMMARY AND FUTURE WORK 63

1 %% This function is for setting sphero robot

2

3 function setsystem(sph)

4 % set every rotation time last 10 seconds

5 sph.MotionTimeout=10;

6

7 % Turn on handshaking

8 sph.Handshake = 1;

9

10 % turn on the back LED

11 % Easily check the heading of Sphero robot

12 sph.BackLEDBrightness = 255;

13

14 % Calibrate the orientation of the sphero.

15 % initialize the orientation of the Sphero in the desired direction.

16 calibrate(sph, 0);

17

18 % turn on the collision detection

19 sph.CollisionDetection=1;

20 end

getchange.m

1 % This function is to get the new robot position and related covariance

2 % It's part of prediction in Kalman filter approach

3

4 % Input:

5 % angle − angle beteween robot heading and initial wall (positive in ...

clockwise)

6 % map − Map (states, include the current robot position)

7 % xlog − List of landmark position x

8 % ylog − List of landmark position y

9 % P − covariance (include the current robot covariance)

10

11 % Output:

12 % map − updated Map

13 % P − updated covariance

14

15

16 function [P,map] = getchange(angle,map,xlog,ylog,delt,P)

64 CHAPTER 6. SUMMARY AND FUTURE WORK

17 % parameters for error

18 varp = 0.005;

19 % F according to the state change

20 func=eye(2);

21 jFr = eye(2);

22 jFn = eye(2);

23 % calculate the measurment data according to x and y aixes :

24 rtheta = deg2rad(abs(angle)); % rtheta is the rubot running heading ...

angle in world frame,rad

25 if abs(sin(rtheta))*abs(xlog(end)−xlog(end−1))≥ ...

26 abs(cos(rtheta))*abs(ylog(end)−ylog(end−1))
27 if rtheta < pi % x increasing

28 % measurment accumulated

29 senx = + abs(xlog(end)−xlog(end−1));
30 seny = 0;

31 else % x decreasing

32 % measurment accumulated

33 senx = − abs(xlog(end)−xlog(end−1));
34 seny = 0;

35 end

36 q = varp*delt+0.5;

37 Q = [50*q,0;0 0];

38 else

39 if rtheta < pi/2 || rtheta > 3*pi/2 % y increasing

40 % measurment accumulated

41 senx = 0;

42 seny = + abs(ylog(end)−ylog(end−1));
43 else

44 senx = 0;

45 seny = − abs(ylog(end)−ylog(end−1));
46 end

47 q = varp*delt+0.5;

48 Q = [0 0;0 50*q];

49 end

50 map(1:2,1) = func*map(1:2,1)+[senx;seny];

51 P(1:2,1:2) = jFr*P(1:2,1:2)*jFr'+jFn*Q*jFn';

52 end

ifnewstate.m

1 % see if the current position is associated to one mapped landmark

CHAPTER 6. SUMMARY AND FUTURE WORK 65

2 % Input:

3 % map − Map (states, include the current robot position)

4 % P − covariance (include the current robot covariance)

5 % Output:

6 % label − signal for data association label = 0 no associated ...

landmark(new corner);

7 % label = 1 landmark associated

8 % corl − pointer of associated landmark (−th) in the state

9

10 function [label,corl] = ifnewstate(map,P)

11

12 % initial min distance of mahanobian distance

13 mindis=1e+06; % a initial value (big)

14 % total numbers of the visit corner

15 n=(length(map)/2);

16 % corl−− landmark label

17 corl=0;

18

19 % find minimum M distance between current robot position to every ...

previous landmark

20 for i=2:n

21 dif = [map(1,1);map(2,1)]−[map(2*i−1,1);map(2*i,1)];
22 Pdif = P(1:2,2*i−1:2*i);
23 % manhanobian distance

24 madis = abs(dif'*Pdif*dif);

25 if madis < mindis

26 mindis = madis;

27 corl = i; % cor = 2 −−> corner 0

28 end

29 end

30

31

32 % we compare the min distance to a threthold

33 if mindis<300

34 % if its small enough

35 label = 1;

36 else

37 label = 0;

38 end

39

40 end

66 CHAPTER 6. SUMMARY AND FUTURE WORK

prediction.m

1 % obtain the current estimate position of the new state

2

3 % Input:

4 % map − Map (states, include the current robot position)

5 % P − covariance (include the current robot covariance)

6 % Output:

7 % map − updated Map

8 % P − updated covariance

9

10 function [map,P]=prediction(map,P)

11

12 jFr = eye(2);

13 % robot position prediction

14 % alread done in getchage

15

16 % covariance prediction

17 Prm = jFr*P(1:2,3:end);

18 P(1:2,3:end) = Prm;

19 P(3:end,1:2) = Prm';

20 end

angle change.m

1 %% This function is called when the corner detect.

2 % it aims at changing the robot heading in order to follow another wall

3

4 % Input: angle − angle beteween robot heading and initial wall ...

(positive in clockwise)

5 % corner_type − corner type signal

6 % idx − pointer of landmark (−th wall)

7 % cornerlog − List of all the corner type from the initial robot position

8

9 % Output: angle − angle beteween robot heading and initial wall ...

(positive in clockwise)

10 % corner_type − updated corner type signal

11 % idx − updated pointer of landmark (−th wall)

12 % cornerlog − List of all the corner type from the initial robot position

13

CHAPTER 6. SUMMARY AND FUTURE WORK 67

14

15 function [angle,corner_type,idx,cornerlog]=angle_change ...

16 (angle,corner_type,idx,cornerlog)

17

18 % change angle, when next command send to robot, the robot follows ...

another wall.

19 if corner_type ==1 % convex corner

20 angle = angle + 90;

21 else

22 if corner_type == 2 % concave corner

23 angle = angle − 90;

24 end

25 end

26

27 % add the current corner type in the list

28 cornerlog=[cornerlog,corner_type];

29 corner_type = 0; % reset corner_type

30

31 % set angle to the range (0−360)

32 angle = mod(angle, 360);

33

34 % increase the index

35 idx = idx+1;

36

37 end

check if wall ends.m

1 %% This function checks if there is a wall end with maximum frequency.

2 % In experiment, the frequency is 2Hz

3 % This function only used in the real robot exploration

4

5 % Input:

6 % sph − Sphero robot object

7 % senpx − List of robot position x from sensor

8 % senpy − List of robot position y from sensor

9 % senvx − List of robot velocity vx from sensor

10 % senvy − List of robot velocity vy from sensor

11 % direction − robot heading direction

12

13 % Output:

68 CHAPTER 6. SUMMARY AND FUTURE WORK

14 % senpx − List of robot position x from sensor

15 % senpy − List of robot position y from sensor

16 % senvx − List of robot velocity vx from sensor

17 % senvy − List of robot velocity vy from sensor

18 % signal_wall − signal for if the wall ends (= 0 wall end not ...

detected; = 1 detected wall end)

19

20 function [senpx,senpy,senvx,senvy,signal_wall] = ...

check_if_wall_ends(sph,senpx,senpy,senvx,senvy,direction)

21 signal_wall = 0; % set the siganl remain 0 (wall not end);

22

23 % keep recording

24 [xcur, ycur,vx,vy,groundspeed] = readLocator(sph);

25 senpx(end+1) = double(xcur);

26 senpy(end+1) = double(ycur);

27 senvx(end+1) = double(vx);

28 senvy(end+1) = double(vy);

29

30

31 % we consider wall end if satisfy those conditions:

32 if direction == 1 || direction == 2 % along the x

33 if ((abs(vy)>300) && (abs(senvy(end)−senvy(end−1))>150) && ...

abs(groundspeed>480))||(abs(groundspeed)>600)

34 signal_wall=1;

35 end

36 else

37 if direction == 3 || direction == 4 % along the y positive

38 if ((abs(vx)>300) && (abs(senvx(end)−senvx(end−1))>150)&& ...

abs(groundspeed>480))||(abs(groundspeed)>600)

39 signal_wall=1;

40 end

41 end

42 end

43

44 end

addtostate.m

1 %% This function is for landmark initialization

2 % For adding the corner in the states

3

CHAPTER 6. SUMMARY AND FUTURE WORK 69

4 % Input:

5 % map − Map (states, include the current robot position)

6 % P − covariance (include the current robot covariance)

7 % idx − pointer of landmark (−th) needs to add in Map

8 % Output:

9 % map − updated Map

10 % P − updated covariance

11

12 %%

13 function [map,P]=addtostate(map,P,idx)

14

15 %% jacobians

16 Gr = eye(2);

17 Gy1 = eye(2);

18 Q = eye(2);

19

20 if idx<2

21 % initialize the Covariance matrix and add the first landmark's covariance

22 map=[map;0;0];

23 P(end+1:end+2,1:end)=0.5*eye(2);

24 P(1:end−2,end+1:end+2)=0.5*eye(2);
25 P(end−1:end,end−1:end)=0.1*eye(2);
26

27 Prr = P(1:2,1:2);

28 Prm = P(1:2,3:end);

29 Pll=Gr*Prr*Gr'+Gy1*Q*Gy1';

30 Plx=Gr*[Prr Prm];

31

32 P(end+1:end+2,1:end)=Plx;

33 P(1:end−2,end+1:end+2)=Plx';
34 P(end−1:end,end−1:end)=Pll;
35 else

36 % Add landmark to the covariance

37 Prr = P(1:2,1:2);

38 Prm = P(1:2,3:end);

39 Pll=Gr*Prr*Gr'+Gy1*Q*Gy1';

40 Plx=Gr*[Prr Prm];

41

42 P(end+1:end+2,1:end)=Plx;

43 P(1:end−2,end+1:end+2)=Plx';
44 P(end−1:end,end−1:end)=Pll;

70 CHAPTER 6. SUMMARY AND FUTURE WORK

45 end

46

47 map = [map;map(1,1);map(2,1)]; % renew Map

48 end

correctmap.m

1 %% This function is used after loop closure for correcting the Map and ...

related covariance.

2

3 % Input:

4 % map − Map (states, include the current robot position)

5 % P − covariance (include the current robot covariance)

6 % corl− pointer of associated landmark (−th) in the state

7 % Output:

8 % map − updated Map

9 % P − updated covariance

10

11 function [map,P]=correctmap(map,P,corl)

12 Prr = P(1:2,1:2);

13 Prl = P(1:2,(corl*2−1):(corl*2));
14 Pll = P((corl*2−1):(corl*2),(corl*2−1):(corl*2));
15 Pmr = P(3:end,1:2);

16 Pml = P(3:end,(corl*2−1):(corl*2));
17 % H jacobian

18 jHr = eye(2);

19 jHl = eye(2);

20

21 R = 1.5*eye(2); % Noise of measurement

22 z = [map(corl*2−1);map(corl*2)]−[map(1);map(2)]; % landmark − observation

23 Z = [jHr jHl]*[Prr Prl;Prl' Pll]*[jHr';jHl']+ R; % here plus the ...

covariance of noise of measurement

24 K = [Prr Prl; Pmr Pml]*[jHr';jHl']*(Z^(−1)); % Kalman gain

25 kz = K*z;

26 kzk = K*Z*K';

27

28 % correct map

29 map = map + kz;

30 % correct covariance

31 P = P − kzk;

32 end

CHAPTER 6. SUMMARY AND FUTURE WORK 71

getdirection.m

1 % This function is to get the new robot heading direction

2

3 % Input:

4 % angle − angle beteween robot heading and initial wall (positive in ...

clockwise)

5 % map − Map (states, include the current robot position)

6 % xlog − List of landmark position x

7 % ylog − List of landmark position y

8 % P − covariance (include the current robot covariance)

9

10 % Output:

11 % map − robot heading direction (in world frame)

12 % direction = 1 −−> robot heading at x positive

13 % direction = 2 −−> robot heading at x negative

14 % direction = 3 −−> robot heading at y positive

15 % direction = 4 −−> robot heading at y negative

16

17 function direction = getdirection(senpx,senpy,angle)

18 % calculate the measurment data according to x and y aixes :

19 rtheta = deg2rad(abs(angle)); % rtheta is the rubot running heading ...

angle in world frame,rad

20 if abs(senpx(end)−senpx(end−1))>abs(senpy(end)−senpy(end−1))
21 if rtheta < pi % x increasing

22 direction = 1;

23 else % x decreasing

24 direction = 2;

25 end

26 else

27 if rtheta < pi/2 || rtheta > 3*pi/2 % y increasing

28 direction = 3;

29 else

30 direction = 4;

31 end

32 end

33 end

newevent.m

72 CHAPTER 6. SUMMARY AND FUTURE WORK

1 %% After we detect an event happends(a corner detected),

2 % we need to check if this corner is a new one or a old one we already visited.

3 % Then deal with them with different ways.

4 % If it's a new corner −−> add to states

5 % If it's a corner already visited −−> close the loop

6 %

7 % Input parameters:

8 % sph − Sphero robot object

9 % angle − angle beteween robot heading and initial wall ...

(positive in clockwise)

10 % map − Map (states, include the current robot position)

11 % map1 − reference map (before closing the loop, for comparasion)

12 % P − covariance (include the current robot covariance)

13 % P1 − reference covariance matrix (before closing the ...

loop, for comparasion)

14 % xlog − all landmarks x position

15 % ylog − all landmarks y position

16 % t − event occur time list

17 % tt1 − last event occur time (for computation ∆ t)

18 % idx − index of the wall following

19 %

20 % Output parameters:

21 % map − updated Map

22 % P − updated covariance matrix

23 % map1 − updated reference map

24 % P1 − updated reference covariance matrix

25 % angle − input of sphero, robot heading

26 % xlog − all landmarks x position

27 % ylog − all landmarks y position

28 % t − event occur time

29 % tt1 − last event occur time (for computation ∆ t)

30 % idx − index of the wall fllowed

31 function [map,P,map1,P1,t,angle,xlog,ylog]= ...

32 newevent(sph,angle,map,map1,P,P1,xlog,ylog,t,tt1,idx)

33 % Read the current position and speed of the robot

34 [xcur, ycur,¬, ¬, ¬] = readLocator(sph);

35 brake(sph);

36

37 t(end) = toc; % event time

38 delt=cputime−tt1;
39 xlog(end+1) = double(xcur);

CHAPTER 6. SUMMARY AND FUTURE WORK 73

40 ylog(end+1) = double(ycur);

41 % then we calculate if it is the privious state, if it is, close the

42 % loop , if its not,initialize the landmark and go for another run.

43

44 % get estimate change of P,R robot, Prr, estx, esty

45 [P,map] = getchange(angle,map,xlog,ylog,delt,P);

46 [P1,map1] = getchange(angle,map1,xlog,ylog,delt,P1);

47 if idx<2

48 % add statas(the first landmark) to map

49 [map,P] = addtostate(map,P,idx);

50 map1 = map;

51 P1 = P;

52 else

53 % Pridiction, form the P covariance.

54 [map,P] = prediction(map,P);

55 [map1,P1] = prediction(map1,P1);

56 % see if position now is part of the mapped landmark

57 [label,corl] = ifnewstate(map,P);

58

59 if label == 0 % never seen this state

60 [map,P] = addtostate(map,P,idx);

61 % compared map

62 [map1,P1] = addtostate(map1,P1,idx);

63 else

64 [map,P] = correctmap(map,P,corl);

65 % compared map

66 [map1,P1] = addtostate(map1,P1,idx);

67 end

68 end

69 end

plotfigure.m

1 % This function is for plot the Map and Covariance

2

3 function plotfigure(map,P)

4

5

6 % % real simple environment

7 % M00 = [0 0 75 75 0

8 % 0 50 50 0 0];

74 CHAPTER 6. SUMMARY AND FUTURE WORK

9 % ball is 7.4 cm

10 % simple environment without the ball length in 2−D frame

11 M00 = [0 0 71.3 71.3 0

12 0 46.3 46.3 0 0];

13

14 % % big map without the ball length in 2−D frame

15 % M00 = [0 0 79.5 79.5 207.5 207.5 152.2 152.2 0

16 % 0 39 39 101 101 60 60 0 0];

17

18

19 % total numbers of the visit corner

20 n=(length(map)/2);

21

22 even = map(4:2:end,1);

23 odd = map(3:2:end,1);

24

25 plot(M00(1,:),M00(2,:),'r'); % red is the real map

26 hold on

27 grid on

28 plot(odd,even,'b'); % blue is after the karman

29 plot(map(1),map(2),'*');

30

31 % plot the covariance

32 for i=2:n

33 xxx = [map(2*i−1,1);map(2*i,1)];
34 ppp = P(2*i−1:2*i,2*i−1:2*i);
35 % plot 3 sigma ellipse's coordinates

36 [xx,yy] = plotllipse(xxx, ppp, 4);

37 plot(xx,yy,'g');

38 end

39

40 end

plotllipse.m

1 %% This function is for ploting the covariance for Kalman filter approach

2

3 function [X,Y] = plotllipse(x,P,n,NP)

4 if nargin < 4

5 NP = 16;

6 if nargin < 3

CHAPTER 6. SUMMARY AND FUTURE WORK 75

7 n = 1;

8 end

9 end

10 alpha = 2*pi/NP*(0:NP); % NP angle intervals for one turn

11 circle = [cos(alpha);sin(alpha)]; % the unit circle

12 % SVD method, P = R*D*R' = R*d*d*R'

13 [R,D]=svd(P);

14 d = sqrt(D);

15 ellip = n * R * d * circle;

16 % output ready for plotting (X and Y are line vectors)

17 X = x(1)+ellip(1,:);

18 Y = x(2)+ellip(2,:);

Ellipsoidal approach

ee main.m

1 %% main run simulation with record datas

2 % This function is the main function for Ellipsoidal approach

3 % back_pos and back_P are the states and the covariance after loop−closing
4 % map_pos and mao_P are the states and the covariance before loop−closing
5

6 % initialization

7 label=0;

8

9 % robot

10 r_pos = [0;0] ;

11 r_P = [100 0;0 100]; %initial error;

12

13 change_pos = [];

14 change_P = [];

15 disp_pos = [0;0]; % displacment

16 disp_P = [100 0;0 100];

17

18 % map:

19 map_pos = [0;0]; % initial map with the current robot position

20 map_P = [100 0;0 100]; %initial error;

21

22 %load('cornerdatabigmap.mat');

76 CHAPTER 6. SUMMARY AND FUTURE WORK

23

24 xlog = x(1);

25 ylog = y(1);

26 angle = −25;
27

28 for i=2:length(x)

29 xlog=[xlog,x(i)];

30 ylog=[ylog,y(i)];

31 delt = t(i)−t(i−1); % ∆ t

32

33 % get change for displace

34 [change_pos,change_P] = get_change(angle,i,xlog,ylog,delt);

35 % move robot to new position (propagation)

36 [r_pos,r_P] = propagation(change_pos,change_P,r_pos,r_P);

37

38 % if first landmark, add to map directly

39 if i<3

40 % add statas(the first landmark) to map

41 [disp_pos,disp_P,map_pos,map_P] ...

42 =add2state(change_pos,change_P,r_pos,r_P,disp_pos,disp_P,map_pos,map_P);

43 else

44 % check if it is new state(data association)

45 function [label,corl] = ifnewstate(map_pos,map_P,r_pos,r_P);

46 % if new states, add to map, change angle and continue

47 if label == 0

48 [disp_pos,disp_P,map_pos,map_P] ...

49 =add2state(change_pos,change_P,r_pos,r_P,disp_pos,disp_P,map_pos,map_P);

50 corner_type = cornerlog(i−1);
51 [angle,¬,idx,cornerlog] = ...

angle_change(angle,corner_type,i−1,cornerlog);
52 angle = mod(angle, 360);

53 else % loop closure

54 % intersection in current position with associated landmark

55 [r_pos,r_P] = intersection(map_pos(:,corl),r_pos,map_P(:,corl),r_P)

56

57 back_pos = r_pose;

58 back_P = r_P; % first pose and error after correction

59

60 % first propagation and fusion

61 % propagation

62 [change_pos,change_P] = back_change(angle−130,i,xlog,ylog,t(i)−t(i−1));

CHAPTER 6. SUMMARY AND FUTURE WORK 77

63 % b_pos and back_P is the robot pose and error through back propagation

64 [b_pos,b_P] = propagation(change_pos,change_P,r_pos,r_P);

65 % fusion

66 [b_pos,b_P] = intersection(b_pos,map_pos(:,corl−1),b_P,map_P(:,corl−1));
67 back_pos = [back_pos,b_pose];

68 back_P = [back_P,b_P];

69 angle = angle_back(angle,i−1,cornerlog);
70 break;

71 end

72 end

73 end

74

75 j=i−1;
76 while inte==1 % back propagation and fusion till there is no intersection ...

of bounding box, or to initial robot pose

77 [change_pos,change_P] = back_change(angle,i,xlog,ylog,t(j)−t(j−1));
78 [b_pos,b_P] = propagation(change_pos,change_P,b_pos,b_P);

79 [b_pos,b_P] = intersection(b_pos,map_pos(:,j−1),b_P,map_P(:,j−1));
80 back_pos = [back_pos,b_pose];

81 back_P = [back_P,b_P];

82 angle = angle_back(angle,j−1,cornerlog);
83

84 if j==2

85 break;

86 end

87 j = j − 1;

88 end

89 % plot

90 plotfigure(map_pos,map_P);

get change.m

1 % This function is for getting the displacement of robot movement

2 % and error according to this movement from a corner to another corenr.

3 %

4 % Input:

5 % angle − Angle beteween robot heading and initial wall (positive in ...

clockwise)

6 % i − Looping parameter

7 % xlog − List of landmark position x

8 % ylog − List of landmark position y

78 CHAPTER 6. SUMMARY AND FUTURE WORK

9 % delt − Motion time from corner to corner

10

11 % Output:

12 % change_pos − Updated robot position change (displacement)

13 % change_P − Updated ovement error (corner to corner)

14

15

16 function [change_pos,change_P] = get_change(angle,i,xlog,ylog,delt)

17 varp = 0.03;

18 % calculate the measurment data according to x and y aixes :

19 rtheta = deg2rad(abs(angle)); % rtheta is the rubot running heading angle ...

in world frame,rad

20

21 if abs(sin(rtheta))*abs(xlog(end)−xlog(end−1)) ...

22 ≥abs(cos(rtheta))*abs(ylog(end)−ylog(end−1))
23 if rtheta < pi % x increasing

24 % measurment accumulated

25 disx = + abs(xlog(end)−xlog(end−1));
26 disy = 0;

27 else % x decreasing

28 % measurment accumulated

29 disx = − abs(xlog(end)−xlog(end−1));
30 disy = 0;

31 end

32 q = varp*delt+0.5;

33 change_P = [q,0;0 5000000];

34 else

35 if rtheta < pi/2 || rtheta > 3*pi/2 % y increasing

36 % measurment accumulated

37 disx = 0;

38 disy = + abs(ylog(end)−ylog(end−1));
39 else

40 disx = 0;

41 disy = − abs(ylog(end)−ylog(end−1));
42 end

43 q = varp*delt+0.5;

44 change_P = [5000000 0;0 q];

45 end

46 change_pos = [disx;disy];

47 end

CHAPTER 6. SUMMARY AND FUTURE WORK 79

propagation.m

1 % this function is to propagate in order to get current robot pose and error.

2 % Input:

3 % change_pos − Robot position change (displacement)

4 % change_P − movement error (corner to corner)

5 % r_pos − Current robot position

6 % r_P − Current robot error

7

8 % Output:

9 % r_pos − Updated current robot position

10 % r_P − Updated current robot error

11

12 function [r_pos,r_P] = propagation(change_pos,change_P,r_pos,r_P)

13 r_pos = r_pos + change_pos;

14 % ellips to propagate

15 P0 = [r_P/2,zeros(2);zeros(2),change_P/2];

16 % compute F

17 A = [eye(2),eye(2)];

18 Ar = A'/(A*A');

19 NA = null(A);

20 C = −eye(2);
21 B0 = NA'*P0*NA;

22 B1 = P0*NA*(pinv(B0))*NA'*P0;

23 r_P = C'*((Ar)')* (P0 − B1)*Ar*C;

24 end

intersection.m

1

2 % This function is to find the intersection of two ellipsoids.

3

4 % Input

5 % x1 − Center position of one bounding box

6 % x2 − Center position of another bounding box

7 % E1 − Error of one bounding box

8 % E2 − Error of another bounding box

9 % Output

10 % E − Error after intersection

11 % x0 − Error after intersection

80 CHAPTER 6. SUMMARY AND FUTURE WORK

12

13 function [E,x0] = intersection(x1,x2,E1,E2)

14 w = sqrt((x1(1))^2 + x2(1)^2) + sqrt((x1(1))^2 + x2(1)^2);

15 if w < 20

16 lambda = 0.5;

17 X = lambda*E1+(1−lambda)*E2;
18 k = 1−lambda*(1−lambda)*(x2−x1)'*E2* (X^(−1)) *E1*(x2−x1);
19 E = 1/k*X;

20 x0 = (X^(−1)) * (lambda*E1*x1+(1−lambda)*E2*x2);
21 end

22 end

plotellipse.m

1 % This function is to plot the ellispsoid (error)

2 % Input

3 % x − center of ellipsoid

4 % E − error(ellipsoid)

5 function plotellipse(x,E)

6 a = 0:0.01:2*pi;

7 c = cos(a);

8 s = sin(a);

9 d = x+E\[s;c];

10 plot(d(1,:),d(2,:));

11 end

angle change.m

1 %% This function is to update the angle according to the robot movement

2 % Input:

3 % angle − angle beteween robot heading and initial wall (positive in ...

clockwise)

4 % corner_type − corner type signal

5 % idx − pointer of landmark (−th wall)

6 % cornerlog − List of all the corner type from the initial robot position

7 % Output:

8 % angle − angle beteween robot heading and initial wall (positive in ...

clockwise)

9 % corner_type − updated corner type signal

10 % idx − updated pointer of landmark (−th wall)

CHAPTER 6. SUMMARY AND FUTURE WORK 81

11 % cornerlog − List of all the corner type from the initial robot position

12

13 function [angle,corner_type,idx,cornerlog] ...

14 =angle_change(angle,corner_type,idx,cornerlog)

15 if corner_type ==1 % convex corner

16 angle = angle + 90;

17 else

18 if corner_type == 2 % concave corner

19 angle = angle − 90;

20 end

21 end

22 cornerlog=[cornerlog,corner_type];

23 corner_type = 0; % reset corner_type

24

25 % set angle to the range (0−360)

26 angle = mod(angle, 360);

27

28 % increase the index

29 idx = idx+1;

30 end

Bounding box approach

bounding main.m

1 %% main run simulation with record datas

2 % This function is the main function for Bounding box approach

3 % back_pos and back_P are the states and the covariance after loop−closing
4 % map_pos and mao_P are the states and the covariance before loop−closing
5

6 % initialization

7 label=0;

8 inte=0;

9 % robot

10 r_pos = [0;0] ;

11 r_P = [0.1;0.1]; %initial error;

12

13 change_pos = [];

14 change_P = [];

82 CHAPTER 6. SUMMARY AND FUTURE WORK

15 disp_pos = [0;0]; % displacment

16 disp_P = [0;0];

17

18 map_pos = [0;0]; % initial map with the current robot position

19 map_P = [0.1;0.1]; %initial error;

20

21

22 % load('**.mat');

23 % load('cornerdatabigmap.mat');

24

25 xlog = x(1);

26 ylog = y(1);

27 angle = −25; % initial angle for exploration

28

29 for i=2:length(x)

30 xlog=[xlog,x(i)];% sensor position x

31 ylog=[ylog,y(i)];% sensor position y

32 delt = t(i)−t(i−1); % ∆ t

33

34 % get change for displace

35 [change_pos,change_P] = get_change(angle,i,xlog,ylog,delt);

36 % move robot to new position (propagation)

37 [r_pos,r_P] = propagation(change_pos,change_P,r_pos,r_P);

38

39 % if first landmark, add to map directly

40 if i<3

41 [disp_pos,disp_P,map_pos,map_P]= ...

42 add2state(change_pos,change_P,r_pos,r_P,disp_pos,disp_P,map_pos,map_P);

43 corner_type = cornerlog(i−1);
44 [angle,¬,idx,cornerlog] = ...

45 angle_change(angle,corner_type,i−1,cornerlog);
46 angle = mod(angle, 360);

47 else

48 % check if it is new state(data association)

49 [label,corl] = ifnewstate(map_pos,map_P,r_pos,r_P);

50 % % if new states, add to map, change angle and continue

51 if label == 0

52 [disp_pos,disp_P,map_pos,map_P] = ...

add2state(change_pos,change_P,r_pos,r_P, ...

53 disp_pos,disp_P,map_pos,map_P);

54 corner_type = cornerlog(i−1);

CHAPTER 6. SUMMARY AND FUTURE WORK 83

55 [angle,¬,idx,cornerlog] = ...

angle_change(angle,corner_type,i−1,cornerlog);
56 angle = mod(angle, 360);

57 else % loop closure

58 % intersection in current position with associated landmark

59 [b_pos,b_P,¬] = ...

intersection(map_pos(:,corl),r_pos,map_P(:,corl),r_P);

60 back_pos = b_pos;

61 back_P = b_P; % first pose and error after correction

62 % first propagation and fusion

63 % propagation

64 [change_pos,change_P] = ...

back_change(angle−130,i,xlog,ylog,t(i)−t(i−1));
65 % b_pos and back_P is the robot pose and error through back ...

propagation

66 [b_pos,b_P] = propagation(change_pos,change_P,r_pos,r_P);

67 % fusion

68 [b_pos,b_P,inte] = ...

intersection(b_pos,map_pos(:,corl),b_P,map_P(:,corl));

69 back_pos = [back_pos,b_pos];

70 back_P = [back_P,b_P];

71 angle = angle_back(angle,i−1,cornerlog);
72 end

73 end

74 end

75

76 j=i−1;
77 while inte==1 % back propagation and fusion till there is no intersection ...

of bounding box, or to initial robot poses

78 [change_pos,change_P] = back_change(angle,i,xlog,ylog,t(j)−t(j−1));
79 [b_pos,b_P] = propagation(change_pos,change_P,b_pos,b_P);

80 [b_pos,b_P,inte] = intersection(b_pos,map_pos(:,j−1),b_P,map_P(:,j−1));
81 back_pos = [back_pos,b_pose];

82 back_P = [back_P,b_P];

83 angle = angle_back(angle,j−1,cornerlog);
84

85 if j==2

86 break;

87 end

88 j = j − 1;

89 end

84 CHAPTER 6. SUMMARY AND FUTURE WORK

90

91 % plot

92 figure,plotfigure(map_pos,map_P);

93 figure,plotfigure(back_pos,back_P); % after loop closure

get change.m

1 % This function is for getting the displacement of robot movement

2 % and error according to this movement from a corner to another corenr.

3 %

4 % Input:

5 % angle − Angle beteween robot heading and initial wall (positive in ...

clockwise)

6 % i − Looping parameter

7 % xlog − List of landmark position x

8 % ylog − List of landmark position y

9 % delt − Motion time from corner to corner

10

11 % Output:

12 % change_pos − Updated robot position change (displacement)

13 % change_P − Updated ovement error (corner to corner)

14

15 function [change_pos,change_P] = get_change(angle,i,xlog,ylog,delt)

16 varp = 25;

17 % calculate the measurment data according to x and y aixes :

18 rtheta = deg2rad(abs(angle)); % rtheta is the rubot running heading ...

angle in world frame,rad

19

20 if abs(sin(rtheta))*abs(xlog(end)−xlog(end−1))≥ ...

21 abs(cos(rtheta))*abs(ylog(end)−ylog(end−1))
22 if rtheta < pi % x increasing

23 % measurment accumulated

24 disx = + abs(xlog(end)−xlog(end−1));
25 disy = 0;

26 else % x decreasing

27 % measurment accumulated

28 disx = − abs(xlog(end)−xlog(end−1));
29 disy = 0;

30 end

31 q = varp*delt+7; % error

32 changeq= [q;0];

CHAPTER 6. SUMMARY AND FUTURE WORK 85

33 else

34 if rtheta < pi/2 || rtheta > 3*pi/2 % y increasing

35 % measurment accumulated

36 disx = 0;

37 disy = + abs(ylog(end)−ylog(end−1));
38 else

39 disx = 0;

40 disy = − abs(ylog(end)−ylog(end−1));
41 end

42 q = varp*delt+7; % error

43 changeq = [0;q];

44 end

45 change_P = changeq;

46 change_pos = [disx;disy];

47 end

propagation.m

1 % this function is to propagate in order to get current robot pose and error.

2 % Input:

3 % change_pos − Robot position change (displacement)

4 % change_P − movement error (corner to corner)

5 % r_pos − Current robot position

6 % r_P − Current robot error

7

8 % Output:

9 % r_pos − Updated current robot position

10 % r_P − Updated current robot error

11

12 % adapt the robot pose and the error

13 function [r_pos,r_P] = propagation(change_pos,change_P,r_pos,r_P)

14 r_pos = r_pos + change_pos;

15 r_P = change_P + r_P;

16 end

ifnewstate.m

1 % This function is to check if the current position is associated to one ...

mapped landmark

2

86 CHAPTER 6. SUMMARY AND FUTURE WORK

3 % Input:

4 % map − Map (states, include the current robot position)

5 % P − Error (include the current robot covariance)

6 % r_pos − Current robot position

7 % r_P − Current robot error

8 % Output:

9 % label − signal for data association label = 0 no associated ...

landmark(new state);

10 % label = 1 landmark associated

11 % corl − pointer of associated landmark (−th) in the state

12

13 function [label,corl] = ifnewstate(map_pos,map_P,r_pos,r_P)

14 % initialization

15 label = 0;

16 corl = 0;

17 W = 0; % similarity score [0−1]
18 temW = 0; % temporary value for comparation

19

20

21 % find maximum W

22 for i=1:length(map_pos)−1
23 [S3E,x3,inte] = intersection(map_pos(:,i),r_pos,map_P(:,i),r_P);

24 if inte == 1

25 % area: min (S1,S2), because of propagation−−
26 % −−> landmark always smaller error than current robot pose

27 E = map_P(:,i);

28 area = E(1)*E(2);

29 S3 = S3E(1)*S3E(2);

30 temW = S3/area;

31 if temW > W

32 W = temW;

33 corl = i;

34 end

35 end

36 end

37 if W>0.8

38 label = 1;

39 end

40 end

add2state.m

CHAPTER 6. SUMMARY AND FUTURE WORK 87

1 % This function is update the map, error and displacement list.

2 % Input:

3 % change_pos − Robot position change (displacement)

4 % change_P − Movement error (corner to corner)

5 % r_pos − Current robot position

6 % r_P − Current robot error

7 % disp_pos − Displacement list

8 % disp_P − Movement error list

9 % map_pos − Map (landmark list)

10 % map_P − Error list (landmark error)

11 %

12 % Output:

13 % disp_pos − Updated displacement list

14 % disp_P − Updated movement error list

15 % map_pos − Updated Map (landmark list)

16 % map_P − Updated error list (landmark error)

17

18 function [disp_pos,disp_P,map_pos,map_P]= ...

19 add2state(change_pos,change_P,r_pos,r_P,disp_pos,disp_P,map_pos,map_P)

20 disp_pos = [disp_pos,change_pos];

21 disp_P = [disp_P,change_P];

22

23 map_pos = [map_pos,r_pos]

24 map_P = [map_P,r_P];

25

26 end

angle change.m

1 %% This function is to update the angle according to the robot movement

2 % Input:

3 % angle − angle beteween robot heading and initial wall (positive in ...

clockwise)

4 % corner_type − corner type signal

5 % idx − pointer of landmark (−th wall)

6 % cornerlog − List of all the corner type from the initial robot position

7 % Output:

8 % angle − angle beteween robot heading and initial wall (positive in ...

clockwise)

9 % corner_type − updated corner type signal

88 CHAPTER 6. SUMMARY AND FUTURE WORK

10 % idx − updated pointer of landmark (−th wall)

11 % cornerlog − List of all the corner type from the initial robot position

12

13 function [angle,corner_type,idx,cornerlog]= ...

14 angle_change(angle,corner_type,idx,cornerlog)

15 if corner_type ==1 % convex corner

16 angle = angle + 90;

17 else

18 if corner_type == 2 % concave corner

19 angle = angle − 90;

20 end

21 end

22 cornerlog=[cornerlog,corner_type];

23 corner_type = 0; % reset corner_type

24

25 % set angle to the range (0−360)

26 angle = mod(angle, 360);

27

28 % increase the index

29 idx = idx+1;

30 end

intersection.m

1 % This function is to find the intersection of two bounding box.

2 % Before doing intersection, we need to make sure those two box are associated.

3

4 % Input

5 % x1 − Center position of one bounding box

6 % x2 − Center position of another bounding box

7 % E1 − Error of one bounding box

8 % E2 − Error of another bounding box

9 % Output

10 % E − Error after intersection

11 % x0 − Error after intersection

12 % inte − Symbol of intersection

13 % inte = 0 −−> two boxes no intersection

14 % inte = 1 −−> two boxes have intersection

15

16 function [E,x0,inte] = intersection(x1,x2,E1,E2)

17 inte = 0; % there is no intersection

CHAPTER 6. SUMMARY AND FUTURE WORK 89

18

19 xmin1 = x1(1)−1/2*E1(1);
20 ymin1 = x1(2)−1/2*E1(2); % x1 left down corner x and y

21 xmin2 = x2(1)−1/2*E2(1);
22 ymin2 = x2(2)−1/2*E2(2); % x2 left down corner x and y

23

24 xmin0 = xmin2;

25 xmax0 = xmin2 + E2(1);

26 ymin0 = ymin2;

27 ymax0 = ymin2 + E2(2); % set intersection first as box 1

28

29 % makesure there is intersection

30 L1 = abs(x1(1) − x2(1));

31 L2 = abs(x1(2) − x2(2));

32 D1 = 1/2*(abs(E1(1)) + abs(E2(1)));

33 D2 = 1/2*(abs(E1(2)) + abs(E2(2)));

34

35 if L1<D1 && L2<D2 % x direction intersection

36 inte = 1;

37 if (xmin2 > xmin1) && (xmin2 < xmin1+E1(1))

38 222

39 xmin0 = xmin2;

40 end % left down corner x

41

42 if (xmin2+E2(1) > xmin1) && (xmin2+E2(1) < xmin1+E1(1))

43 xmax0 = xmin2+E2(1);

44 end % right down corner x

45

46 inte = 1;

47 if (ymin2 > ymin1) && (ymin2 < ymin1+E1(2))

48 xmin0 = xmin2;

49 end % left down corner y

50

51 if (ymin2+E2(2) > ymin1) && (ymin2+E2(2) < xmin1+E1(2))

52 ymax0 = ymin2+E2(2);

53 end % right down corner y

54 end

55 E = [(xmax0−xmin0);(ymax0−ymin0)];
56 x0 = [xmin0+1/2*E(1);ymin0+1/2*E(2)];

57 end

90 CHAPTER 6. SUMMARY AND FUTURE WORK

angle back.m

1 % This function is for change robot heading angle through back propagation

2 % Input:

3 % angle − angle beteween robot heading and initial wall (positive in ...

clockwise)

4 % idx − pointer of landmark (−th wall)

5 % cornerlog − List of all the corner type from the initial robot position

6 % Output:

7 % angle − angle beteween robot heading and initial wall (positive in ...

clockwise)

8

9

10 function angle = angle_back(angle,idx,cornerlog)

11 if cornerlog(idx) == 1

12 angle = angle − 90;

13 else

14 if cornerlog(idx) == 2

15 angle = angle + 90;

16 end

17 end

18

19 % set angle to the range (0−360)

20 angle = mod(angle, 360);

21

22 end

back change.m

1 % This function is for back propagation to get the change of robot pose and ...

error.

2 % Input:

3 % angle − Angle beteween robot heading and initial wall (positive in ...

clockwise)

4 % i − Looping parameter

5 % xlog − List of landmark position x

6 % ylog − List of landmark position y

7 % delt − Motion time from corner to corner

8

9 % Output:

CHAPTER 6. SUMMARY AND FUTURE WORK 91

10 % change_pos − Updated robot position change (displacement)

11 % change_P − Updated ovement error (corner to corner)

12

13 function [change_pos,change_P] = ...

14 back_change(angle,i,xlog,ylog,delt)

15 varp = 0.15;

16 % calculate the measurment data according to x and y aixes :

17 rtheta = deg2rad(abs(angle)); % rtheta is the rubot running heading ...

angle in world frame,rad

18

19 if abs(sin(rtheta))*abs(xlog(i−1)−xlog(i))≥ ...

20 abs(cos(rtheta))*abs(ylog(i−1)−ylog(i))
21 if rtheta < pi % x increasing

22 % measurment accumulated

23 disx = + abs(xlog(i−1)−xlog(i));
24 disy = 0;

25 else % x decreasing

26 % measurment accumulated

27 disx = − abs(xlog(i−1)−xlog(i));
28 disy = 0;

29 end

30 q = varp*delt+0.5;

31 changeq= [q;0];

32 else

33 if rtheta < pi/2 || rtheta > 3*pi/2 % y increasing

34 % measurment accumulated

35 disx = 0;

36 disy = + abs(ylog(i−1)−ylog(i));
37 else

38 disx = 0;

39 disy = − abs(ylog(i−1)−ylog(i));
40 end

41 q = varp*delt+0.5;

42 changeq = [0;q];

43 end

44 change_P = changeq;

45 change_pos = [disx;disy];

46 end

plotfigure.m

92 CHAPTER 6. SUMMARY AND FUTURE WORK

1 % This function is to plot the map and error

2 % Input

3 % map_pos − center of the box (landmark position)

4 % map_P − error

5 function plotfigure(map_pos,map_P)

6

7 % % simple environment without the ball length

8 % M00 = [0 0 71.3 71.3 0

9 % 0 46.3 46.3 0 0];

10 % complex environment without the ball length

11 M00 = [0 0 79.5 79.5 207.5 207.5 152.2 152.2 0

12 0 39 39 101 101 60 60 0 0];

13

14 n=length(map_pos);

15 plot(M00(1,:),M00(2,:),'r'); % red is the real map

16 hold on

17 grid on

18 plot(map_pos(1,:),map_pos(2,:),'b'); % blue is after the karman

19 %% call function 'plotbox' to plot the error

20 for i=1:n

21 plotbox(map_pos(:,i), map_P(:,i));

22 end

23 end

plotbox.m

1 % This function is to plot the bounding box (error)

2 % Input

3 % x − center of the box

4 % E − error

5 function plotbox(x,E)

6 a = x(1)−1/2*E(1);
7 b = x(2)−1/2*E(2);
8 rectangle('Position',[a b E(1) E(2)]);

9 end

SLAM with the Sphero robot 93

Bibliography

[1] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scaramuzza, José Neira,

Ian Reid, and John J Leonard. Past, present, and future of simultaneous localization and

mapping: Toward the robust-perception age. IEEE Transactions on Robotics, 32(6):1309–

1332, 2016.

[2] Ricardo Carelli and Eduardo Oliveira Freire. Corridor navigation and wall-following stable

control for sonar-based mobile robots. Robotics and Autonomous Systems, 45(3-4):235–247,

2003.

[3] Mauro Di Marco, Andrea Garulli, Antonio Giannitrapani, and Antonio Vicino. A set theo-

retic approach to dynamic robot localization and mapping. Autonomous robots, 16(1):23–

47, 2004.

[4] Jon Gallant. How to control a sphero sprk+ with a raspberry pi 3 and node.js. https:

//blog.jongallant.com/2016/08/sphero-sprkplus-rpi-nodejs/. August 29, 2016.

[5] Jay K Hackett and Mubarak Shah. Multi-sensor fusion: a perspective. In Robotics and

Automation, 1990. Proceedings., 1990 IEEE International Conference on, pages 1324–

1330. IEEE, 1990.

[6] Luc Jaulin. A nonlinear set membership approach for the localization and map building

of underwater robots. IEEE Transactions on Robotics, 25(1):88–98, 2009.

[7] Srinivas Kandasamy. Slamming with spheros: An impact-based approach to simultaneous

localization and mapping. 2015.

[8] Josep M Porta. Cuikslam: A kinematics-based approach to slam. In Robotics and Au-

tomation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on,

pages 2425–2431. IEEE, 2005.

https://blog.jongallant.com/2016/08/sphero-sprkplus-rpi-nodejs/
https://blog.jongallant.com/2016/08/sphero-sprkplus-rpi-nodejs/

94 BIBLIOGRAPHY

[9] Lluís Ros, Assumpta Sabater, and Federico Thomas. An ellipsoidal calculus based on

propagation and fusion. IEEE Transactions on Systems, Man, and Cybernetics, Part B

(Cybernetics), 32(4):430–442, 2002.

[10] Joris Sijs and Mircea Lazar. State fusion with unknown correlation: Ellipsoidal intersec-

tion. Automatica, 48(8):1874–1878, 2012.

[11] Joan Sola. Simulataneous localization and mapping with the extended kalman filter. Avery

quick guide with MATLAB code, 2013.

	Index
	Index of figures
	Index of tables
	Introduction
	Probabilistic Approach
	Notation
	Introduction to the Basic Assumptions
	Markov assumption
	Independent errors in actions
	Independent errors in observations
	Uncorrelation between actions and observation
	Map is static

	General Framework
	State of Art
	Kalman filter
	Information filter
	Pose SLAM
	Particle filter

	Particularize the derivation for Kalman case
	Motion model
	Observation model
	Data association

	Application to the Sphero robot
	Map Description and initialization
	Robot motion model
	Prediction
	Observation

	Set Theoretic Approach
	Basic Definitions
	Uncertainty representation
	Propagation operation
	Fusion operation

	Set theoretic approaches
	Ellipsoidal approach
	Bounding box approach

	Set Theoretic Applied SLAM with Sphero

	Sphero
	Hardware of Sphero
	Sphero Control
	Connection to Computer
	Calibration
	Sphero Movement

	Experiments
	Wall-following strategy
	Experimental Environment

	Experimental results
	The simple environment
	The complex environment

	Summary and Future Work

