
Universitat Politècnica de Catalunya

Degree’s final project

Computing specialization

Integration of task and motion planning
for robotics

Author:
Alejandro Suárez Hernández

Director:
Carme Torras Geńıs

Co-director:
Guillem Alenyà Ribas

Tutor:
Javier Béjar Alonso

April 2016

Abstract

We describe a research project in which we explore the effectiveness of an approach for inte-
grated symbolic and geometric planning in robotics. We target to solve an assembling-like
problem with two robot arms. The scenario we propose involves two Barrett Technology ’s
WAM robots that work cooperatively to solve a game for kids. This experiment has a double
purpose: setting out a practical challenge that guides our work; and acting as a means to
visually validate and show the obtained results. We also cover Project Management aspects
such as the temporal planning and the economic, social and environmental analysis.

Describimos un proyecto de investigación en el cual exploramos la efectividad de una es-
trategia de integración de planificación simbólica y geométrica en el área de la robótica.
Nos proponemos resolver un problema equiparable a una tarea de ensamblado mediante dos
brazos robot. El escenario que planteamos involucra dos robots WAM de la empresa Barrett
Technology trabajando cooperativamente para resolver un juego dirigido a un público infan-
til. El experimento cumple dos misiones: plantearnos un reto práctico que nos ayude a
orientar y guiar nuestro trabajo; y proporcionar un medio visual de demostrar y validar los
resultados obtenidos. Adicionalmente cubrimos aspectos t́ıpicos de la gestión de proyectos
tales como la planificación temporal y el análisis social, económico y medioambiental.

Descrivim un projecte d’investigació on explorem l’efectivitat d’una estatègia d’integració
de planificació simbólica i geomètrica en l’àmbit de la robòtica. Ens proposem resoldre
un problema equiparable a una tasca de muntatge. L’escenari que plantegem té dos robots
WAM de l’empresa Barrett Technology treballant cooperativament per resoldre un joc pels
nens. L’experiment compleix dues missions: plantejar-nos un repte pràctic que ens ajudi a
orientar la nostra feina; i proporcionar una forma visual de mostrar i validar els resultats
obtinguts. A més a més presentem aspectes t́ıpics de la gestió de projectes com per exemple
la planificació temporal i l’anàlisi social, econòmic i ambiental.

Acknowledgments

Dicen que no hay mejor lengua para maldecir que la materna. En este d́ıa y hora todav́ıa
es rara la adición de una sección de maldiciones en los art́ıculos y trabajos académicos, aśı
que me gustaŕıa extender la aplicabilidad de esta premisa a los agradecimientos.

Qué menos que empezar dándole las gracias a Carme, Guillem y Javier, que han actuado
respectivamente como la directora, el codirector y el tutor del proyecto. Sus comentarios,
sugerencias y revisiones han contribuido a que este trabajo haya salido salido adelante. A
los tres, ¡muchas gracias!

También querŕıa agradecerle a mi padre todo su apoyo, aunque me haya substráıdo tantas
horas de trabajo con sus llamadas por teléfono para comprobar qué tal me iba.

Gracias también a todos mis amigos, por estar ah́ı de una forma u otra. En estricto
orden aleatorio: Alfredo [sic], Asier, Isaac, Alberto y Núria. Aprovecho para incluir a los
integrantes del laboratorio de Manipulació i Percepció, del IRI: Sergi, Nicola y Javier.

Como siempre: nos vemos donde se juntan los caminos.
Alejandro

Contents

Contents 3

List of Figures 6

List of Tables 7

Code snippets 8

I Project management documentation 9

1 Scope and contextualization 10
1.1 Introduction . 10
1.2 Contextualization . 10

1.2.1 Related concepts . 11
1.2.2 Project justification . 13
1.2.3 Involved actors . 13

1.3 Problem formulation and objectives . 14
1.4 Scope . 14

1.4.1 Potential future applications . 16
1.5 State of the art . 16

1.5.1 Task planning . 16
1.5.2 Motion planning . 17
1.5.3 Related work . 17

1.6 Methodology and rigour . 18
1.6.1 Methodology . 18
1.6.2 Monitoring tools . 19

1.7 Limitations and risks . 19
1.7.1 Limitations . 19
1.7.2 Risks . 19

2 Planning 21
2.1 Schedule baseline and work breakdown structure 21

2.1.1 Work breakdown structure . 21
2.1.2 Milestones . 22

3

2.1.3 WBS dictionary . 23
2.2 Action plan . 29

3 Budget and sustainability 30
3.1 Budget . 30

3.1.1 Cost identification and estimation 30
3.1.2 Budget control . 32

3.2 Sustainability . 33
3.2.1 Economic sustainability . 33
3.2.2 Social sustainability . 34
3.2.3 Environmental sustainability . 34

II Technical report 36

4 Theoretical concepts 37
4.1 Relevant terms . 37

4.1.1 Rigid geometric transformations . 37
4.1.2 Forward kinematics . 39
4.1.3 Inverse kinematics . 39

4.2 Mathematic formalism . 40
4.2.1 Estimation of magnitudes based on noisy observations 40
4.2.2 Assignment of discrete probabilities with matrix scaling 45

4.3 Planning . 48
4.3.1 Approaches for planning for robotic agents 48
4.3.2 Hierarchical Task Network formalism 49
4.3.3 Definition of the world state . 51
4.3.4 Operators . 53

5 Implementation 57
5.1 Overview . 57

5.1.1 Introduction to ROS . 57
5.1.2 LabRobòtica philosophy . 59
5.1.3 Planning engine: Pyhop . 60
5.1.4 Implemented modules . 62
5.1.5 Source code . 64

5.2 Simulation assets . 64
5.3 Perception pipeline . 66

5.3.1 Filtering . 66
5.3.2 Segmentation . 67
5.3.3 Obtaining the 3D centroids of pieces and cavities 70
5.3.4 Obtaining the similitude between shapes 70

5.4 World interface . 72

6 Experiments and conclusions 76
6.1 Description of the experimentation process 76
6.2 Results . 77

6.2.1 Test with just one piece per colour 77
6.3 Final regards . 77

Appendices 80

4

A Proof of mathematical expresions 81
A.1 Optimality of the mode estimator based on the sample mean 81
A.2 Proof of expression 4.6 . 82
A.3 Proof of expression 4.8 . 82
A.4 Proof of expression 4.10 . 82

References 84

5

List of Figures

1.1 Game kit around which the experiment focus 15
1.2 Barrett WAM robot arm . 15

2.1 Gantt diagram . 29

4.1 Visual representation of some frames of reference. 38
4.2 Frame of reference of one of the robots . 40
4.3 PDF of the mode estimation after a different number of observations 42
4.4 Reduction of the uncertainty about the mode in terms of probability 43
4.5 Plot of the g(x) function . 44
4.6 3D visualization of the entropy for three states 47
4.7 Cost of the ObserveTable operator . 54

5.1 LabRobòtica workflow . 59
5.2 Block diagram of the whole application . 63
5.3 3D models for the simulation . 65
5.4 Simulated scene in Gazebo . 65
5.5 Filter comparison . 67
5.6 Example segmenter application . 68
5.7 Segmentation of a cavity . 69
5.8 Segmentation of a piece that is being shown to the camera 70
5.9 Templates used for comparing . 71
5.10 Example matching application . 71
5.11 Insertion of a piece in the sphere . 75

6.1 Comparison between a good grip and a bad grip 78

6

List of Tables

2.1 Project decomposition into different tasks 22
2.2 Project milestones . 22
2.3 Task overview: research & learning . 23
2.4 Task overview: PM documentation . 24
2.5 Task overview: perception pipeline . 25
2.6 Task overview: simulation assets . 25
2.7 Task overview: world interface . 26
2.8 Task overview: symbolic planning in ROS 26
2.9 Task overview: experiments . 27
2.10 Task overview: final stage . 28

3.1 Costs associated to hardware resources . 31
3.2 Costs associated to software resources . 31
3.3 Human resources’ costs . 31
3.4 Electricity consumption and energy cost. A price of e0.2687 per kWh has

been assumed. 32
3.5 Internet connection cost . 32
3.6 Total cost . 32
3.7 Sustainability matrix . 35

7

Code snippets

5.1 Declaration of operators in Pyhop . 61
5.2 Declaration of methods in Pyhop . 61
5.3 Definition of a problem instance . 62
5.4 Running Pyhop . 62
5.5 Running Pyhop with metric minimization 62

8

Part I

Project management
documentation

9

1
Scope and contextualization

This chapter introduces our project to the reader. Here we provide some background about
the involved topics and the state of the art. The project’s objectives are also stated. We
make clear which is the central line of work, what areas are secondary and which fall outside
our scope. Finally, we talk about the most important limitations and risks of the project.

1.1. Introduction

We would like robots to gain more autonomy in order for them to perform increasingly
complex tasks in diverse domains such as household chores, assistance to old people, main-
tenance, or even entertainment. Robotics is a highly multidisciplinar area which gathers
Physics, mechanical engineering, electric engineering, electronic engineering and computer
science. Thereby it benefits from the advances and research done in each of these fields.

The project described in this document falls mainly into the field of computer science,
and more specifically into artificial intelligence (AI from now on) and algorithmics. It at-
tempts to contribute in the creation of a robust planning system which takes into account
the inherent difficulties that are present when performing tasks with a robot. These difficul-
ties are namely the uncertainty about the outcomes of the robot’s actions, the variability in
the measures taken by the sensors and the high computational complexity of the underlying
problem: navigating through a world with many objects and interaction possibilities. We
study the advantages of filling the gap between motion planning (i.e. continuous world
representation and geometric algorithms for calculating paths and trajectories) and task
planning (i.e. planning in an abstract level in which we do not take into account the ge-
ometric constraints). These concepts are all reviewed in more detail at section 1.2.1. On
a less theoretical level, we will work on an experimental set up that could be considered
analogous to an assembling problem. The goal of this experiment is to demonstrate the
fruits of the conducted research. For more details, check section 1.3

1.2. Contextualization

In this section we provide an overview of several concepts that are required to fully un-
derstand this work and the motivations behind it. This overview includes a definition of
the concepts and some background on the topic. Moreover, we offer a justification of the
project suitability in its field and its usefulness for future work. Finally, the involved actors
are presented.

10

1.2.1. Related concepts

Robotics

We can find the origin of the term in the Czech noun “robota” which means “labor”1.
If we were to study in detail the advances and applications of robotics since its origins
in the 1950’s, we would certainly need a separate article devoted to it. Even defining a
robot is a non-trivial task. The International Organization for Standardization describes
robots as “automatically controlled, reprogrammable multipurpose manipulators with three
or more axes”, while The Robot Institute of America defines them as “reprogrammable,
multifunctional manipulators designed to move material, parts, tools, or specialized devices
through various programmed motions for the performance of a variety of tasks”. These
two definitions are very approppriate in the industry field in which we can find the roots
of robots. Over the years the applications of robots has extended to space exploration
(e.g. the Mars Rover), military and law enforcement (e.g. landmine sweepers), medicine
(e.g. hip replacement) and entertainment (e.g. Lego MINDSTORMS). There are more
visionary definitions and depictions that grant robots human characteristics such as talking
and complex human-like behaviour. These are typically given by science fiction writers such
as Isaac Asimov. In [Hockstein et al., 2007] and [Stone, 2004] we can find this and much
more detailed information about the history of robotics, the influence of mythology and
other sociocultural precedents.

Task planning

The first thing we must note is that task planning or simply planning is not inherently
related to robotics. Instead, this technique could be studied from a purely algorithmic
point of view, and can be used for solving problems without interacting with the physical
world. Planning, as understood by practitioners of AI, is an alternative way of solving
certain discrete problems without incurring in ad-hoc algorithmic solutions. Additionally,
it can be viewed as the problem itself, and consequently its computational complexity can
be also analyzed. The answer, though, is not unique because is highly dependent on the
considered paradigm, the allowed features and the assumptions made over the domain. A
planning system, or just planner, typically takes the following input: a domain, i.e. the
description of the problem and the possible actions; and a problem instance, i.e. the initial
state and the desired (goal) state. Its output is a sequence of actions that, if applied from
the initial state lead to the goal. Alternatively it should tell whether such sequence does
not exist.

We can consider, for instance, the problem of “The Towers of Hanoi”. A possible ad-hoc
solution for the version of the problem in which the pieces are initially located in the first
stick could be the classic recursive algorithm. As an alternative, a Breadth First Search
navigating through adjacent configurations can also solve the version of the problem in
which we start from any arbitrary configuration. A planner is a multipurpose application
that receives the description of the problem, in this case the rules of “The Towers of Hanoi”,
the initial configuration and the end configuration, and uses a general algorithm to solve
the problem defined by this three elements. The price to pay is, usually, efficiency.

One of the most widely known paradigms are the ones based on STRIPS (STanford

1Source: http://web.archive.org/web/20150415062618/http://capek.misto.cz/english/robot.

html

11

http://web.archive.org/web/20150415062618/http://capek.misto.cz/english/robot.html
http://web.archive.org/web/20150415062618/http://capek.misto.cz/english/robot.html

Research Institute Problem Solver) which constitute what it could be called “Classical plan-
ning”. These planners use a conjunction of first-order logic well formed formulas to describe
the world state. In the domains, each action have associated a list of preconditions and a list
of effects over the world state. STRIPS is described in detail in [Fikes and Nilsson, 1972].
The computational complexity of the problems written following the STRIPS convention
is studied in [Erol et al., 1995]. On the other hand we have HTNs (Hierarchical Task Net-
works), in which the states are described in an STRIPS-like manner. The difference is that
the planner seeks to accomplish tasks, and the domain instructs the planner on how to
divide such tasks into smaller subtasks, until arriving to primitive actions (like the ones
seen in strips). The operation and complexity of HTNs are described in more detail in
[Erol et al., 1996]. It is worth mentioning that, as rule of thumb, the more expressivity we
allow in the description of the domains, the greater the complexity of the planning problem.
In fact, planning is semidecidable or undecidable under several circumstances.

Motion planning

The task planners described in the previous section are good for deciding sequences of tasks,
without worrying about geometrical constraints nor calculating paths and routes. However,
the planning problem becomes significantly different when an agent (in our case a robot) has
to move in a geometric space. Now, we must provide the adequate instructions so the robot
can go from an initial configuration in a 2D or a 3D world to a final configuration avoiding
obstacles. When we talk about configuration, we mean the position of the robot in the
world (including rotations) as well as the relative pose of its elements (e.g. a movable limb),
if applicable. The problem can be now viewed as navigating through a high-dimensional
continuous world instead of a discrete one. The collection of modeling techniques and
algorithms with this goal in mind is what we call motion planning.

The first topic that has to be approached is the world representation. It is very important
to define an implicit representation of the world since the state space is uncountably infinite.
There are a vast amount of topics that has been explored to build a solid conceptual
infrastructure. These include geometric modeling, both of the robot and of the obstacles;
rigid-body transformations, namely translations and rotations; non-rigid transformations;
kinematic chains, i.e. combination of joints and links; and topology. All these topics are
combined to define and characterize the configuration space (C-space) and its properties.
This configuration space is the set of all the geometric transformations that can be applied
to a robot, or more intuitively, all the positions (including rotations) that the robot can
take without intersecting with an obstacle.

Secondly, it is necessary to tackle how the navigation between configuration states is
made. Here, the concept of completeness enters. An algorithm is said complete if, for
every input to the motion planning it correctly reports whether there is a solution and
return it in a finite amount of time. Some approaches are based in using a sampling scheme
and, thus, are not complete. In these cases, the notion of completennes is sacrificed and
other concepts, like resolution completeness or probabilistic completeness are used instead.
There are also complete approaches that build a discrete representation of the world, which
(perhaps surprisingly) remains faithful to the original problem.

There exist a huge quantity of material about motion planning, so it is unapprochable
to deal with it all in this section. [LaValle, 2006] is an excellent source of information that
covers the matter with great detail and from the fundamentals.

12

1.2.2. Project justification

The idea behind this project originated from the result of research tasks conducted between
March and May 2015 as part of the grant conceded by the CSIC (Consejo Superior De
Investigaciones Cient́ıficas2) by means of its “Becas Intro 2014” program. The selected
research center was the IRI (Institut de Robòtica i Informàtica Industrial3). Therefore, this
project constitutes the culmination of the previous efforts.

The interest of the project is that it contributes to the infrastructure of a continuously
developing area such as robotics. Initial applications of robotics, concretely industry, tar-
geted performing repetitive tasks - the so called “Three D” missions (i.e. Dull, Dirty and
Dangerous). These tasks are simple enough to be defined programatically, as an algorithm.
However, as we extend the range of application of robots, we want them to gain autonomy.
It is fairly cumbersome to design an algorithm that explicitly handles each possible input
and outcome for all the applications. Planners, in this sense, provide a greater amount of
generality and, as a tool, contribute to systematize the process of generating solutions to
robotic problems. Moreover, they serve to segregate the problem, its description and the
platform which solves it. We can work separately in improving planners, and every system
based on them would take benefit. In addition, domain descriptions and problems could be
shared between communities.

Until the day, (task) planners have been mostly focused in solving abstract problems
like the “Blocks world”, elevator control or traffic lights management. While some of this
problems could prove to be useful in real applications, they are not used to interact and
manipulate in a way we would like a robot to do. One of the greatest handicaps is the
gap between task and geometric planning. Several authors recognize this difficulty (like
[Kaelbling and Lozano-Pérez, 2013]) and tackle it. Therefore, we think that the project is
justified and presents great opportunities.

1.2.3. Involved actors

Targeted audience

The project presented in this document falls mainly in the area of research and experimen-
tation, so its results are not a concrete product to be sold, at least not in short term (see
chapter 3 about the economic aspects of the project). Therefore, its targeted audience are
other researchers and teachers rather than possible purchasers. A private company
or an university could also be interested in using this work for the implementation of a
commercial product or an academic tool, respectively.

Supervision and guidance

As it has been previously said, the IRI takes part in this work. More specifically, the work
is supervised by C. Torras Geńıs 4 and G. Alenyà Riba 5, from the Perception and
Manipulation group. They act, respectively, as the director and co-director of this project.

2Website: http://www.csic.es/
3Website: http://www.iri.upc.edu/
4Ph.D. in Computer Science from the Universitat Politècnica de Catalunya and member of the CSIC.

Bio: http://www.iri.upc.edu/people/torras/
5Ph.D. from the Universitat Politècnica de Catalunya (Doctor Europeus) and member of the CSIC. Bio:

http://www.iri.upc.edu/people/galenya/

13

http://www.csic.es/
http://www.iri.upc.edu/
http://www.iri.upc.edu/people/torras/
http://www.iri.upc.edu/people/galenya/

J. Béjar Alonso 6 also provides guidance for the development of this project as senior
professor in the UPC. In addition, we count with the help of J. Berbegal Mirabent 7 for
feedback and suggestions in regard to the project management documentation.

Development

Finally, I (A. Suárez Hernández) am the only person acting as the developer of this
project. I am the responsible of gathering all the relevant bibliography for research, of the
documentation, design and implementation.

Although I am the only person working in the development process, I perform different
roles, and therefore the cost of the human resources is calculated according to the amount
of time I spend impersonating each one. This is further discussed in section 3.1.1.

1.3. Problem formulation and objectives

We propose an experimental set-up with the following purpose: introducing pieces whose
bases have different geometric shapes in a sphere with cavities that match those pieces (see
fig. 1.1). We will focus in doing that using two robot arms that have to act cooperatively
following a plan. We shall provide a planning system with geometric and symbolic reasoning
capabilities that can compute such a plan. The pieces will be laying initially on a table.
One of the robots has to grab the pieces and insert them in the sphere, while the other
one has to rotate the sphere in order to facilitate the task. The sphere will be attached
to this last robot as an end-effector. Our ultimate goal is to be able of introducing all the
pieces, including the most difficult ones (like the trapezoid that can be inserted in only one
manner). In this project we will tackle the most simple scenario in which pieces are resting
on their base. We we would like the result to be easily extensible for solving this problem
even if the pieces start laying on rather complicated poses (stacking and/or on one of their
sides). Previous works like those in section 1.5.3 shall come handy. In a deeper level, if
this experiment is succesful, it will constitute an additional testimony of the usefulness of
planners that combine motion and symbolic reasoning for complex real-life problems. It
also presents an opportunity to gather together research made on the topic that has not
met yet, and to contribute to robotics with additional results and ideas.

1.4. Scope

Our task will consist mostly of programming and testing. We will be working mainly in the
planning system, but we cannot avoid other related areas like perception. Therefore, we
shall make the most of currently existing software. Our intention, though, is not to avoid
completely writing new procedures for perception. If a problem from this area arises in
the course of our work and the existing tools do not completely solve them or have to be
slightly adapted, we will deal with them as long as the do not take much time that could
be dedicated to the central line of work. The same goes for the geometric representation of

6Ph.D. in Computer Science from the Universitat Politècnica de Catalunya and assistant professor there.
Bio: http://www.cs.upc.edu/~bejar/investigacion/investigacion.html

7Ph.D. in Business Administration from the Universitat Politècnica de Catalunya and associate
professor at the Universitat Internacional de Catalunya. Bio: https://www.linkedin.com/pub/

jasmina-berbegal-mirabent/42/104/b54

14

http://www.cs.upc.edu/~bejar/investigacion/investigacion.html
https://www.linkedin.com/pub/jasmina-berbegal-mirabent/42/104/b54
https://www.linkedin.com/pub/jasmina-berbegal-mirabent/42/104/b54

Figure 1.1: The experiment focuses on this game kit. It can be seen as a sphere with several
cavities. It comes with a set of pieces, and each one can fit through one and only one of the cavities.

the world and the robots and for automatic learning.
In this sense, we shall employ the ROS environment and several of its packages because

they allow fast development and provides a set of standarized, powerful and tested tools
and libraries. We are going to make use of simulations for testing our algorithms before
executing them in the robot. To do that we have at our disposal the Gazebo simulation
tool 8. In case we need to create some 3D models for the simulation or for another task, we
shall employ utilize FreeCAD9, a 3D CAD suite.

The robots themself are already given. We will make use of two WAM robot arms 10

located at the laboratory of the Perception and Manipulation group. Figure 1.2 shows a
picture of one of these robots. We will not deal in much detail with the theory behind step
motors and other mechanical topics involved in the construction of our robot, and instead
consider them from a programmer perspective. Although the WAM robots are stationary
(i.e. their base is fixed in one place), our intention is that the strategy described in this
project can be extrapolated to mobile robots.

Figure 1.2: The WAM robot arms located at the IRI Perception & manipulation lab. We have
simbolically identified the one with the sphere as Catcher and the one with the gripper as Picker.

8http://gazebosim.org/
9http://www.freecadweb.org/

10http://www.barrett.com/products-arm.htm

15

http://gazebosim.org/
http://www.freecadweb.org/
http://www.barrett.com/products-arm.htm

1.4.1. Potential future applications

As regards to long term aspirations, we expect that the results obtained here will be useful
for implementing butlers or household assistants for old people. [Beetz et al., 2011] is a great
example of this kind of effort. Another interesting field of application is space exploration.
An unmanned exploration vehicle could indeed benefit from this and related works.

The experiment described in section 1.3 could be seen as an assembly taks. Because of
this, we think that industry is also a pontentially good candidate for using our work.

1.5. State of the art

This section reviews some of the last related works in the relevant fields. Unlike section
1.2.1, here we mention some of the latest and/or more mature and widely used works in
the diverse topics that have already been explored.

1.5.1. Task planning

There is a huge quantity of planners and a lot of research being made in different directions.
The ICAPS (International Conference of Automatic Planning and Scheduling)11 celebrates
periodically the IPC (International Planning Contest) where the most advanced planners
participate. With this challenge, the ICAPS seeks to incentivate progress in this area. In
addition, they ask for new relevant papers in order to present them in the ceremony. The
progress is achieved making the source code of all the contestants available for everyone.
This way, they can ensure that future contestants have access to the code of the winner, take
its ideas and set the bar higher. No wonder, some of the most advanced planners can be
found among the participants of the contest. The winner of the probabilistic discrete track
in the MDP (Markov Decision Problem) 12 category for the year 2014 was PROST 2014.
It is a slightly improved version of a previous planner called simply PROST which won the
probabilistic track of the 2011 IPC as well. PROST is based on a UCT-based MCTS13.
The 2011 version is explained in greater detail at [Keller and Eyerich, 2012]. On the other
hand we have Gourmand, or G-Pack as it was known in the 2014 competion of the MDP
category. G-Pack was second in the 2014 IPC, but when it first came out just after the 2011
contest ended, it outperformed PROST in all the 2011 problem intances. Gourmand uses
LRTDP (Labeled Real Time Dynamic Programming, see more in [Bonet and Geffner, 2003]).
Gourmand can be viewed with greater detail in [Kolobov et al., 2012].

We will also talk the planners that have participated in the POMDP (Partially Ob-
servable MDP)14 category, which could be considered more approppriate for being applied
in robotics, since the information gathered by the sensors and the robot actuators (e.g.
motors) have certain degree of variability and can introduce uncertainty in the state of
the robot. The 2014 winner of the contest was POMDPX NUS by Nan Ye, Kegui Wu,
Meng Zhang, David Hsu and Wee Sun Lee. The authors combined the work made on

11Their website can be found at http://www.icaps-conference.org/
12Discrete process with probabilistic outcomes, but no uncertainty about the current state (i.e. full

observability)
13UCT stands for Upper Confidence Bound and MCTS stands for Monte Carlo Tree Search. For the

interested reader, one of the most exhaustive reference sites about Monte Carlo Tree Search is http://

mcts.ai/index.html by Cameron Browne (Imperial College London)
14Similar to MDP, with the difference that there also exists uncertainty about the current state.

16

http://www.icaps-conference.org/
http://mcts.ai/index.html
http://mcts.ai/index.html

two previous state-of-the-art algorithm, which are explained in [Somani et al., 2013] and
[Silver and Veness, 2010].

The ICAPS helps to spread new planning language specifications too. The objective of
such languages is, on the one hand, standarizing the way in which problems are described.
Since the languages determines the expressivity power, new ones serve to push the limits
further and incentivate that planners support increasingly advanced characteristics. The
last of these languages is RDDL (Relational Dynamic Influence Diagram Language), by S.
Sanner. Its aim is to facilitate the inclusion of both concurrency and stochastic effects in
the problem domains. [Sanner, 2010] is a description of the language with a few examples
of its usage.

1.5.2. Motion planning

As stated in section 1.2.1, there exist several approaches that deal with the problem of
motion planning. One of the most widely known and effective algorithms is RRT (Rapidly
Exploring Random Trees), and it belongs to the family of Sampling-Based Motion Planning.
A parameter-less version of RRT is explained in [LaValle, 2006]. The paper that first
described RRT (with a step size parameter) is [LaValle, 1998]. If the robot accepts multiple
queries and the configuration space is assumed to be the same (i.e. there shall not be new
obstacles) it makes sense to build what is called a roadmap. In [Bohlin and Kavraki, 2000]
it is described how the lazy PRM (Probabilistic Road Mapping) does so.

We would also like to mention the Robot Operating System or simply ROS 15. ROS (de-
scribed further in [Quigley et al., 2009]) is not a typical operating system like GNU/Linux
or Unix would be. Instead, it is a software framework for writing robot software. It gathers
several libraries, tools and conventions in an attempt to make prototyping and development
faster and easier. Among other things, provides languages and packages for describing the
geometric structure of a robot, methods for keeping track of the variations of the robot
coordinate frame over time, utilities for estimating the pose of the robot and a packet called
OMPL (Open Motion Planning Library) that has a collection of many state-of-the-art algo-
rithms. This collection includes many versions of RRT and PRM. More about OMPL can
be found in [Şucan et al., 2012]. ROS and OMPL are both free software.

1.5.3. Related work

Here we describe some of the previous work that has lead to successful experiments involving
a robot performing miscellaneous tasks.

In the first place [Kaelbling and Lozano-Pérez, 2013] has been one of the most invaluable
sources of inspiration. It describes an strategy for integrating motion and task planning in
belief space. The notion of HPN (Hierarchical Planning in the Now), which is explained
more deeply in [Kaelbling and Lozano-Pérez, 2011] is intensively used. It roughly consists
of decomposing tasks at multiple level of abstraction (e.g. a task “Make a telephone call”
has a higher level of abstraction than “Grab the speaker” and “Dial a number”), so its
plans are always aimed at achieving small objectives each time (short horizon). Also, the
C-space is a space of distributions of probability instead of a typical geometric space. This
tries to model the uncertainty about the current state, so the position of the robot and the
surrounding objects is not taken for sure, but with certain probability.

15Website: http://www.ros.org/

17

http://www.ros.org/

From the same authors we have [Lozano-Pérez and Kaelbling, 2014]. The authors pro-
pose a methodology based on performing task planning while postponing the calculation of
routes. The sequence of actions obtained this way is the plan skeleton. They use a CSP
(Constraint Satisfaction Problem) to force that the pose of the robot and the objects in the
world is adequate so the primitive actions Pick and Place can be executed.

Another interesting work is the one described in [Beetz et al., 2011]. Here the authors
described how they managed that two robots make pancakes cooperatively from a recipe
downloaded from the World Wide Web16. This recipe is used to generate a plan that is
later followed by the robots.

In [de Silva et al., 2013] it is discussed the design and implementation of a geometric
task planning for a robot, capable not only of calculating routes but also of reasoning about
the objects of the world. The authors make use of the HTN formalism to do so.

1.6. Methodology and rigour

Here we describe the workflow in general terms. This includes the guidelines and monitoring
tools which together form the methodology. The goal behind this methodology is being able
to face contingencies and define the development and validation process.

1.6.1. Methodology

The project is composed, basically, of a research part, the documentation process and
a design and implementation phase. The documentation will take care of the planning
and will be updated periodically reflecting the project’s progress. The research is done
before and during the two other parts. The project itself is divided in several functional
components. In the design and implementation of these components we shall apply an
iterative and incremental development process. A normal development process contains the
following elements:

• Analysis of requirements & planning

• Design

• Implementation

• Testing

• Validation & verification of results

We will iterate periodically during the other phases, starting from a very basic solution
that can solve a simplified version of the problem. An example of such simplifications could
be removing certain pieces and avoiding initial distribution of the world objects that can
make the completion of the task rather difficult for the robots. Then we shall make our way
to the goal proposed in section 1.3 improving the system incrementally. To learn more about
the project’s execution we recommend to read chapter 2 about the temporal planning.

16The following video is provided as a demonstration: https://www.youtube.com/watch?v=gMhxi1CJI4M

18

https://www.youtube.com/watch?v=gMhxi1CJI4M

1.6.2. Monitoring tools

Before testing in the real robots we will see how the developed algorithms behaves in a
simulation environment (see section 1.4). Thus, the simulator becomes an important tool
in the validation of the results. It also allows us to test the algorithm in other scenarios that
we cannot reproduce, either because we do not have the necessary resources or because it
could seriously compromise the integrity of the involved equipment. However testing other
scenaries is secundary and we will focus on our experiment.

On the other hand, the experiment itself is a very powerful demonstration of the re-
quirements’ accomplishment on its own. At the end of each development iteration we will
perform a test using the physical robot arms. These test will be a testimony of the project’s
progress and, at the end, of its success. To see more about this we recommend checking
chapter 2 about the temporal planning. More specifically, figure 2.1 shows when we are
planning to conduct these tests.

Finally we count with the help and feedback of the supervisors who have been introduced
in section 1.2.3.

1.7. Limitations and risks

In this section we make clear which aspects can be considered a limitation of our project, so
they can be addressed in future work. We also talk about the possibility of some hindrances
arising. While the amount of technical obstacles is too large, we propose a general policy
to handle them.

1.7.1. Limitations

This project does not converge to a product to be sold. While this is intended, it can be
seen as a limitation since the inverted time and resources are not economically compensated,
or at least not in short term. On the other hand, we have to understand that out intend
here is not to concede robots human-like behaviour. Instead, we are seeking to contribute
in building a more adequate platform for tasks that are purely mechanical. An additional
limitation is that it does not solve a current need, at least not directly. Our intention,
instead, is that our work serves in the future for developing products that help industry
and the general public.

1.7.2. Risks

If we were to talk about the risks of the project, one of the most importants is that it has a
scientific component. We are not trying to combine widely accepted and mature knowledge
together to create a product. Instead, we want to prove a point, and it could happen
that we fail at this. We must not forget that, despite the extraordinary advances since its
foundation, robotics is continually developing and finding new ways to solve problems more
efficiently, and we are near of the frontier between old and new knowledge. However we
think that, given the feats that have been achieved in previous works (see 1.5.3), our project
is realistic and feasible in the given amount of time. Thus, the risk of failing in achieving
our goals is very low. If that happened, it would seriously affect the outcome of the whole
project. If we were in this situation, our contingency plan would be gathering all the results
and finding the root of the problem so they can be fixed in the future.

19

On a minor scale, there are other risks that could affect the project in a less serious
way. For example, it could happen that the sensors and visualization algorithm cannot
identify correctly the pieces’ shapes. Should this happen, we would have to look for the
root of the problem. Maybe the colour of certain pieces prevents them for being correctly
distinguished from the background? Could it be that we cannot find an algorithm that
correctly distinguishes two pieces when they are too close? Once the problem has been
identified, we would have to think of a workaround. For our two example questions, possible
answers could be: change the colour of the background or remove or the pieces that cannot
be identified; let always a separation between pieces or use a library of forms to execute a
matching algorithm. Depending on the nature of the problem and the chosen workaround,
the objective could be more or less affected. We anticipate that there will be several issues
during the execution of the project, but we think that the probability of one of these
preventing the project from being completed is very low. If an extreme situation that
cannot be solved in a reasonable term arises, there is always the option of relaxating the
requirements so they can be satisfied more easily. However we will do our best to stick to
the plan and accomplish the objectives.

20

2
Planning

This chapter presents an updated version of how we have decomposed the project into tasks.
We talk about the terms of each task. We define the action plan of the project as well.
The action plan gives some details about the strategy we have followed in addition to the
methodology presented in section 1.6 (Methodology and rigour).

2.1. Schedule baseline and work breakdown structure

In this section we show the updated top-down decomposition of the whole project into tasks
and subtasks. This is also known as the work breakdown structure or WBS. After that, we
discuss the project’s milestones. Then in the WBS dictionary we talk in more detail about
the work packages. In order to see more clearly the chronology and task dependency we
recommend checking figure 2.1.

2.1.1. Work breakdown structure

The detailed decomposition is shown in table 2.1. As we can see, we have considered the
Research and learning phase relevant enough to appear as an additional task. The docu-
mentation of the project can be divided into two categories: the PM (Project Management)
documentation, which is redacted at the begining of the project; and the technical docu-
mentation, which belongs to the Final stage task. Later it will be shown that the research
and learning and the PM documentation shall be performed simultaneously, since they are
rather compatible tasks that can be alternated during the first weeks.

As explained in the previous document in section 1.6 (Methodology and rigour), we will
work on several functional components, and in each one we will follow an iterative and
incremental methodology. We have defined the following modules: perception pipeline,
in which we tackle the problem of identifying the pieces and the sphere cavities on an image;
simulation assets, in which we prepare a basic simulation environment for benchmark and
visualization of results; world interface which is devoted to build the interface between
the planner and the real world (i.e. estimation of the state and execution of primitives);
and symbolic planning integration which consists of integrating a symbolic planner with
ROS.

Then there is an entire phase dedicated to experimentation and gathering results and,
at the end, there is what we have called the Final stage which contains the technical
documentation (as it has been said formerly) and the project presentation preparations.

21

The terms for each task can be seen in sections 2.1.3 and in the Gantt diagram (figure
2.1).

Integration of task
and motion planning
for robotics

Research & learning
Research of papers
Learning tools usage

P.M. documentation

Context & scope
Planning
Budget
First presentation video
Final document & presentation
Review of technical competences

Perception pipeline
Algorithm design & implementation
Test & validation

Simulation assets
Simulation 3D models
Simulation files

World interface
Algorithm design & implementation
Test & validation

Symbolic planning
integration in ROS

Algorithm design & implementation
Test & validation

Experiments
Gathering of results
Fixes based on feedback

Final stage
Technical documentation
Presentation slides
Presentation rehearsal

Table 2.1: Project decomposition into different tasks

2.1.2. Milestones

We have identified the three tracking events that take place during the course of the project
as the project’s milestones. These events are not only useful for checking the progress of
the project, but also to propose a set of small goals to be progressively achieved. In other
words, they give us an idea of how much work should be completed at different stages of the
project in order to finish in the given time. Table 2.2 summarizes the project’s milestones.

Date Milestone Brief description Requirements

19/Oct First presentation

Five minutes presenta-
tion of the P.M. aspects
of the project, with a
turn of fifteen minutes for
questions

The P.M. documentation
(with the exception of the
technical competences re-
view) and slides have to
be completed

29/Mar Mid-term presentation
Review of the project
progress with the super-
visors

World interface is fin-
ished

25/Apr DEP talk
Degree’s End Project
presentation before the
examining board

All modules completed.
The documentation is
finished and well format-
ted.

Table 2.2: Project milestones

22

2.1.3. WBS dictionary

This section contains a glossary of all the high-level tasks presented in section 2.1.1. We
give a brief description of the tasks, the major constituent(s), the predecessor(s), the start
and end dates, the internal tasks and the resources it requires.

Each resource is preceded with a mark indicating its category: (S) stands for software
resource; (Hw) stands for hardware resource; and (H) stands for human resource. As
regards the human resources we have included the role(s) that the developer will perform at
each task. The resources and their associated costs are analyzed in greater detail in section
3.1.1.

Task Research & learning

Major constituent Preparation

Description

On the one hand we have to gather relevant papers about
related works. On the other hand, we have to become fa-
miliar with the working environment and tools. This in-
cludes learning about the Gazebo simulator and the ROS
interface to communicate with the robot.

Predecessor None

Planned start date 7/Sep

Planned end date 8/Oct

Deliverable(s) None

Resources

• (Hw) LAPTOP - Laptop with the following specs:
AMD A4-5000@1.5GHz CPU, 8GB RAM, Radeon
HD8330 GPU
• (Hw) PC-LAB - Desktop PC located at the perception

and manipulation lab
• (S) UBUNTU - Ubuntu 14.04LTS installed on both the

PC and the laptop
• (S) ROS - full Indigo installation (packet
ros-indigo-desktop-full)
• (S) GAZEBO - Gazebo simulator ver. 2.2 with ROS

integration
• (H) Software developer

Internal tasks

• Research of papers
• Learning tools usage

Table 2.3: Task overview: research & learning

23

Task PM documentation

Major constituent Documentation

Description

We have to redact the project management documenta-
tion. This includes the context, scope, planning and bud-
get. In addition we have to prepare the slides for first
presentation.

Predecessor None

Planned start date 14/Sep

Planned end date 25/Oct

Deliverable(s) PM document (30 pages)

Resources

• (Hw) LAPTOP
• (Hw) PC-LAB
• (S) LATEX- Full LATEX installation (packages texlive

and texlive-extra)
• (S) IMPRESS - LibreOffice Impress ver. 4.2.8.2 for cre-

ating slide presentations
• (S) Gantt-Project - software suite for creating Gantt

charts
• (H) Project manager

Internal tasks

• Context and scope
• Planning
• Budget
• First presentation video
• Final document and review
• Review of technical competences

Table 2.4: Task overview: PM documentation

24

Task Perception pipeline

Major constituent Development

Description
This stage is devoted to developing the necessary soft-
ware components for the recognition of the pieces and the
sphere cavities in the images registered by the Kinect.

Predecessor Research & learning

Planned start date 26/Oct

Planned end date 14/Dec

Deliverable(s)
Fully functional perception pipeline. This includes the
image filtering and segmentation, and the recognition of
the shapes and their rotation angle.

Resources

• (Hw) LAPTOP
• (Hw) PC-LAB
• (Hw) GAMEKIT - Sphere with cavities presented in

section 1.3
• (S) ROS
• (S) Gimp
• (H) Software engineer
• (H) Software developer
• (H) Tester

Internal tasks

• Algorithm design & implementation
• Test & validation

Table 2.5: Task overview: perception pipeline

Task Simulation assets

Major constituent Development

Description
This tasks consists of creating world files and models for
simulation and benchmark in Gazebo. We want to achieve
basic functionality in Gazebo as well.

Predecessor Perception pipeline

Planned start date 15/Dec

Planned end date 4/Jan

Deliverable(s)
.launch and .world files for simulation in Gazebo. Ad-
ditional models for the pieces and the sphere. Basic func-
tionality in simulation.

Resources

• (Hw) LAPTOP
• (S) ROS
• (S) GAZEBO
• (S) FreeCAD - software 3D CAD suite
• (H) Software engineer
• (H) Software developer

Internal tasks

• Simulation-related files
• 3D models

Table 2.6: Task overview: simulation assets

25

Task World interface

Major constituent Development

Description

This task is devoted to creating an interface between the
world and the planner. In other words, we want some
means of extracting the relevant information about the
world and executing the primitive tasks of the planner
(e.g. pick a piece or show the relevant cavity of the
sphere).

Predecessor Simulation assets

Planned start date 5/Jan

Planned end date 4/Mar

Deliverable(s)
A ROS node that offer the relevant services for interacting
with the world.

Resources

• (Hw) PC-LAB
• (Hw) LAPTOP
• (S) ROS
• (H) Software engineer
• (H) Software developer
• (H) Tester

Internal tasks

• Algorithm design & implementation
• Test & validation

Table 2.7: Task overview: world interface

Task Symbolic planning integration in ROS

Major constituent Development

Description

While there are plenty of geometric planners for ROS,
there is not any standarized and maintained symbolic
planner. The aim of this task is to adapt Pyhop, a HTN
planner, to work in ROS.

Predecessor World interface

Planned start date 5/Mar

Planned end date 28/Mar

Deliverable(s)

A ROS node that is capable of symbolic and geometric
reasoning and is able to build plans for achieving certain
objectives, like inserting all the pieces that are on the table
in the sphere.

Resources

• (Hw) PC-LAB
• (Hw) LAPTOP
• (Hw) WAM
• (S) ROS
• (H) Software engineer
• (H) Software developer
• (H) Tester

Internal tasks

• Algorithm design & implementation
• Test & validation

Table 2.8: Task overview: symbolic planning in ROS

26

Task Experimentation & tests

Major constituent Testing

Description

While there are plenty of geometric planners for ROS,
there is not any standarized symbolic planner. The aim
of this task is to adapt Pyhop, a HTN planner, to work
inside ROS.

Predecessor Symbolic planning integration in ROS

Planned start date 29/Mar

Planned end date 11/Apr

Deliverable(s)

A ROS node that is capable of symbolic and geometric
reasoning and is able to build plans for achieving certain
objectives, like inserting all the pieces that are on the table
in the sphere.

Resources

• (Hw) PC-LAB
• (Hw) LAPTOP
• (Hw) WAM
• (S) ROS
• (H) Software developer
• (H) Tester

Internal tasks

• Gathering of results
• Fixes based on results. Ideas for future improvement.

Table 2.9: Task overview: experiments

27

Task Final stage

Major constituent Documentation, rehearsal

Description

This stage includes: gathering and formatting the notes
taken during the course to redact the technical documen-
tation (and joining this document to the PM document);
preparing the slides for the talk before the selection board;
and the rehearsal.

Predecessor World interface

Planned start date 18/Mar

Planned end date 16/Apr

Deliverable(s)

• Final document (PM + Tech)
• Final talk slides

Resources

• (Hw) LAPTOP
• (Hw) PC-LAB
• (S) LATEX
• (S) IMPRESS
• (S) Gantt-project
• (H) Project manager
• (H) Software engineer
• (H) Software developer

Internal tasks

• Technical documentation
• Presentation slides
• Presentation rehearsal

Table 2.10: Task overview: final stage

28

2.2. Action plan

Aside from the begining of the project when we alternate between redacting the PM doc-
umentation and researching, the order in which the remaining tasks are executed follows
a rather sequential fashion. This is not strange since there is only one developer and the
proposed tasks has a high dependency on previous ones. We will follow the plan showed in
figure 2.1 as closely as possible. It is unapprochable to anticipate all kind of contingencies.
However, we think that the most probable ones are those which belong to areas that do not
fall directly in our main line of work (e.g. problems in the cross-related field of perception
or kinematics). This was previously discussed in the sections 1.4 (Scope) and 1.7.2 (Risks).
It may be also said that one of the main purposes of the six-iteration development process
is to overcome these possible obstacles, pursuing small sub-goals each time.

The co-director of the project and I shall meet periodically at the perception and manip-
ulation laboratory. Any technical difficulty and doubt can be discussed soon enough with
him so the issue does not constitute a serious hindrance. On the other hand, the director
and I will discuss each 15 days the progress of the project, and any related theoretical as-
pect. A continuous contact with the tutor shall be maintained to talk about the academic
details of the project, as well.

We have estimated that the total time amount dedicated to the project is 705 hours.
Since the project has a duration of approximately 23 weeks, this means that an average of
31 hours is spended each week, and 4.5 hours are spended each day on the project. We
think that this is totally feasible.

Figure 2.1: Gantt diagram. It shows both the tasks to be performed and the milestones. Since
the inner structure for the development iterations from II to VI is the same, only the second one is
expanded.

29

3
Budget and sustainability

This chapter covers the economic, social and environmental analysis of our project. More
specifically, we identify the different elements that have an associated cost. These elements
can be either hardware, software, human resources or general expenses. Of course, an
estimation for these costs is also provided. Next we talk about the possibility of deviations
from the initial estimations, and how they shall be handled. Finally, we shall discuss
sustainability-related topics from an economic, social and environmental point of view.

It is also important to notice that much of the information within this document is
subject to change depending on the evolution of the project. This is true specially for the
list of costs.

3.1. Budget

In this section we analyze the costs associated to the software and hardware resources
presented in the Temporal planning report. We identify the impact of the human resources
in the project’s budget and talk about the general expenses too. In each case we provide our
most educated estimation. At the end of the section we discuss the possibility of significant
deviations from the estimations and the actuation protocol in such case.

3.1.1. Cost identification and estimation

In this section, costs are analyzed according to their origin. We also show in table 3.6 the
total budget and which part of this budget is linked to each of the tasks defined in the
Gantt chart of the previous report.

Hardware resources

Table 3.1 shows the adquisition price and the amortization associated to each hardware
element previously presented in the Work breakdown structure (section 2.1.1). The total
adquisition price and amortization during the project is also shown. We include the gamekit
in this section for the sake of completeness, although it can be seen that it may as well be
ignored due to its comparatively low price.

Notice that we have set the amortization period of the robot arms longer because of
its high purchase price. We expect that such an expensive product remains useful for a
significantly greater interval of time.

30

Resource Units Unit price Amortization period Price per hour Hours of use Amortization

Lab PC 1 e1,000.00 4 years e0.12 521 e62.52

Laptop 1 e400.00 4 years e0.05 789 e39.45

WAM 2 e97,500.00 10 years e4.84 36 (combined) e174.24

Gamekit 1 e20.00 1 year e0.01 36 e0.36

Total - e196,420.00 - e276.21

Table 3.1: Costs associated to hardware resources

Software resources

The calculation of the software costs is rather straightforward since all the employed pro-
grams are free and open source. Table 3.1 lists the software used in this project along the
major update period.

Resource Unit price Quantity Major update period

Ubuntu 14.04LTS e 0.00 1 2 years

ROS Indigo (plus packages) e 0.00 1 2 years

LATEX(texlive) e 0.00 1 2 years

Impress (LibreOffice) e 0.00 1 2 years

FreeCAD (3D CAD) e 0.00 1 2 years

Table 3.2: Costs associated to software resources

Human resources

In the Temporal planning report we saw that there is going to be just one developer working
on our project. He performs tasks that are tipically conducted by individuals with different
specialized roles. Because of this, the wage for our developer has been adjusted according
to the amount of time he shall spend impersonating each role.

Role Salary (per hour) Number of hours Total wage

Project manager e58.96 248 e14,622.08

Software engineer e29.27 154 e4,510.51

Software developer e24.83 730 e18,130.67

Tester e18.62 177 e3,308.77

Total - 1310 e40,572.23

Table 3.3: Human resources’ costs

General expenses

The general expenses are those that are not specific of the project itself but, instead, are
inherent to the use of the laboratory facilities and common resources. They are also called
operating expenses. In our case the most relevant ones are the electricity bill and the
Internet connection.

The price of the Internet connection is not straightforward to calculate, since we are
not considering a domestic connection. Instead, the IRI (Institut de Robòtica i Informàtica
Industrial) is located at the FME (Facultat de Matemàtiques i Estad́ıstica) and the network
resources are shared among all the students, teachers and researchers. To know the exact
cost of the Internet connection it would be necessary to check the bills of the FME. Anyway,
we have performed the estimation using the same rate as a domestic user.

31

The electricity consumption is detailed in table 3.4 and the Internet connection cost is
presented in table 3.5.

The total expense is e449.36

Resource Average power Hours of usage Price

Laptop 65 W 789 h e13.78

Lab PC 250 W 178 h e35.00

WAM 60 W 54 h e0.58

Total e49.36

Table 3.4: Electricity consumption and energy cost. A price of e0.2687 per kWh has been assumed.

Monthly price Project length Total value

e50.00 8 months e400.0

Table 3.5: Internet connection cost

Total cost

With all the previous economic costs considered, the cost for the whole project is e41,297.79.
To this quantity we add a margin of a 15% in order to be in position of handling additional
contingencies that introduce a deviation in the cost. Check table 3.6 for a summary of all
the costs and the cost decomposition among tasks.

Task Duration (h) P. man. S. eng S. dev Tester Laptop PC-Lab WAM Cost

Research & learning 128 0 0 128 0 128 0 0 e3,184.64

PM documentation 168 168 0 0 0 126 42 0 e9,916.62

Perception pipeline 200 0 30 140 30 100 100 0 e4,929.90

Simulation assets 168 0 0 142.8 25.2 168 0 0 e4,023.35

World interface 210 0 31.5 147 31.5 105 105 18 e5,263.52

Symbolic planning integration in ROS 84 0 12.6 58.8 12.6 42 42 0 e2,070.56

Experimentation 112 0 0 33.6 78.4 0 112 18 e2,394.66

Final stage 240 80 80 80 0 120 120 0 e9,065.20

General expenses e449.36

Subtotal e41,297.79

Margin for contingencies (15%) e6,194.67

Total with contingencies e47,492.47

Table 3.6: This tables shows the number of hours each resource is active and the cost associated
to each task. The last rows show the additional costs and the total cost of the whole project. Only
the resources with highest impact on the economic cost have been considered.

3.1.2. Budget control

We have to contemplate the possibility of suffering mid-term unexpected events that in-
troduce a serious deviation from the estimations given at section 3.1.1. Only alterations
that involve the hardware, software and human resources are analyzed, since the general
expenses are assumed to be fixed.

Changes regarding the hardware resources

Firstly, we shall consider the possibility of needing new hardware equipment. Maybe future
versions of this report shall take into account elements that have not been mentioned yet
(e.g. maybe a new gripper for the robots or external low budget cameras). However, we

32

do not think that the additional cost of this new elements will alter significantly the overall
budget of the project, specially given the high cost of the human resources and the robots.
As for hardware replacement, it is clear that we cannot afford to lose the WAM arm robots,
given their huge value, both monetary and as a mean for the proof of concept. If such an
event took place, it would prove to be disastrous for the execution of the project. Effectively,
the experiment could not be conducted and the project would have to focus on its more
theoretical side: designing the planner and test it with simulations. Fortunatelly, this is
highly unlikely. It goes without saying that such a sophisticated and expensive system
provides a high structural integrity and several safety measures. Moreover we will not
use them to perform a dangerous task that could damage the robots in any way. On the
other hand, the likelihood of having to substitute the laptop or the desktop computer is
somewhat higher. Even so, it is quite low, and if that happens it would not require a large
cost (compared to the overall budget). We could definitively afford this event, both from
a monetary and a practical point of view since we will use a software repository to store
periodically all the code, documents and related files.

Changes regarding the software resources

As for the software, there is not much to say since all the considered programs are free.
Future versions of this report may include additional software resources that have not been
mentioned until now. However, we shall stick to free software because: it suits our needs;
do not involve an additional monetary cost; and carry an importal ethical aspect. This last
point is further discussed in section 3.2.2.

Changes regarding the human resources

This is the part were more deviations can be expected. The amount of hours devoted to the
project depends on the unexpected events thay can arise during its execution. Effectively,
technical difficulties that have not been anticipated at the beginning may require more
attention. Our actuation protocol to avoid high deviations in this regard is to stick to the
planning presented in figure 2.1 and to adjust the expenses to those presented in table 3.6.
In the same table, notice also that we have anticipated an increase of a 15% over the basic
budget in order to be flexible before the emergence of contingencies.

3.2. Sustainability

Here we talk about the economic viability and the environmental and social dimensions
of our project. We offer first a qualitative analysis on these topics. Table 3.7 gives a
quantitative score to each one depending on the balance of the discussion.

3.2.1. Economic sustainability

As it has been said previously in section 1.7.1 (Limitations) this project does not entail an
immediate economic benefit. It is a research project performed in an academic institution
and, as such, it tackles the attainment of results that may be useful for future researchers
and products in the field of robotics. This is the kind of project that is sponsored by
an university, in this case the UPC; and the government. Along with other works, it
will contribute to the amount of knowledge and contributions created in the UPC, thus

33

improving its notoriety. Hopefully, this will attract more investors who are interested in the
evolution of science and technology. The project, however, constitutes only a small part of
this scenario. Anyway, first is important to be successful and achieve favorable results.

The estimated budget has to be realistic and low enough for the economic capabilities of
the institution that will host the project. In this sense, we think that the cost estimations
of the hardware, software, human resources and general expenses are good enough. The
margin for contingencies increases our estimation in a 15%, rendering a still reasonable
budget that lets room for unexpected events. In balance, the overall budget, along with
the contingencies margin, may as well be considered an upper bound of the real cost of the
project. If our institution can afford this quantity, it could probably handle well the real
cost of the project.

In conclusion, we think that the budget is fairly accurate and realistic. The main
drawback is that we do not obtain economic profit in the short term, although this is the
case of most research projects in academic contexts. For these reasons, we have rated the
economic viability with a 6 (check table 3.7).

3.2.2. Social sustainability

We think that the nature of this project is very altruist from a social point of view because it
does not go after an economic benefit. Instead its main aim is to contribute in the advance
of technology. More specifically, we want our work to be useful for creating new robots that
can help society and science, from assistance to old people to space exploration. Although
there is a long road before robots can be seen in some applications, the results of this
work shall be available for the scientific community, as much as all the articles that have
constituted a source of technical support and inspiration have been available to us (see the
State of the art section in the Context and scope report). However, the average citizen will
be mostly unaware of our work in the short-term, since we are not developing a product
that could help them somehow.

On the other, we believe that the choice of using exclusively free1 software suits perfectly
our philosophy. This way, our source code can be compiled and executed using the same
tools than ours, so the results can be reproduced. In other words, our code will be free
software as well. We think that this is the most ethical descision in this case.

To sum up we want our results to be available to researchers in order to contribute to
science and technology. We see as a positive factor the exclusive utilization o free software.
We do not think we will have any immediate impact in the life of the average individual,
neither negative nor positive. This reasons have led us to give a score of 7 (see table 3.7 for
all the ratings).

3.2.3. Environmental sustainability

Our project does not have a significant repercussion on the environment (at least not much
more than the amount an average individual would use in a comparable time period).
Surely, we need energy to run the computers and the robots, but the amount is quite
low. The robots consume a bit more than 50W, and they are on only during the tests.
The computers will consume much more energy and, in fact, have associated the greatest
percentage of energy consumption. When the project ends the energy consumption will

1As the free software community likes to put it: free as in freedom, not as in free beer

34

stop. Probably, the most serious environmental issue in our project is the silicium used in
the computers and robots’ CPU (Control Process Unit) and integrated circuits. Anyway,
we are not using a massive amount of these elements. As regards the software, it does not
carry any environmental degradation, obviously.

If robots become part of our everyday basis in the future, it may be worth talking about
the fabrication process. This, however, is a topic that falls outside of our scope and that
should be discussed in specialized literature.

All in all, our project does not entail a significant impact on the environment. Because
of this, we have given a rating of 9 to the resource analysis section of the sustainability
matrix (table 3.7). We have not conceded the maximum mark to this part because we do
not pursue to improve nor to protect the environment neither.

Sustainable? Economic Social Environmental

Planning Economic viability [0,10] Life quality improvement [0,10] Resource analysis [0,10]

Score 6 7 9

Table 3.7: Sustainability matrix. Only the rows that concern the planning phase have been
included.

35

Part II

Technical report

36

4
Theoretical concepts

This chapter provides a description of the terms that will be used through the technical
report. It also introduces the mathematical formalism that was relevant in the execution of
the project.

4.1. Relevant terms

This section is devoted to introduce some of the most recurrent terms of this report so
the reader can conceive an idea of the whole picture. We had to address them at several
points of the implementation process. As opposed to section 1.2.1, these concepts are more
specific. Even so, it is not our intention to provide an exhaustive background on each topic
because they are not directly related with planning.

4.1.1. Rigid geometric transformations

In our experiments, we limit ourselves to rigid bodies. We use geometric transformations to
specify how non-deformable objects are located in a 3D scene. Also, in the implementation
of the robots’ actions we often need to transform from a pose in one frame of reference
(namely that of the camera) to another (the robot’s frame of reference). While we will
make use of an library that takes care of performing such transformations, we need a good
understanding of the basics to know how, when and why it is appropriate to do so.

Geometric transformations consist of a translation vector and a certain rotation. The
information can be relative to the world frame of reference or to another object. In the most
general case, we need six parameters to provide complete information about the relative
pose of one frame of reference with respect to another one. Three of these six parameters
describe the translation between the origins of the frames of reference and the other three
parameters describe their relative orientation.

There are several ways of representing the relative rotation between the frames of ref-
erence of two different objects. In our project we deal with both the Tait-Bryan or nautic
angles convention (roll, pitch, yaw) and with quaternions. In short, Tait-Bryan angles are
three independent rotations while quaternions are hypercomplex numbers that can be used
to compress an unit vector and a rotation in the direction of this vector.

In future sections, we will designate iH
j as the transformation from frame i to frame j.

Also we can compound transformations. For example: iH
k = iH

j • jHk. Composition of
geometric transforms is a key aspect for section 4.1.2.

37

While it is not the objective of this document to provide the full theory behind geometric
transformations, we provide as an example the figure 4.2, where we can see that:

• The translation between the world frame and the iri wam picker link footprint

(as we will see later, iri wam picker is the symbolic name we have given to one of
the robots in our experiment) frame is (0, 0, 0.72)m. There is no change of orienta-
tion so the roll, pitch and yaw are all 0. In quaternions, such a neutral orientation
transformation would be represented as 0i + 0j + 0k + 1.

• The translation between the robot’s footprint and the frame iri wam picker link base

presents, again, no change of orientation. The translation vector, on the other hand,
is (0.22, 0.14, 0.346)m.

• The translation vector between the kinect and the robot’s base is (0.901,−0.059, 0.725)m.
The roll, pitch and yaw (in degrees) are respectively 10.98, 79.24 and -172.54. The
rotation can be represented as a quaternion as −0.641i + 0.032j + 0.773k + 0.011.
These values are provided by the robot/camera calibration, and they are important
to pick and place objects whose pose is calculated in the frame of reference of the
camera.

Figure 4.1: Visual representation of some frames of reference.

38

4.1.2. Forward kinematics

These concepts are somewhat related to those of the previous section.
The problem of forward kinematics is to determine the position of a robot’s end-

effector (e.g. a welder, a paint pistol or a gripper) with respect to the robot’s base knowing
the state of the joints (angle in case of rotation joints and elongation in case of prismatic
joints) and knowing all the constructive parameters of the robot (e.g. the longitude of the
links).

Robotic arms can be modeled as a set of interleaved rigid links and joints. There
exists a convention known as the Denavit-Hanterberg parameters (D-H for short) that
establishes the position of the end-effector based on successive geometric transformations
between the robot links. These parameters take into account the offset between links,
their length, the relative angle and the twist and can be used to define several geometric
transformations between the origin of one link and the next one 1. These transformations
can be composed to obtain the transformation between the robot’s base and the end-effector:

baseH
effector = baseH

link1 • ... • linknHeffector. As a visual example, we provide figure 4.2
where we can see the frames of reference of a robot.

The point is: we can calculate efficiently and unequivocally the position of the robot’s
end-effector. In order to do so we gather the information about the state of the robot from
the encoders of the motors (also known as actuators) that control the joints. Also, it is
important to know what forward kinematics is in order to understand the problem inverse
kinematics, that we will need to solve at several points of the experiments.

4.1.3. Inverse kinematics

The problem of inverse kinematics consists of: given a pose for the end-effector (say, a
transformation baseH

effector) compute the values of the joints that effectively achieve such
transformation. The problem is, therefore, much more difficult than the previous one. To
start, there is the possibility that there does not exist a set of joints values that achieve
such configuration. A very obvious example is a point located in a region beyond reach.
Another difficulty is that there may be more than just one solution. Which one should we
choose? A possible strategy is to choose the one that minimizes a certain cost function (e.g.
the weighted sum of the arcs performed by each of the joints).

However, the most prominent difficulty is that an analytic solution may be hard or
impractical to compute, especially for complex (many joints) robots. It is interesting to note
that if we want our robot to be able to reach every point of space at each possible orientation,
we need it to move in a six dimensional space even if it lives in a three-dimensional world
(one dimension per axis and three additional dimensions to cover all the orientations, as
we saw in section 4.1.1). For this very reason there are several approaches to compute the
inverse kinematics of a pose, being many of them based on numerical methods. In practice,
these methods can solve the inverse kinematics problem very efficiently, even if an analytic
solution is hard to obtain. As we will see later, we have to compute the inverse kinematics
of the robot at several points in order to be able of grasping and inserting the different
pieces.

1https://www.youtube.com/watch?v=rA9tm0gTln8 provides a visualization and a much more detailed
explanation of the D-H parameters

39

https://www.youtube.com/watch?v=rA9tm0gTln8

Figure 4.2: Frames of reference of one of the robots. Each link has associated a frame of reference
that is defined according to a geometric transformation with respect to the previous link. The
geometric transformation depends on the physical properties of the previous link (length of the
previous link, offset and twist) as well as on the state of the joint that connects them. Observe how
there also is a frame of reference for the end-effector (the toy sphere).

4.2. Mathematic formalism

This section covers the Mathematics involved in the planning process. We present here the
relevant formulae, along with a justification of why we use them. Some of them are subject
to demonstration. Demonstrations will be presented in the annex for the interested reader.

4.2.1. Estimation of magnitudes based on noisy observations

At several points we have to take information about the real world from a sensor. We use
this information to set the details of the problem for the planner and therefore to decide
which actions should be taken. However, sensors may introduce a significative amount of
noise in the data, so even with an observation we have some uncertainty about the real
value of the magnitude. In addition, it could be that the sensor does not provide the
magnitude directly, but that we have to apply a processing technique to extract the data.

40

This processing technique potentially introduces even more noise in the measurement2.
Because of this we talk about estimating the magnitude and not about obtaining its

value. In this section we propose a model for these observations, a very simple estimator
of the real magnitude and the statistical properties of such estimator. This analyisis is
important in order to introduce somehow probabilistic effects in the planning process.

The model presented here is largely based on that of [Kaelbling and Lozano-Pérez, 2013]
(more specifically, the section Characterizing belief of a continuous variable). However, we
make more emphasis on how we obtain the estimator, how we update it incrementally after
each observation and the statistical effects of each update.

First, let X̄ be the value of the magnitude we want estimate, and let Xi be the value of
the ith observation. We will act under the assumption that:

Xi ∼ N(X̄, σobs) ∀i (4.1)

In words: each observation follows a Gaussian distribution centered on the real magni-
tude and has a certain standard deviation σobs. We also assume that the observations are
independent from each other. If we have a set of observations like this:

X =

X1

X2
...
Xn

 (4.2)

The optimal estimator X̂n (based on n observations) of the mode of the underlying
Gaussian distribution is the mean of the observations:

X̂n =
1

n

n∑
i=1

Xi (4.3)

The estimator is optimal because it is unbiased and because it reaches the Cramér-
Rao bound with equality (proof in the appendix A). The variance of the estimator after
n observations is:

V ar(X̂n) = σ2
n =

σ2
obs

n
(4.4)

Or, in other words, the standard deviation of the estimation has been reduced by a
factor

√
n.

We propose an incremental way of updating the estimator. Let us notice that if the
variance of the observations is always the same and we start with a single observation:

X̂1 = X1 σ1 = σobs
...

...

X̂n = n−1
n X̂n−1 + 1

nXn σ2
n =

(
n−1
n

)2
σ2
n−1 +

(
1
n

)2
σ2
obs

(4.5)

Figure 4.3 illustrates how the uncertainty of the mode estimation decreases with more
observations.

2As we will see later, our sensor is a Kinect 1 camera that provides an RGB image and the 3D coordinates
associated to each pixel in the image; and the processing technique is the segmentation of the image to
recognize the pieces and the cavities of the sphere

41

Figure 4.3: PDF of the mode estimation for one to four observations. We have chosen a Gaussian
with µ = 0 for the purpose of illustration.

However, what if we want to base the new estimation entirely on the current estimation,
the next observation and their variances? How should we weight the next observation and
the current estimator? The answer (proof in appendix A) is:

X̂new =
σ2
obs

σ2
obs+σ

2
current

X̂current +
σ2
current

σ2
obs+σ

2
current

Xobs σ2
new =

σ2
obsσ

2
current

σ2
obs+σ

2
current

(4.6)

Now, this expression is interesting because it allows us to reason about how the estimator
is updated according to its current variance and the variance of the next observation. For
instance, if σ2

obs → ∞ (and σ2
current is bounded), we can easily check that X̂n → X̂n−1.

This would make the new observation negligible. Alternatively, when σ2
n−1 → ∞ the new

estimator will be based almost entirely on the new observation. We do not have to worry
about how the variance σ2

current was achieved in the first place (even if the variance of
observations σ2

obs has changed over time, or if we used another observation technique with
different variance). Also the variance of the new estimator is always lower than that of the
previous estimator, which is fairly intuitive.

We can calculate the probability of our estimation being in an interval (X̄ − δ, X̄ + δ).
This is what in [Kaelbling and Lozano-Pérez, 2013] is called ”Probability near mode” (or
just PNM). Such probability is:

Pr(|X̂current − X̄| < δ) = 1− εcurrent = erf

(
δ√

2σcurrent

)
(4.7)

Here, εcurrent is the complement of the PNM. In successive observations, this probability
is updated as follows (proof in appendix A):

εnew = 1− erf

(√
erf−1 (1− εcurrent)2 +

δ2

2σ2
obs

)
(4.8)

The expression 4.7 can be used to calculate how certain we are about the location of
the mode. 4.8 is useful to see how the uncertainty is reduced in terms of probability instead
of standard deviation. Figure 4.4 illustrates this reduction graphically. We will see that
we can base the cost of the planning actions on these probabilities, since they
help us to decide if we should keep on observing the scene or if we can already
manipulate the environment with a certain confidence about the success of the action.

42

Figure 4.4: Reduction of the uncertainty about the mode in terms of probability. We have adopted
δ = σobs = 0.005 for this example. The plot shows in the horizontal axis the current probability of
our estimation being farther than δ from the mode. The vertical axis shows which would be the new
probability after an additional observation.

Estimation of point location in space

Let us imagine that we want to estimate the position of an object in the space. For
the moment let us forget about orientation and focus just on the 3D coordinates of the
centroids. We will act under the assumption that we can obtain an observation for the
value of the three axis (X, Y and Z) in a certain frame, and that these observations follow a
Gaussian distribution centered on the real values. All the theory presented until now about
the evolution of the uncertainty with the number of observations apply to each of these
variables individually.

However, we would like to find an equivalent for equations 4.7 and 4.8 that works for
the three of these variables simultaneously. Say, for example, that we ask ourselves: which
is the probability for my current X, Y and Z estimations to be outside a δ-sphere centered
on the real position (generalization of the PNM for multivariate distributions)? How would
such probability evolve after an observation?

We can group these variables together in a single multivariate Gaussian distribution like
the following one:

1√
(2π)3σXσY σZ

exp

(
−(X̂ − X̄)2

2σ2
X

− (Ŷ − Ȳ)2

2σ2
Y

− (Ẑ − Z̄)2

2σ2
Z

)
(4.9)

Therefore, the first of the questions is answered integrating the distribution in the volume
defined by the sphere of radius δ centered at the mode (X̄, Ȳ , Z̄). Considering σX = σY =
σZ = σcoords for simplicity (i.e. isotropic Gaussian distribution), the results is (proof in
appendix A):

Pr(dist((X̄, Ȳ , Z̄), (X̂, Ŷ , Ẑ)) > δ) = ε = 1− g
(

δ√
2σcoords

)
With g(x) = erf (x)− 2√

π
x · exp

(
−x2

) (4.10)

This new g(x) is a CDF which describes a sigmoid curve. In figure 4.5 we provide the
plot of such function.

43

Figure 4.5: Plot of the g(x) sigmoid function. It can be seen how it accomplishes the basic
requirements of a cumulative density function: g(0) = 0 and g(x)→ 1 when x→∞.

The expression for the evolution of ε is very similar to equation 4.8. We just need to
change the error function by our g(x):

εnew = 1− g

(√
g−1 (1− εcurrent)2 +

δ2

2σ2
obs

)
(4.11)

A note about cyclic magnitudes

In our problem we also consider cyclic quantities: the piece’s rotation angle. There exist
more suitable distribution functions for this kind of magnitudes like the wrapped Gaussian
distribution or the von Mises distribution. These, however, are not as easy to handle as
the Gaussian distribution. Moreover, when the uncertainty is small, they are very similar
to the Gaussian distribution. Therefore, for the sake of simplificity we consider that the
observations of cyclic magnitudes follow a Gaussian distribution as well.

However, when updating the estimator it is important to do so in an appropriate manner
or the result may be misleading. For example, imagine that at some point we measure an
angle and we obtain a value of 5 degrees; after that we perform another measure and obtain
an angle of 358 degrees. A naive arithmetic mean would yield a result of 181.5 degrees
which is not very realistic. We follow the next strategy in order to update means of cyclic
magnitudes:

θ̂new =

σ2
obs

σ2
obs+σ

2
current

θ̂current +
σ2
current

σ2
obs+σ

2
current

θobs if |θ̂current − θobs| ≤ θmax
2

σ2
obs

σ2
obs+σ

2
current

θ̂current +
σ2
current

σ2
obs+σ

2
current

(θobs − θmax) if θ̂obs − θcurrent > θmax
2

σ2
obs

σ2
obs+σ

2
current

(θ̂current − θmax) +
σ2
current

σ2
obs+σ

2
current

θobs if θ̂current − θobs > θmax
2

(4.12)
Here we consider that we wrap our cyclic maginitude in an interval [0, θmax). For angles,
θmax = 360. Applying this update mechanism, the estimator would acquire a value of 1.5
degrees for the previous angles (5 and 358), which has much more sense than the 181.5
degrees we obtained before.

44

4.2.2. Assignment of discrete probabilities with matrix scaling

In [Kaelbling and Lozano-Pérez, 2013] there is a section to discuss how to handle discrete
probabilities in the planning process. However, the situation described in the article is
limited to assert and modify the location of an object in a finite set of places by means of
observation and move actions. They also consider a probability of false positives and false
negatives.

However our problem is slightly different. We have:

• S = {s1, s2, · · · , sn}, a known set of shapes. We know that these shapes are present
somewhere and we want to be able to locate and insert them on the sphere. We also
know which is the colour of the piece that has a certain shape. The shapes are all
different.

• D = {d1, d2, · · · , dn}, a set of blobs that we have detected by means of a computer
vision technique3 (that will be further discussed in the next chapter). Each blob has
a shape associated, but due to imperfections in the perception process we cannot tell
for sure which one.

• f(di, sj), a similitude function that tells us how similar is the blob di to shape sj . f
returns 0 when the blob di and the piece with shape di do not share the same colour,
and it always returns a positive value when they do. We can arrange the values of
f(di, sj) in a matrix B = (bij)n×n where bij = f(di, sj).

We want to be able to assign a probability pij to each pair (di, sj). These probabilities
should be based on the similitudes f(di, sj): the higher the similitude between a blob and
a shape, the more likely is that they are the same.

Based on the previous definitions, the probabilities pij should satisfy the following:

n∑
i=1

pij = 1 ∀j (4.13)

n∑
j=1

pij = 1 ∀i (4.14)

The reason behind the constraint 4.13 is that every shape has one and just one blob
associated, while constraint 4.14 comes from the fact that every blob has one and just one
associated shape. Both combined mean that we want to establish a bijection between D
and S. Now, how can we obtain the set of probabilities? Of course, one could propose
several solutions that satisfy the given premises. What we suggest is to scale the matrix
of similitudes B pre-multiplying it by a diagonal matrix Γ and post-multiplying it by a
diagonal matrix Λ. This is:

(pij)n×n = Γ ·B · Λ = diag(γ1, · · · , γn) ·B · diag(λ1, · · · , λn) (4.15)

Now, the resulting system of equations is non-linear and it does not have a simple
analytic solution for a general value of n. However, we can apply an iterative algorithm to
compute the already scaled matrix. This algorithm consists just of alternatively normalizing
the rows sum and the columns sum to 1. The details are shown in greater detail in algorithm
1.

3If we detected more or less blobs than n it would mean that there are false positives and false negatives
in the measure respectively. For this section we assume that the number of detected blobs is correct. If this
was not the case in practice, we would need to take another measurement. If the errors were too persistent,
it would probably require a fine tuning of the detection algorithm

45

Algorithm 1 Matrix scaling

procedure ScaleMatrx(M) . Input: square matrix
N ←M
it← 0 . it stores the number of iterations so far
repeat

for i ∈ N.rows do
N.row(i)← N.row(i) · (

∑
N.row(i))−1 . Normalize row sum

end for
for j ∈ N.cols do

N.col(j)← N.col(j) · (
∑
N.col(j))−1 . Normalize column sum

end for
e← max(maxi(|(

∑
N.row(i))− 1|),maxj(|(

∑
N.row(i))− 1|)) . error

it← it+ 1
until it = itmax ∪ e < εmax . Too much iterations or small enough error

end procedure

R. Sinkhorn proves in [Sinkhorn, 1964] that the problem always has solution for matrices
with positive elements, and that this algorithm converges to the solution. The proof can
be easily extended to block-diagonal matrices where all the blocks are composed of positive
elements. The reason is that we can simply focus on each block individually. This last
property is important for our particular case, because f(di, si) returns 0 for pairs (di, si)
that do not share colour. Even in this case, it is possible to arrange the columns and the
rows of B so it forms a block diagonal matrix with the desired features. Since modifying
the order of the rows and columns does not alter the feasibility of the problem, in practice
this means that we can just scale B satisfactorily without rearranging.

We think it is important to highlight that this is not an exclusively ad-hoc technique for
our problem. It can be extrapolated to other contexts (possibly also in planning) in
which is necessary to establish a bijection between elements of two sets based on a certain
measure of similitude or likelihood between elements. The matrix scaling technique can be
used to obtain probabilities that take into account all the similitudes between pairs.

Example of matrix scaling

Let us provide an easy-to-follow example of matrix scaling. We will also compare it against
row normalization.

Imagine the following matrix of similitudes:[
0.95 0.65
0.87 0.80

]
(4.16)

Here, following our notation: f(d1, s1) = 0.95, f(d1, s2) = 0.65, f(d2, s1) = 0.87 and
f(d2, s2) = 0.80. Scaling the matrix with the iterative algorithm we obtain the following
probabilities: [

0.54 0.46
0.46 0.54

]
(4.17)

While normalizing the rows we obtain:[
0.59 0.41
0.52 0.48

]
(4.18)

46

First, let us observe that the matrix 4.18 violates the condition 4.13. Next, if the decision
strategy of our planner consisted of matching each blob with the most likely shape, it turns
out that for both blobs row normalization has assigned the greatest probability to the same
shape.

On the other hand, the matrix scaling technique is more akin to our intuition. For
both blobs, the similitude to s1 is greater than the similitude to s2. However, since the
difference between the similitudes of the first row if greater than that of the second row, it
is reasonable to assume that the most likely match is [(d1, s1), (d2, s2)].

Considerations about uncertainty

We retrieve the concept of entropy from the information theory field in order to characterize
how unsure we are about the shape that should be assigned to a given blob. The entropy is
generally viewed as a measure of the unpredictability of some process. For discrete random
variables, it is defined as follows:

H (X) = −
∑
o∈Ω

Pr (X = o) · log2 Pr (X = o) (4.19)

Here, X is a random variable and Ω is the set of all possible outcomes of X. When the
base of the logarithm is 2, the entropy is typically measured in bits. We will adopt such
convention in this document. Figure 4.6 shows the entropy of a random variable that may
take three states. The choice of three states comes from the fact that there will be three
shapes per per colour at a maximum.

Figure 4.6: 3D visualization of the entropy of three states. Axes α and β represent the probabilities
of two of these states. The probability of the third state is therefore γ = 1− α− β. It is interesting
to note that the maximum is located at α = γ = β = 1

3 , since it is the choice of probabilities that
has associated the greatest unpredictability.

Now, we can calculate the uncertainty about which shape corresponds to a certain blob
a:

H (paj) = −
n∑
j=1

paj · log2 paj (4.20)

The greater the entropy, the more unsure we are about which is the correct match for a.
Therefore, this measure is useful to guide the planner into taking more risky actions in low

47

uncertainty contexts or to be more cautious otherwise. Another definition that will come
in handy is that of the normalized entropy:

η(paj) =
H (paj)

log2 na
(4.21)

In this expression, na = |{sj /paj 6= 0}| (i.e. the number of shapes such that paj 6= 0).
Therefore log2 na is the maximum entropy and η(paj) ∈ [0, 1].

4.3. Planning

In this section we describe the planning paradigm followed in our project. In order to give a
wide picture, we put this paradigm in contrast with approaches followed in other contexts.
We also talk about how we represent the world state and other relevant elements in the
domain.

4.3.1. Approaches for planning for robotic agents

One of the possibilities is to consider a classic planning approach without probabilistic ef-
fects. Following this methodology we would call the planner specifying the desired objective
and setting the initial state to the the currently observable world state. After each call to
the planner we execute the first of the actions (or a fixed number of actions) from the com-
puted path and start over until we arrive to the desired objective. The clear disadvantage
of this execution scheme is that it is necessary to replan at each step. If the domain is
complex and plans are hard to compute this disadvantage would lead to slow execution.

A similar although more sophisticated approach is that of [Mart́ınez et al., 2014a]. In
this work the problems are modeled as MDPs so probabilistic effects come into play. The
main topic of this work is to learn manipulation sequences with the purpose of assembling
objects. To do so the system plans to find a sequence of actions applying the currently
learned experiences. If a plan is not found, the system asks for human interaction in order
to learn which should be the next step. Then the first action of the found plan or the action
suggested by the human agent is executed. The system monitors the outcome of the action
and updates the transition model of the MDP accordingly.

We can find a similar strategy in [Martınez et al., 2015]. It presents a novel algo-
rithm called V-MIN that combines reinforcement learning with teachers demonstrations
that roughly follows the same execution scheme.

In [Kaelbling and Lozano-Pérez, 2011] and [Kaelbling and Lozano-Pérez, 2013] the au-
thors introduce a concept called HPN or Hierarchical planning in the now. In short, HPN
is a technique for planning with short horizons. At first they plan with highly abstract
operators. Then, each of the tasks of the abstract plan is further decomposed into increas-
ingly specific tasks until arriving to a plan that only contains simple primitive tasks that
the robots know how to execute. The advantage of such scheme is that the planning system
plans for small objectives, changing the abstraction level each time. Another important fact
is that in the HPN execution model it is not necessary to replan until the state falls outside
the previous plan’s envelope, i.e. the succession of states that results after executing all the
actions sequentially.

An example of abstract operator could be grabbing certain object. The planner can
assume that such operator will always succeed when planning in a high abstraction level.
Then after the abstract plan in computed, the planner decomposes the grab operator into
several additional tasks, like for example making sure that the piece is isolated, pushing near

48

obstacles if necessary in order to safely pick the desired object, moving to an appropriate
configuration and finally picking the object.

It is worth noticing that this technique is somewhat reminiscent of that proposed in
[Nau et al., 2015] and in [Ghallab et al., 2014]. Here the authors propose a refinement pro-
cess in which each of the actions of the computed plan is decomposed into more specific
operators.

We apply a similar approach. We think that this scheme is rather compatible with HTN
(Hierarchical Task Network) planners, which we describe in the following section.

4.3.2. Hierarchical Task Network formalism

We can see HTN planning as a slightly more specialized version of classical planning. Instead
of just defining a set of operators and what propositions and numeric variables define a state,
we must also define ad-hoc methods in order to guide the planner in a specific domain.
Therefore, there exists a compromise between generality and quick and efficient execution
based on knowledge or heuristics about the domain.

An HTN planner accepts as input a domain description and a problem instance, much
like a classical planner. The domain can be designed by hand, or it can be learned. In
the last case the domain can be entirely learnt from the beginning or it can be learnt
progressively by means of what it is known as reinforcement learning. [Martınez et al., 2015]
and [Mart́ınez et al., 2016] are recent papers that provide insight in how to do so. For the
particular case of HTN, [Ilghami et al., 2002] describes CaMeL, a supervised algorithm for
learning HTN methods.

In our case, however, the domain is simple enough to be modeled by hand. It should
contain the following elements: operators, tasks and methods.

Operators

Operators are similar to classical actions (e.g. those in PDDL: Planning Domain Description
Language). Each operator consists of a precondition that must be true in order to execute
the action. Then it has a list with the effects that it has on the state. These effects may be:
changing the state of propositions and boolean fluents in the current state, possibly using
quantifiers; or binding new values to numerical variables and fluents. In general, operators
can have a cost and the planner may try to find a plan that minimizes the total cost.

Tasks

An HTN planner tries to find a plan to accomplish certain task, instead of reaching a
goal state. A task is some activity that must be performed. It can be either primitive or
compound. A primitive task is associated with an operator and may be executed directly
without further decomposition. A compound task contains one or several methods that tell
the planner how to decompose the original task into several subtasks. Tasks may receive a
list of arguments.

The mechanism of dividing tasks into several subtasks is somewhat reminiscent of how
highly abstract operators are decomposed into several specific actions in HPN. The differ-
ence is that in HTN the abstraction level of the subtasks is not necessarily lower than that
of the original task. For this reason we think that the combination of HTN and HPN is
interesting and may lead to promising results.

49

Methods

Finally we have the methods. As it has been previously said, methods are the mechanism
that allow tasks to be divided into several subtasks. A task can contain several methods,
and the planner has to choose one of them in order to accomplish the task. They can be
used to introduce certain degree of intelligence when taking decisions since they allow to
guide the planner, telling it about correct sequences of subtasks that lead to the desired
result, instead of having to (potentially) consider the complete set of operators all the time.
In a totally ordered HTN planner, the subtasks that the method suggests are completely
ordered. This reduces the complexity of the planning process.

In the context of HPN, methods can act as the connecting element between different
abstraction levels: each task has a higher abstraction level that the tasks it decomposes
into.

Introduction of non-determinism

Another interesting concept is the determinization of domains with probabilistic effects.
Instead of approaching the problem directly as a MDP or a POMDP, we can model the
uncertainty with operator costs and preconditions that depend on the uncertainty about the
current state and the chances of success. These problems are called DSSPP, or Determinized
Stochastic Shortest-Path Problem. Later, when we introduce the operators of our domain
we will see how we have tackled the non-deterministic nature of our particular case.

Interleaved planning and execution

The execution algorithm followed in [Kaelbling and Lozano-Pérez, 2011] is basically the
following: they start checking if the current state is the goal and, if it is, simply returns;
if otherwise, it computes a plan using an A* local search that runs backward from the
goal; then it iterates through each of the steps of the plan and, if a step is a primitive
action it simply executes it; if it is not then it runs the algorithm recursively taking this
step as a subgoal. Also, in [Kaelbling and Lozano-Pérez, 2013] the authors introduce an
improvement in the algorithm: they consider that actions can fail and that they should
start over building a new plan from the current state (like in [Mart́ınez et al., 2014a] and
[Mart́ınez et al., 2014b]); and they take into account that there exists the chance that a
serendipitous event occurs after executing an action that actually moves the state nearer
than expected towards the objective. In such a case, the algorithm would not necessarily
need to execute all the actions.

We follow a slightly different approach. We have a planning routine that takes a de-
scription of the current state and the desired goal as well. However, our routine follows
the HTN paradigm and, therefore, it returns a plan that already contains purely primitive
actions and executable actions. We can do this efficiently thanks to the ad-hoc knowledge
that methods provide. After we have computed a plan, we execute each action, checking
always if the action could be completed. If it could not, then we plan again with an up-
dated description of the world state. We do not consider the possibility of serendipitous
events that push the plan further than expected because it does not make much sense in
our particular case (we think it is highly unlikely that as a result of executing a Pick action
we somehow manage to introduce a piece in the toy sphere). Even so, this feature would
prove to be very useful in other contexts so it should not be disregarded whatsoever. The
following pieces of pseudo-code should illustrate our algorithm:

The InterleavedExecution procedure is defined as:

50

Algorithm 2 Interleaved planning and execution. Top procedure

procedure InterleavedExecutionTop
repeat

snow ← ObtainState() . Current state
T ← {InsertAll(snow.detectedBlobs)} . Tasks to be performed
success← InterleavedExecution(snow, T)

until success
end procedure

Algorithm 3 Interleaved planning and execution

procedure InterleavedExecution(snow, T) . Input: current state and set of tasks
p← HtnPlan(snow, T)
for a ∈ p do . Iterate through all the actions of the plan

success← Execute(a)
if not success then

return False
end if

end for
return True

end procedure

4.3.3. Definition of the world state

For the purpose of planning we define some sets of objects, logical assertions and fluents.
We will make clear the difference between the ones that are constant from call to call to
the planner, the ones that stay constant during a single planning process (although not
necessarily between different calls to the planner) and the ones that can actually be altered
by the operators.

Parameters that remain constant between calls to the planner

These are the parameters that will never be change even between calls to the planner:

• We will always work with two robots that we have been symbolically identified with
the names Picker (the one that grasps and inserts the pieces in the sphere) and
Catcher (the one that has the sphere and rotates it in order to show the correct
cavity to the picker).

• We will always use the same value of δ (distances) and α (angles) when evaluating the
PNM (Probability Near Mode) of a certain estimation (check 4.7 and 4.10 to see what
we mean). We can think of these values as tolerances. We will always seek to reduce
the uncertainty about the location of the mode under the same value of ε (typically
0.05).

• The standard deviation of the observations (both of the blobs’ positions which we call
σobs; and of their orientation, νobs) will not change.

• The parameters bmin, ζ and ρ that appear in the Insert, ReceiveFeedback and
Pick operators. They modify the planner’s behaviour making it more cautious or
more hasty (check the description of the operators for more info about this).

51

Parameters that are constant in a single planning process

The constant variables are:

• S = {s1, s2, · · · , sn}, a set with all the shapes that we are currently considering. This
may be the set with all the pieces if we are just beginning and we are calling the
planner for the first time or a subset if we have already inserted some of the pieces
but had to replan at some point.

• D = {d1, d2, · · · , dn}, a set with all the blobs we have detected. Again, we can give
a subset of the blobs we detected at the beginning if we have correctly identified and
inserted some of them.

• B = (bij)n×n, the matrix of similitudes. The planner uses it to calculate the probabil-
ities (pij)n×n at the beginning of each call. Moreover we can use the bare similitudes
when there is not uncertainty about which piece is which (for example, there is a piece
per colour) but we want to have some measure of how well positioned is the piece in
the robot’s hand once it has picked it.

Variable elements

The variable elements are:

• P = (pij)n×n, a matrix that assigns a probability to each pair (di, sj).

• OnTable(di), a fluent that indicates whether the ith block is on the table.

• InHand(di), a boolean fluent that indicates whether the ith blob is being held by the
Picker. If a piece is not on the table nor in the Picker’s hand the planner assumes
that it is already inserted in the sphere (or otherwise beyond reach).

• RobotPose(r, o), a boolean fluent pose that indicates whether robot r is currently
in pose o. r ∈ {Picker, Catcher}. o is the qualitative identifier of a certain
pose. The Catcher’s poses include Neutral (a pose where the robot does not
disrupt the view of the camera nor obstruct the movements of the Picker) and all
the shapes of the cavities indicating which shape4 is being shown. The Picker’s poses
include Neutral (same concept as before), Show (showing a piece to the camera),
OverTable (after picking a piece from the table) and OverSphere (after inserting
a piece in the sphere).

• The current standard deviation of the blobs’ positions estimations, σcurrent and the
standard deviation of the rotation of the piece being held νcurrent. Of course, if no
piece is being held, then this last variable has no meaning: we think that the rotation
estimations taken when the pieces are still on the table are not very reliable, and that
we have to examine them closer to the camera in order to obtain a better estimation.
When we observe the table, we observe all the pieces at once, so the σcurrent refers to
the uncertainty of the position of all the detected pieces.

• UserMatch(di, sj), it indicates that the shape that corresponds to blob di is sj
beyond any doubt. UserMatch are either received as a feedback from the user or

4The list of shapes is: Triangle, Hexagon, Star8, Trapezium, Trapezoid, Pentagon, Cross,
CircularSector, Star5, Star6

52

guessed by the ReceiveFeedback operator. See the description ReceiveFeedback
in section 4.3.4 for more information about this.

The following fluents are also variable, but whether they hold or not (in the case of the
boolean ones) or their quantitative value (in the case of the numeric ones) can be inferred
from the previous variables. To put it in another way, they are not modified directly.
Instead, they reflect changes:

• Ml(di, sj), sj is the most likely shape for di.

• Bvxyz(di, δ, ε), the estimation of the (x, y, z) position of blob di is inside a δ-sphere
centered on the real value with probability at least (1− ε).

• Bvθ(di, α, ε), the estimation of the θ rotation of blob di is inside an α-interval centered
on the real value with probability at least (1− ε)

• We will often use H(di) which is, perhaps, an abuse of notation. By it we mean
the uncertainty about which is the correct shape for blob di and it is calculated as

an entropy: H(di) = −
n∑
j=0

pdij · log2 pdij . Similarly, we will denote the normalized

entropy as η(di).

• Holding(), gives the blob currently held by the Picker, or ∅ (None) if there is not
any.

4.3.4. Operators

The next step is to define a set of operators or, equivalently, primitive tasks. We show
the signature of each operator along with a brief description. The signature of an operator
includes:

• The precondition: a set of assertions about the world state that must be true so
the action can be executed

• The postcondition or effect: how the world state will be modified after the oper-
ator’s execution.

• The cost: It tries to measure how hard is to execute the action. It may be based on
the uncertainty about the current state and/or the chance of success of the operator.
The planner may try to find a plan that minimizes the accumulated cost.

AssumePose(r, o)
Pre: not RobotPose(r, o)
Effect: RobotPose(r, o)
Cost: 1

This action simply tells one of the robot to change its qualitative position. For example,
after picking a piece from the table the robot’s pose would be OverTable. Then we
can make that the robot shows the piece to the camera from a closer perspective applying
operator AssumePose(Picker,Show). There are not probabilistic effects involved in this
operator. The choice of the cost is mostly arbitrary. However, in a more advanced version
of the operator we could make the cost dependent on the current pose of the robot and the
desired one.

53

ObserveTable()
Pre: RobotPose(r,Neutral) ∀r
Effect: σ2

current ←
σ2
currentσ

2
obs

σ2
current+σ

2
obs

Cost: 1− log(εxyz)

The main purpose of the ObserveTable action is to reduce the amount of uncertainty
about the location of the pieces that are on the table. The cost is dependent on εxyz = 1−
g(δ√

2σcurrent
). The idea behind this is to penalize the use of the operator in low uncertainty

conditions, and to encourage it otherwise. In figure 4.7 we can see the dependence of the
cost on the standard deviation σcurrent.

Figure 4.7: At the left, εxyz = 1−g(δ√
2σcurrent

). At the right, cost of the ObserveTable operator

calculated as 1− log εxyz. In both cases we have taken δ = 0.005 (i.e. 5mm).

Pick(di)
Pre: (RobotPose(r,Neutral) ∀r) ∩ Bvxyz(di, δ, ε) ∩ OnTable(di)
Effect: not OnTable(di) ∩ InHand(di) ∩ RobotPose(Picker,OverTable)
Cost: 1− ρ log(1− εxyz)

The aim of this operator is to grab one of the detected blobs. Of course, in order for
this operator to be applicable, the blob must be on the table. We also require that both
robots are in Neutral position so there is no risk of collision. Bvxyz(di, δ, ε) means that
we need a confidence of at least (1 − ε) in that the estimator of the blob’s position is in
a δ-sphere centered on the actual value. The cost penalizes the execution of this operator
when there is high uncertainty about the real location of the blob.

54

ShowBlob(di)
Pre: RobotPose(Picker,Show) ∩
RobotPose(Catcher,Neutral) ∩ Holding() = di

Effect: ν2
current ←

ν2currentν
2
obs

ν2current+ν
2
obs

Cost: 1− log εθ

ShowBlob is very similar to ObserveTable. Its main purpose is to improve the
estimation of the rotation. We have found that, in order to correctly tell the orientation of
a piece, we have to perform a closer look or otherwise the estimation may be very misleading.

The cost of the operator depends on εθ = 1 − erf
(

α√
2νcurrent

)
, which is the probability of

our estimation being outside an α-interval centered on the real value. Again, we seek to
penalize the use of this operator when we the estimation is solid.

Insert(di, sj)
Pre: RobotPose(Picker,Neutral) ∩RobotPose(Catcher,sj) ∩Ml(di, sj)
∩ (bij > bmin∪UserMatch(di, sj)) ∩ Holding() = di ∩ BVθ(di, α, ε)
Effect: not InHand(di) ∩ RobotPose(Picker,OverSphere)
∩ (pij)n×n ← UpdateProbabilities((pij)n×n, di, sj)
Cost: 1 + η(di)

Insert takes care of inserting a blob di in the cavity sj of the sphere. Of course, in
order to execute the operator we first need that the Picker is holding di and that the
Catcher is showing the cavity corresponding to shape sj . We require that si is the most
likely shape for di and that the similitude of di to si is greater than a certain threshold
bmin or that the user guarantees that the correct match for di is si. After the execution of
the action the blob is no longer in the robot’s hand. The UpdateProbabilities updates
the probabilities matrix according to the new match (di, sj). Algorithm 4 shows how this
update is performed. The last thing that remains for discussion about this operator is the
cost: as we can see it depends on the normalized entropy η(di). Our intention is to make
this operation more expensive under low-uncertainty conditions. The planner can decide
whether to insert the sphere on the sphere directly or whether to ask for feedback following
the criterion of selecting the cheapest sequence of actions.

Algorithm 4 Update probabilities procedure

procedure UpdateProbabilities(P = (pij)n×n, di, sj)
Q← P
Q.row(i)← 01×n
Q.column(i)← 0n×1

Q(i, j)← 1
return ScaleMatrix(Q)

end procedure

ReceiveFeedback(di, sj)
Choose: sj ∈ {sj′ /pij′ > 0}
Pre: RobotPose(Picker,Show) ∩ InHand(di)
Effect: (pij)n×n ←UpdateProbabilities((pij)n×n, di, sj) ∩UserMatch(di, sj).
Cost: 1 + ζ − η(di)

We have included an operator for receiving feedback from an human agent whenever
the planner cannot determine with enough confidence which is the piece that the robot

55

is holding. The operator can also be useful when the piece is being grabbed precariously.
It is interesting to notice that it is somewhat reminiscent of the teacher’s intevention in
[Mart́ınez et al., 2014a].

ReceiveFeedback takes as input a blob and a shape, and adds an UserMatch(di, sj)
fluent to the current state that asserts, without any doubt, that di’s shape is sj . The shape
is given by the user. Since the planner cannot know the answer of the user beforehand it
should take a guess before applying the operator, hence the choose tag in the signature.
When trying to execute the action in the real world, if the feedback from the user differs
from what the planner has guessed, then the action fails and a new plan is computed (as
shown by the algorithm 2).

The cost depends on a certain constant ζ and on the normalized entropy η(di). ζ is a
parameter that can has to be configured beforehand. The higher it is, the more reluctant
will be the planner of taking this action instead of inserting the piece on the sphere directly
without asking for feedback. On the other hand, the higher the entropy, the more prone is
the planner to use this operator.

At this point it is interesting to perform further analysis on how will the planner decide
what should it do when the options are to insert without human interaction and act upon
feedback. Here we show the difference between the sequences of actions corresponding to
each decision:

• Insert without feedback: · · · → ShowBlob(di) → · · · → ShowBlob(di) →
AssumePose(Picker,Neutral) → AssumePose(Catcher,sj) → Insert(di, sj)
→ · · · . The cost of the Insert operator is 1 + η(di).

• Insert with feedback: · · · → ShowBlob(di) → ReceiveFeedback(di, sj) →
· · · → ShowBlob(di)→AssumePose(Picker,Neutral)→AssumePose(Catcher,sj)
→ Insert(di, sj) → · · · . The cost of ReceiveFeedback is 1 + ζ − η(di) and Insert
has a cost of just 1 because ReceiveFeedback has reduced the entropy to 0.

The number of ShowBlob actions is the same in both sequences since we need to
reduce the rotation’s uncertainty to the same value in both cases. Therefore, in order for
the first decision to be preferred over the second one:

(1 + η(di)) < (1) + (1 + ζ − η(di))⇒ η(di) <
1 + ζ

2
(4.22)

And with this we see more clearly the relevance of the parameter ζ. More specifically,
it determines a decision threshold for the entropy of the blob. If the entropy is lower than
such threshold, the piece is inserted directly. Otherwise, the planner will choose to prompt
for human interaction. In addition this expression shows that the reasonable range of values
for ζ is [0, 1]: if we made ζ lower than 0 the cost of the ReceiveFeedback action could
potentially be 0 and making it greater than 1 has no point since η(di) ≤ 1. Since with
algorithm 2 we do not re-plan until the execution of an action in the real world fails, we
can force that Insert and ReceiveFeedback fail whenever η(di) ≥ 1+ζ

2 or η(di) <
1+ζ

2 ,
respectively.

56

5
Implementation

This chapter describes the design decisions and the most relevant implementation details of
the project. We also include a review of the simulation techniques and tools that we have
used before accessing to the real robot.

The first part of the chapter is an overview of the whole implementation. This includes
the list of all the implemented modules and a the relationships between them. Then we
dedicate a section to the simulation assets. The rest of the chapter is devoted to present in
more detail the functional modules of the project.

5.1. Overview

In this section we present to the reader infrastructure of our project. This infrastructure
consists mainly of ROS, Pyhop and the procedures suggested by the Labrobotica philosophy.
Then we will give a glance to the major components and constituent blocks that we have
implemented.

5.1.1. Introduction to ROS

ROS is the acronym of Robot Operating System. This name, however, is misleading since
ROS is not an Operating System in the traditional sense of the concept. Instead, ROS is
an Open Source platform aimed at programming algorithms and drivers for application in
Robotics. The desired functionality is wrapped in what is called a ROS package and then it
can be shared with the community. The main objective of ROS is to facilitate the exchange
and utilization of state-of-the-art algorithms and tools. There exist a high amount of useful
packages being shipped for ROS. We will discuss some of these packages later.

Next, we discuss some of the features that make ROS a valuable resource in the field of
Robotics.

• Execution model: In ROS, the minimum execution unit is the node. A node is a
concurrent/parallel application or utility that performs certain task or functionality.
In order to execute a node, there must be one ROS master running. A master handles
several nodes and dispatches messages (more about messages below) among them.
The master can be running on a remote machine. This execution model provides a
natural mechanism to separate the functionality of a complex application into several
modules.

57

• Topics: Nodes can communicate between them by means of messages. Messages can
be published by one or more nodes in what is called a topic. Other nodes may subscribe
to those topics and receive the messages being published. This allows great flexibility
since the subscribers do not have to worry about the implementation details of the
publishers as long as they follow the same messaging convention. Applications do not
have to be a monolythic pieces of code. Instead, this messaging mechanism allows
nodes to be like small functional blocks whose inputs and outputs can be plugged in
to other blocks or operate in isolation. Moreover, if the master is running in a remote
machine, the messages are sent through the network trasparently so the programmer
does not have to worry about sockets. One of the most typical uses of topics is to
stream a continuous flow of data (e.g. video from a camera or the joints state of a
robot).

• Services: Services have certain degree of similitude with regular functions in most
programming languages. Nodes can offer services that may be called by other nodes.
The specification of a service includes the input arguments and the output received by
node that has called the service. Calls to services are blocking, so these are typically
used for fast computations (e.g. an inverse kinematics query).

• Actions: Actions resemble services in that they offer some kind of callable function-
ality for being used by other nodes. The difference is that actions are normally used to
implement non-blocking functions that may span during a long interval in time. The
calling node may preempt the action at any moment, and the node that offered the
action can publish a periodic feedback telling the caller about the current state of the
action. Because of these characteristics one common use of actions is to implement
robot movements.

• Support for several programming languages: ROS provides support and an
API for several programming languages, including C++, Python, Lisp and Java for
Android. Even so, the documentation of ROS and most of its packages is focused
mostly on the C++ API and the Python API. The languages used in our project are
C++ and Python.

• Debugging and configuration tools: ROS comes or can be extended with several
debugging and configuration tools that may run from the command line or have
graphical interface. One of these tools is rqt-graph, a package with contains a Qt
application for visualizing the nodes, and publisher/subscriber relationship between
them. We also have rqt-reconfigure which allows us to dynamically change the
parameters of nodes that are already running.

Next we present some example packages in order to give an idea of what kind of func-
tionality can be offered by a ROS package (this is not intended to be an exhaustive list of
all the packages we are going to use):

• tf: tf takes care of publishing the transformations between different frames of refer-
ence (for example, between the joints of a robotic arm) at each instant of time. It can
also be useful for obtaining the coordinate transformation between two frames that
are connected indirectly, or for tracking the transformation between two frames in the
past. In addition, the API of tf comes with some additional utilities (e.g. performing
conversions between angles in RPY and quaternions). Check 4.1.1 to see more about
geometrical transformations.

58

• rviz: rviz is a multipurpose visualization and interactuation tool. It allows us to
view the state of a robot, information from sensors that is published in a topic, etc.
In this sense it is a very powerful monitoring tool.

• moveit: powerful geometrical planning framework for robots. moveit uses OMPL
(another ROS package for path planning) for planning trajectories for robots. It also
comes with a rviz plugin for visualizing plans and calculating new ones. moveit

works for several robots. It takes an XML description of the robot’s joints and links
and use them to calculate a plan without self-collision nor collisions against world
objects.

The IRI has its own set of ROS packages, developed inside the institute. We make use of
some of them. For example (iri wam description) contains the specification of the robots
in terms of joints and links. This package is useful for simulation and for calculating the
transformation matrix between the frames of reference of the WAMs’ bases and the end-
effector. Another useful package is iri wam ik, which contains a node that offers a service
for calculating the inverse kinematics for a given pose (i.e. obtaining the robot joints values
for a certain pose in cartesians). To learn more about this topic please refer to section 4.1.3.

5.1.2. LabRobòtica philosophy

LabRobòtica is the group of developers at the IRI. Diagram 5.1 shows the typical develop-
ment workflow followed at the institute.

Figure 5.1: This diagram shows the developing workflow suggested at the IRI. Source: http:

//wiki.iri.upc.edu/index.php/LabRobotica_Philosophy

In words, what this diagram shows how to transform an initial idea for a driver or an
algorithm from theory to practice. The process start with the proposal of an idea (e.g.
a controller for certain robot or an algorithm for inverse kinematics) and the theoretical
concepts behind it. If possible, the idea should be illustrated with a Matlab/Octave script
in order to obtain preliminary results. After that, the core functionality behind the idea is
implemented in a C++ library. This library is typically built with cmake and make. This
library is, in some way, the lowest level component of the new application or driver. Some

59

http://wiki.iri.upc.edu/index.php/LabRobotica_Philosophy
http://wiki.iri.upc.edu/index.php/LabRobotica_Philosophy

projects stop at this point, with a functional library that can be included in other projects.
However, the full process contemplates wrapping this library in a ROS node. This node
makes use of the API (Application program interface) offered by the library and gives useful
functionality based on it by mean of the standard ROS mechanism, presented in section
5.1.1.

In our case, thes full process is followed for the perception module. We have implemented
as a library a set of extra features based on OpenCV. This library (that we have called
cv extra) is then used by one or more ROS nodes that make use of the API to segmentate
an image and match the obtained contours with the shapes of the pieces.

LabRobòtica maintains a repository with several libraries. In our project we make use
of some of them. The most important ones in our case are the controller for the WAM
robot and the algorithm for inverse kinematics, since our world interface module makes use
of it. For each of these there is a ROS node that acts as a wrapper. For more information
on this topic, check http://wiki.iri.upc.edu/index.php/LabRobotica.

5.1.3. Planning engine: Pyhop

We can obtain the behaviour described in [Kaelbling and Lozano-Pérez, 2013] with conven-
tional planners like Fast Forward, Fast Downward, Gourmand or Prost. We have decided
to use a HTN planner for the reasons listed in section 4.3.1. A well-know family of HTN
planners is SHOP (Simple Hierarchical Ordered Planner), by D. Nau:

• SHOP, in Lisp. More details in [Nau et al., 1999].

• SHOP2, in Lisp. Explained in [Nau et al., 2003].

• JSHOP, programmed in Java. Uses a planner compilation technique to create
domain-specific planners from the domain description. This technique is explained
at [Ilghami and Nau, 2003]

• Pyhop, a very simple planner written in Python. It can be obtained from https:

//bitbucket.org/dananau/pyhop

For our project, we have chosen Pyhop because: it allows inmediate integration with
other nodes in ROS; it does not make use of a parsing mechanism since the domains and
the problems are specified directly in Python; additional functionality and capabilities can
be easily integrated in this planner (i.e. the code of the planner is easily modifiable and we
can experiment with features that are not typically implemented in conventional planners).
Another characteristic is that in Pyhop the states are represented by means of conventional
Python classes and we can choose any representation method we like: simple variable
bindings, dictionaries, lists, matrices, etc. However, we want to make clear that Pyhop is
very simple and far from the sophistication of the latests planners like PROST, Gourmand,
Fast Downward, or even from the other planners of its family (JSHOP and SHOP2).

Also it is important to mention that the original version of Pyhop does not support
metric minimization. Since we would like to minimize the accumulated cost of the operators,
we have modified Pyhop to support this feature using a branch & bound with a limit in the
recursion depth. Anyway, this modification is transparent for the users in the sense that
they do not have to use the feature nor worry about modifying their previous domains. The
following example works both in both the modified version and in the original one.

60

http://wiki.iri.upc.edu/index.php/LabRobotica
https://bitbucket.org/dananau/pyhop
https://bitbucket.org/dananau/pyhop

Introduction to Pyhop

This subsection is devoted to explore some of the particularities of Pyhop. To do so we have
ellaborated an example. Let us imagine the following problem: sorting a list with only one
operator for swapping two elements. We will show the specification of the domain and an
example problem step by step. This example should be easy-to-follow even if the reader has
not prior knowledge of Pyhop of does not have experience with the Python programming
language.

1 from pyhop import ∗

3 # Operators ’ d e f i n i t i o n

5 de f swap (s tate , x , y) :
””” Exchanges p o s i t i o n s o f x and y . Precond : x and y must be d i f f e r e n t

7 e lements . ”””
i f x != y :

9 tmp = s t a t e . p o s i t i o n [x]
s t a t e . p o s i t i o n [x] = s t a t e . p o s i t i o n [y]

11 s t a t e . p o s i t i o n [y] = tmp
return s t a t e

13 e l s e : r e turn Fal se # Operators must re turn Fal se i f they do not succeed .

15 d e c l a r e o p e r a t o r s (swap) # This c a l l d e c l a r e s a p r i m i t i v e task f o r each o f
the s p e c i f i e d ope ra to r s

Code snippet 5.1: Declaration of operators in Pyhop

This code snippet is pretty straighforward. In the first line we import all the methods
and classes from Pyhop. Then we define a single operator that interchanges the positions
of two elements. Operators in Pyhop always receive a state as the first argument, followed
by the remaining parameters. Proposition and fluents are represented as variable bindings
in the state object. In this case, the state only contains a dictionary that stores, for each
element, its position. When the operator can be executed successfully, it returns the new
modified state. If this is not the case because the requirements (precondition) are not met,
it just returns False.

18 # Methods ’ d e f i n i t i o n

20 de f s o r t l i s t (s ta te , goa l) :
””” Method f o r top−l e v e l task . I t r e c e i v e s as an argument a goa l s t a t e .

22 I t decomposes the task in to s e v e r a l sma l l e r subtasks that c o n s i s t o f putt ing
each element in i t s f i n a l p o s i t i o n . ”””

24 re turn [(’ put in ’ , element , goa l . p o s i t i o n [element])
f o r element in s t a t e . p o s i t i o n . keys ()]

26

The f o l l o w i n g c a l l d e f i n e s a task s o r t l i s t with a s i n g l e method .
28 dec lare methods (’ s o r t l i s t ’ , s o r t l i s t)

30 de f change po s i t i on (s ta te , x , endpos) :
””” Puts element x in p o s i t i o n endpos . ”””

32 # Find element that i s on p o s i t i o n endpos
f o r y , p o s i t i o n in s t a t e . p o s i t i o n . i tems () :

34 i f p o s i t i o n == endpos :
r e turn [(’ swap ’ , x , y)]

36 re turn Fal se # I f we reach t h i s po int the method cannot succeed .

38 de f l e t a l o n e (s ta te , x , endpos) :
””” Let element x a lone because i t i s in i t s d e s i r e d p o s i t i o n . ”””

40 i f s t a t e . p o s i t i o n [x] == endpos :

61

re turn [] # No more task decomposit ion (s u c c e s s without f u r t h e r ac t i on)
42 e l s e : r e turn Fal se # The element i s not in i t s f i n a l p o s i t i o n

44 # Task put in with two methods
dec lare methods (’ put in ’ , l e t a l o n e , change po s i t i on)

Code snippet 5.2: Declaration of methods in Pyhop

Contrarily to operators, methods do not return a state. Instead they return a list of
subtasks (including the arguments that each subtask receives). Previously we have said
that HTN planners make plan for accomplishing tasks instead of reaching a goal state. If
we want to reach a particular world state, we can define a task that receives as an argument
such goal. This is what we do in the sort list method that belongs to the homonymous
task. This completes the specification of the domain. In Pyhop the states do not have to be
rigourously defined since they consists of a simple object with arbitrary attribute bindings.
However, we can choose to write a stricter state definition by means of a class that inherits
from Pyhop’s State (or make a completely new class from scratch since Python supports
the duck typing style). We have not done so for this simple example.

Def ine the s t a r t s t a t e .
48 s t a r t = State (’ s t a r t ’)

s t a r t . p o s i t i o n = { ’ a ’ : 2 , ’b ’ : 3 , ’ c ’ : 1 , ’d ’ : 4}
50

. . . and the goa l s t a t e
52 goa l = State (’ goa l ’)

goa l . p o s i t i o n = { ’ a ’ : 1 , ’b ’ : 2 , ’ c ’ : 3 , ’d ’ : 4}
54

Def ine ta sk s to be accompl ished
56 ta sk s = [(’ s o r t l i s t ’ , goa l)]

Code snippet 5.3: Definition of a problem instance

This shows how we define a problem in Pyhop. As it can be seen, we create a starting
state and a set of tasks (in this case, only one) that have to be accomplished.

pyhop (s ta r t , tasks , verbose =3)

Code snippet 5.4: Running Pyhop

This last snippet shows how we run Pyhop for this particular problem instance. This
yields the following actions sequence: swap(a,c), swap(c,b). It can be checked that this
sequence produces the correct result.

In order to use the new metric minimization feature, one would need to add a keyword
argument (minimize metric=<attribute name>) to the call to the planner. For example:

1 # With t h i s c a l l the planner w i l l t ry to f i n d a plan that minimizes a metr ic .
Of course , f o r t h i s to work we would need that the s t a t e conta in s a c e r t a i n

3 # a t t r i b u t e c a l l e d co s t .
pyhop (s ta r t2 , tasks , verbose =2, min imize metr i c=’ co s t ’)

Code snippet 5.5: Running Pyhop with metric minimization

5.1.4. Implemented modules

Figure 5.2 shows a simplified overview of the modules and nodes we have implemented for
our application. Further sections will ellaborate more on each module. For the moment we
offer a brief description about each one:

62

• The perception pipeline takes care of all the perception related problems. We
have identified three main challenges: detecting and identifying the pieces that are
lying on the table; detecting the cavities and providing an estimation of the rotation
angle; and detecting the piece that is being shown by the Picker to the camera and
estimating its rotation angle. For the first two challenges we have to provide some
mechanism for detecting the blobs in the images provided by the Kinect, calculating
the similitudes between them and the known shapes and obtaining the 3D coordinates
of the centroid. For the last challenge we have to detect and obtain the similitudes
as well. We do not calculate the 3D coordinates though, the reasons being: in order
to perform a closer look with satisfactory results we need the piece to be very near to
the camera, so near that the depth sensor is not able to compute the coordinates; we
already have the piece in the end-effector, so we currently know where it is located
(even so it would be useful to compute its 3D coordinates as an additional testimony
of whether or not the piece is being grasped correctly). Section 5.3 provides more
details about this module.

• The world interface is devoted to all the actions that involve moving the robots. We
have established a separation between the perception mechanisms (described before)
and the actuation mechanisms. The name may be somewhat misleading since taking
information from the world is also a way of interfacing with it. Anyway, semantics
aside, the purpose of this module is to give instructions to both the Catcher and the
Picker. The Catcher actions consist of adopting a Neutral position and exposing
a certain cavity both for being visible for the camera and so the Picker can insert
the relevant piece into it. The Picker actions include adopting the Neutral and
Show position and picking or placing a piece. Section 5.4 ellaborates more on this.

• The interleaved planning-execution part is written in Python and it consists of
the implementation of the algorithm 2, at section 4.3.2. It takes care of interfacing
with all the services and actions offered by the previously described module, and of
handling all the ROS-related mechanisms and procedures. It also have access to our
modified Pyhop version, that have called ROSHOP.

Figure 5.2: Block diagram of the whole application. The edges indicate the dependence relationship
between them. The resulting graphs is a tree in which the nodes with greater height offers services
and actions to their parents.

63

5.1.5. Source code

The ROS related source code of the project is maintained in a public Git repository1. The
reader can access it and clone the repository if he desires. Please be aware that these
packages have dependences on several of the IRI’s LabRobòtica projects. The instructions
to install these packages can be found at the IRI’s wiki2.

For the perception algorithms we have implemented an additional C++ library called
cv extra. This library is maintained in a different repository, 3, and it should be installed
as well.

It is also worth mentioning that the code is fully documented. We have used Doxygen-
like comments and, in case of the cv extra library, the documentation is already compiled
in HTML.

5.2. Simulation assets

We think that the work behind the simulation of the scene is relevant enough to deserve
some attention. In our case we have found simulation to be useful for testing the perception
and actuation parts in contexts when we do not have access to the laboratory equipment
and also when testing experimental changes.

We have used Gazebo, an application aimed at simulating robotics scenes. Gazebo ac-
cepts world descriptions in a format called SDF (Simulation Description Format) that
follows the XML convention. In addition, when combined with ROS, URDF (Unified
Robot Description Format) robot models can also be loaded into the simulation. We have
taken the WAM robot description from the IRI (iri wam description package), and in-
troduced minor modifications in order to represent the particularities of our Picker and
Catcher. The modifications are located in the packages iri wam picker description

and iri wam catcher description, respectively. There is also some 3D modeling work
behind the preparation of the simulated scene, namely the creation of a toy sphere mesh
and the reproduction of all the pieces. We have tried to model these elements with the
maximum amount of realism possible, respecting the dimensions of the real objects. Figure
5.3 shows the result.

The package iri task motion integration gazebo contains all the simulation-related
content. This includes an scene with the two robotic arms located in (approximately) same
position where they are in the real life experiment. Figure 5.4 shows how this scene looks
like. The scene is functional in that we can programatically control the robots with other
nodes. However, the Picker does not have a functional gripper so the experiment cannot
be fully reproduced. Even so, has been useful to test other matters:

• The workspace of the robot, this is, the volume of space where the inverse kinematics
module can provide solutions with reliability.

• The perception techniques, since the Kinect camera in the simulation is functional.

• The basics of robot control. We have employed a recurrent benchmark script that
uses the perception pipeline to obtain the location of the blobs and that instructs the
picker to position its end-effector (where the gripper should be) over them.

1https://bitbucket.org/sprkrd/integration-of-task-and-motion-planning-for-robotics
2http://wiki.iri.upc.edu/index.php/LabRobotica
3https://bitbucket.org/sprkrd/cv_extra

64

https://bitbucket.org/sprkrd/integration-of-task-and-motion-planning-for-robotics
http://wiki.iri.upc.edu/index.php/LabRobotica
https://bitbucket.org/sprkrd/cv_extra

Figure 5.3: At the top corner we have the model of the sphere, modeled in FreeCad. The rest of
the picture shows the already textured sphere and the pieces in a Gazebo simulation.

Figure 5.4: Simulated scene in Gazebo. We can see the main elements of the experiment: the
Kinect camera at the ceiling (although in the simulation it is actually floating), the two WAM
robots (one of them with the sphere attached as an end-effector) and the pieces distributed over the
table.

65

5.3. Perception pipeline

This section is dedicated to the functional blocks that form the perception pipeline. The
final purpose of this module is to detect and identify the pieces that are distributed over
the table and the cavities of the sphere. We are interested in estimating not only which
shape is associated to each piece, but also their rotation. We have identified four stages:
filtering, image segmentation, 3D point extraction and shape comparison. In each of these
we make a heavy use of OpenCV functionalities. We have also implemented a C++ library
(called cv extra) that offers useful methods and classes for each of the perception blocks.

5.3.1. Filtering

We receive the images from a Kinect camera. These images are somewhat noisy. In order to
obtain better results in the later phases, we thought it is important to provide a denoising
mechanism. We have considered several possibilities:

• Temporal averaging: we can average the latest images continuously. If we consider
the noise at each pixel to have zero mean and being uncorrelated with the noise
at other pixels, averaging similar images that have been taken recently reduces the
variance of the noise. Under the assumption that the camera is fixed and the scene
objects are not moving, this technique has the advantage of not blurring the edges
of the scene. However, the utilization of a temporal averager has the problem of
producing an afterimage or trail effect. This is the result of the transitory response
of the filter. We have to decide how many images we will average together.

• Normalized box blur: one of the most simplest filter. It simply averages the color
of each pixel with the color of the surrounding ones (in a square neighborhood). The
box filter is a low-pass filter (i.e. it preserves constant and slow gradients). Tipically,
noise in images has associated high frequency components so the box filter may probe
being effective against it. As an advantage, it is a separable filter and it is very fast to
compute. However it may blur edges, and the frequency response of the filter presents
side lobes (which means that high frequencies are not completely eliminated). This
filter receives as a parameter the neighborhood size.

• Gaussian filter: It is very similar to the box filter, but it has a Gaussian kernel
instead of a square one. It shares the efficiency advantage, and it fixes the inconvenient
of the side lobes. However, it stills blurs edges. As a parameter, it needs the standard
deviation of the Gaussian kernel in X and in Y (or a single standard deviation if the
filter is isotropic). The higher the standard deviation, the more blurry is the filtered
image.

• Median filter: This filter substitutes the color at each pixel with the median of the
surroinding ones. It is more respectful with edges. However, it rounds the corners of
the scene objects and it does not behave well in areas with highly saturated colors.

• Bilateral filter: One of the most sophistiated filter. It is non-linear. It performs
an average on each pixel’s neighborhood based not only on the colour but also on
the euclidean distance. In practice this means that the filter does a great job both
removing noise and preserving edges. However, it is very slow compared to the other
options.

66

Figure 5.5 shows a comparison of all these filtering methods. We have implemented a
ROS node that combines a temporal averager filter with an additional filter (one of the
other filters mentioned in this list). Each filter is parametrizable in runtime. We have
implemented the temporal averager as a class that contains a queue of images and the sum
of all the images in the queue. Whenever a new image enters the queue, we remove the
oldest image (if the queue is full) and update the sum accordingly. For the other filters we
have used the OpenCV’s implementation.

We have found that a combination that provides very good results is the temporal
averager with few images (5 or 10) and a isotropic Gaussian filter with low deviation (σ ∈
[0.5, 1.5]).

Figure 5.5: Comparison of the considered filters. The images has been equalized so the reader can
distinguish better the noisy pixels. From left to right and from bottom to top the images represent:
the original image without filtering; the image filtered with a temporal averager of 10 images (we can
see the edges of the piece clearly); the image filtered with a 5× 5 box filter (the edges of the pieces
are more blurred); the image filtered with an isotropic Gaussian filter with σ = 3 (also blurry); the
image filtered with a median filter with a kernel size of 3; and the image filtered with a bilateral
filter (σcolor = 70 and σdistance = 5) which gives great denoising power without affecting the edges
too much.

5.3.2. Segmentation

Segmentating an image consists of labeling each pixel depending on the category they
belong. In our case, we want to distinguish between the pixels that represent a piece, a
cavity or the background. The input to the segmentation stage is the image filtered by the
former node.

We have considered several segmentation techniques: K-means, watershed and simple
selection based on color. Moreover we have tested with several color spaces to see which
yields the best results. At the end we have decided to use two different algorithms for
detecting the pieces and for detecting the holes in the sphere. These algorithms are offered
as services by the iri piece segmenter node.

It is interesting to notice that once the image is segmentated we are interested in the
connected components (i.e. groups of pixels with the same label). During the document
these components is what we have been calling blob. Once we have identified a blob, we
can compute very easily its contour and its centroid.

67

Algorithm for the detection of pieces

The algorithm is an hybrid of two of the techniques presented before. First, we convert the
image to the HSV color space, since it is more appropiate for evaluating the color of a piece
independently of the lighting conditions. Then, for each one of the main colors (yellow, blue,
red and green) we select the pixels that fall inside a certain tolerance region. We perform
a morphological erosion with the selected pixels in order to remove spurious pixels and to
define the sure foreground and sure background masks. We use these masks as the starting
point or seed of the watershed algorithm4 , that takes care of making a finer segmentation.
Among other advantages, the watershed stage does a good job minimizing the number of
connected components, avoiding the problem of pieces that are “split asunder” by a simple
color selection segmenter. The typical solution to this problem tends to be a succession
of morphological transformations in order to connect separate components (morphological
closening) and remove spurious pixels (morphological opening), but this is actually harmful
for the proper recognition of the shape. Check figure 5.6 to see an example of what the
results look like.

Figure 5.6: Example application that shows the results of the segmentation algorithm for pieces

It is worth mentioning that, in the segmenter node, we have added some extra features.
For example, there exists the option of cropping the borders of the image, so the segmenter
does not detect anything outside the region of interest. The second one is that the segmenter
discards any blob whose area is not greater than a threshold (configurable by the user in
runtime). With this we want to remove spurious blobs that have resisted until the end of
the algorithm. The node also allows to modify in runtime the HSV range of each colour
(red, blue, yellow and green) for the colour selection phase. Algorithm 5 presents a more
formal description of the whole segmentation process.

4The watershed algorithm is a region growing segmentation technique inspired by how drainage basins
are filled with water during precipitations. To learn more about the watershed algorithm and about its usage
in colour images we recommend [Meyer, 1992].

68

Algorithm 5 Piece segmentation procedure

procedure SegmentateOnTable(M) . Input: already cropped image
L← SimpleColorLabeling(M) . Labeled image with simple colour thresholding
sureFG← Erode(L,Circle(rerode)) . Erosion with a circular structural element
sureBG← NonLabeled(Dilate(L,Circle(rdilate)))
markers← ObtainMarkers(sureFG, sureBG) . Combine BG and FG
L′ ← Watershed(markers)
detected← ∅
for blob ∈ConnectedComponents(L′) do

if blob.label 6= Background ∩ Area(blob) ≥ Amin then
detected.Add(blob)

end if
end for
return detected

end procedure

Algorithm for the detection of cavities and for individual pieces

The sphere cavities are a more difficult matter, since they cannot be identified by single
uniform colors. For this reason, we let the robot that holds the sphere to position it more
or less at the same position of the camera’s cone of view. Then we use the watershed
algorithm, situating the seed at the center of where the cavity should be. Since the cavities
share similar lighting conditions, this provides a satisfactory result. Figure 5.7 shows an
example.

Figure 5.7: Segmentation of a cavity. Note how the seed is roughly located at the position of the
cavity and the watershed algorithm takes care of segmentating the shape in more detail.

The technique for detecting an individual piece held by the Picker and being show to
the camera is almost the same. We mainly change the location of the seed and compute
the mean of the selected pixels in order to see which is the colour of the piece (the colour is

69

important since it allows us to compare the detected blob exclusively with the shapes that
share colour). Figure 5.8 shows an example.

Figure 5.8: Segmentation of a piece that is being shown to the camera

5.3.3. Obtaining the 3D centroids of pieces and cavities

In order to obtain the images from the Kinect we use a ROS wrapper for the FreeNect5

driver. The driver also provides a 3D point cloud with each point in a one-to-one correspon-
dence with the pixels of the image (provided we have enabled the depth registration option
of the driver). Therefore, for the pieces that are distributed over the table we simply check
which are the 3D coordinates that are associated to the centroid of the detected blobs.

The situation is quite different for the cavities since there are not 3D coordinates asso-
ciated to their centroids or the coordinates correspond to a point that is inside the sphere.
What we do then is to average the coordinates of all the points that are in a neighborhood
of where our cavity should be. We discard all the points that exceed a certain distance from
the camera, hereby averaging only the points that are on the surface of the sphere.

Currently, we do not obtain the 3D coordinates of the piece that the Picker holds when
it shows it to the camera.

5.3.4. Obtaining the similitude between shapes

Finally we describe the technique we employ to compare shapes and detected blobs. The
purpose is to extract a magnitude that tells how similar they are. We would also like to
know the rotation of the piece so we can grab and insert it in an appropriate manner. We
have tested some options like feature matching via SURF and SIFT. However, this does not
yield satisfactory results since the detected features are not consistent enough. Finally we

5https://openkinect.org/wiki/Main_Page

70

https://openkinect.org/wiki/Main_Page

have opted for a less sophisticated but very consistent algorithm.
We have gathered a set of patterns that reproduce the shape of the base with greatest

area of our pieces. These templates are shown in figure 5.9. We compare each of these
patterns with each of the detected pieces. To do so, we scale them so they have roughly the
same area. Then we keep rotating the template and overlapping it to the shape. We count
the number of pixels that differ (the error). The rotation angle that has the least quantity
of errors associated is the optimum angle for that piece and shape. The most likely shape
for a particular piece (without considering yet other pieces and the scale matrix technique
described in section 4.2.2) is the one that has the smallest error in the optimum angle. The
optimum angle indicates the rotation of the piece. We perform two optimizations in order
to make this process quicker:

• We compare each piece with only the relevant shapes. For example, among the yellow
pieces there are a cross and a circular sector. Therefore, a detected yellow piece should
be compared only with the cross and with the circular sector.

• Several pieces have simmetries that make unnecessary to cover angles between 0 and
360 degrees. For example, for the cross it has sense to only consider angles between 0
and 90 degrees.

Figure 5.9: Here we show the shapes of the pieces we have at our disposal. From left to right and
from top to bottom, we have each one as CircularSector, Cross, Pentagon, Star5, Star6,
Star8, Trapezium, Trapezoid, Triangle, Hexagon

.

Figure 5.10 shows an example application that tries to find the most likely shape and
the optimum angle for some piece detected via segmentation.

Figure 5.10: Example application that shows the results of the matching algorithm. The center
image is the detected shape. At the left we have the most probable template shape and, at the right,
how this template looks when rotated at the optimum angle.

Our similitude value is calculated as follows:

simij ← 1− errors(i, j)

πr.2
(5.1)

r is radius of the circumference that contains both the template and the detected shape
once they are scaled. For this reason, the maximum error is the area of the circumference

71

and πr.2 is a normalization quantity. Therefore, simij ∈ [0, 1], and its value satisfies the
requirements of the similitude function described in section 4.2.2.

However, in practice we have seen that this measure is somewhat “benevolent” with
shapes that, to our eyes, are clearly different and should receive a much lower similitude
value. Figure 5.8, although presented in a different context, is a great example of this.
When we took that image we obtained the following similitudes:

• With the Pentagon: 0.9159

• With the Trapezium: 0.8202

• With the Trapezoid: 0.6816

We would expect a much higher difference between the similitudes to the Pentagon
and the Trapezium. If we assigned an orientative probability to each shape in a way that
it is proportional to the similitude (again, we are not considering other pieces nor matrix
scaling), we would obtain {0.3788, 0.3392, 0.28192}, respectively. For this very reason, we
define an alternative measure of the similitude:

sim′ij ← simp
ij , p ≥ 1 (5.2)

Raising the similitude to a quantity greater than 1 accentuates the differences between
high similitudes. In more precise terms, it compresses the low similitudes and expands the
high similitudes (a similar idea is used in image processing for image equalization and in
gamma correction). For p = 4, we would obtain the following alternative similitudes:

• With the Pentagon: 0.7037

• With the Trapezium: 0.4526

• With the Trapezoid: 0.2158

And the orientative probabilities would be {0.5129, 0.3298, 0.1573}, respectively. This
seems much more reasonable. An even higher p could, arguably, lead to more intuitive
probabilities.

Algorithm 6 presents the whole procedure in a more formal way.

5.4. World interface

This section is devoted to discuss how we have implemented the actions of the robotic
arms. We have established a difference between the actions executed by the Picker and
the actions executed by the Catcher.

IRI WAM Catcher

The Catcher has the sphere attached as an end-effector. Its mission is to show the relevant
cavity to the camera and make the insertion operation easier for the Picker. This has lead
us to implement and action called AssumePose. It simply receives the qualitative name
of the desired pose. The Catcher moves and tries to situate the end-effector accordingly.
The pose name can be either Neutral or one of the names of the cavities they intend
to make available for the Picker. For example, invoking AssumePose(Neutral) would
instruct the Catcher to adopt a pose in which it is not an obstacle for the other robot
or for obtaining a clear view of the table from the camera’s perspective. Alternatively,

72

Algorithm 6 Shape comparison procedure

procedure Compare(c1, c2,∆θ, θmax) . Input: contours, θ resolution and maximum θ
c′1 ← Scale(c1) . Scale first contour. This is the template.
c′2 ← Scale(c2) . Scale second contour so Area(c′1) ≈ Area(c′2)
e←∞ . Minimum error until now
θopt ← None . Optimum angle
for θ ← 0, θ < θmax, θ ← θ + ∆θ do

M1 ← EmptyBinaryCanvas()
M2 ← EmptyBinaryCanvas()
DrawFilledRotatedContour(c′1,M1, θ)
DrawFilledContour(c′2,M2)
Mdifferent ←M1 xor M2 . Sets to 1 the different pixels, and to 0 the equal ones
if CountNonZero(Mdifferent) < e then

e← CountNonZero(Mdifferent)
θopt ← θ

end if
end for
sim← 1− e

π·r2 . r is a parameter of the algorithm (related to canvas size)
(Optional) sim← simp . This step can be ommited or delayed
return sim, θopt

end procedure

AssumePose(Triangle) would tell the Catcher to move the toy sphere to a location
where the Triangle cavity is facing upwards and the camera has a clear view of it.

We have made sure that, whenever we order the robot to show a particular cavity, it
centers the sphere roughly in the same points, and that it only changes its orientation. This
is a requirement of the cavity detection strategy described in section 5.3.2.

In order to guarantee the required precision and avoid slight changes that would harm
the cavity detection, adequate pre-computed values of the robot joints has been stored in
a dictionary for each pose. We have checked that all the cavities can be detected correctly.
When the action is invoked, the node only has to lookup the joints that are associated to
the requested pose in the dictionary and move the robot so it assumes the corresponding
joint values.

The action has been implemented in a node called iri wam catcher actions, and it
requires the joints move service from the IRI WAM controller to work. As a configuration
option, our node accepts the maximum velocity at which we want the robot to move. It
reads the precomputed joints values from a file when executed. It goes without saying that
this file can be update if necessary.

IRI WAM Picker

The Picker supports an AssumePose as well, although with a more limited set of possi-
bilities: it can be used to adopt Neutral position (same concept than before) or Show
position, intended to perform a closer look of a piece that has already been picked by the
robot.

The other important actions is PickOrPlacePiece, which has multiple purposes. It
receives the following information as a goal:

• centroid, a 3D point (more specifically, a geometry msgs/Point3DStamped message.
It is the location where the gripper should pick or place a certain piece. Care should

73

be taken when specifying the frame id of the header (this is the ID of the frame of
reference of the points in which the point coordinates are measured). If the frame
of reference is that of the Kinect, it is important that the transformation between
the Kinect and the robot’s frame of reference is defined (see more about geometric
transformations in section 4.1.1).

• pick, a boolean variable that tells if the robot should pick or leave a piece.

• erratic, a boolean variable that tells the robot to perform additional erratic move-
ments after having reached the grasp/ungrasp position. The idea behind this feature
is to increase the probability of inserting the pieces into the sphere. The precision
required to achieve this feat is quite high and we think that some erratic movement
can be beneficial.

This action depends on the inverse kinematics module from the IRI to work since it
needs to know how to reach the grasping/ungrasping point. Not just that: the actions also
computes a pre(un)grasp point that is located at a fixed distance above the grasp/ungrasp
point. This pre(un)grasp point is an intermediate point whose purpose is to force that the
robot moves the gripper to the grasping/ungrasping position in a straight line from above
(approximately).

This package is similar in many aspects to the iri wam generic pickorplace package
from the IRI, and indeed we would have used this one if it was not because we also wanted
a feature to move erratically.

We can see an example of how the two robots perform cooperatively at figure 5.11.

74

Figure 5.11: Insertion of a piece in the sphere. Here we can see the Catcher exposing the
triangle cavity and the Picker approaching the sphere in order to insert the piece. To do that we
have invoked the PickOrPlace action with pick set to false.

75

6
Experiments and conclusions

In this chapter we cover the experimentation process and present our conclusions about the
whole project.

6.1. Description of the experimentation process

We wanted to test several ideas. The first is how well performs the entropy when dealing
with contingencies. In our case, these contingencies could be present in the form of pieces
that have been poorly picked (or not picked at all). We also wanted to see how well we
could control how risky were the decisions taken by the planner based on the tuning of the
operator’s costs and the minimum required similitude for inserting a piece without feedback.
The effectiveness of the matrix scaling technique is also under our scope. For this this reason
we propose the following experiments:

• Test with a single piece. We shall choose one of the pieces and see how the whole
system works. We want to check how many observations are performed before the
robots act and if this number of observations reduce the uncertainty about the piece
location and rotation satisfactorily. This experiment should also expose how well the
actuation and perception parts of our work perform.

• Test with a piece from each color. Theoretically the whole system should work
in a very similar way. There is not uncertainty about the identity of each blob since
the colour already gives them away. Even so we want to test this in practice, and this
is the logical step before continuing with more complex experiments.

• Test with several pieces from the same colour. The aim of this experiment is
to put into practice the matrix scaling technique. It should also provide insight on
how well we can control the tendency of the planner to ask for feedback with different
operator’s costs and the suitability of the entropy for this matter.

• Testing with mixed colours and several pieces per colour. The most com-
plex version of the problem. This experiment addresses all the previous elements
simultaneously.

76

6.2. Results

While we did not have the opportunity of performing all the experiments in their full extend,
we still could take some notes about the behaviour of the planner under at least two different
circumstances.

Test with a single piece

When testing the whole system with a single piece we can tell the following:

• How many observations will the system perform before acting. Naturally, the number
depends on the parameters ρ, on the tolerance δ and on the maximum allowable
uncertainty about the estimation ε. When These two last values fixed the minimum
number of observations while ρ actually had influence on how many extra observations
would be performed after reaching the minimum.

• Modifying the minimum similitude bmin to 0 or 1 we were able to force the system to
prompt the user for feedback or to always take the risky decision of inserting the piece
without feedback. Setting bmin to an intermediate value would lead to a compromise.
Certain times the Picker would grab a piece precariously. After this, showing it
to the camera would yield a low similitude value. Even if it is the only piece of
the problem, the bmin threshold is not reached and the planner prompts the user for
feedback anyway. Alternatively, when the grasp is good, the similitude is high and
the system does not ask for feedback. We think that picture 6.1 is very illustrative in
this matter.

• Other than that we were able to test how the system performed in terms of perception
and actuation. The weakest part is the insertion of the piece in the sphere since it
requires great precision. The piece alignment is good. The Picker tries to insert
it with the correct orientation. However, small displacements made that the piece
did not fall completely inside the sphere. A small push from the nearest person was
required.

6.2.1. Test with just one piece per colour

The test with only one piece per colour was pretty much like executing several tests with
a single piece. The segmenter did not have any problem identyifing and labeling the blobs
correctly. This test allowed us to see that the system was able to handle several pieces
correctly.

6.3. Final regards

We wanted to test a system that performs both symbolic and geometrical planning. The
geometrical planning part is not evidenced as the planning of paths or trajectories that avoid
obstacles since the volume in which the robots have to move is mostly free of obstacles and
we can avoid collisions between them with a careful selection of methods and task ordering.

Instead the geometrical constraints are reflected in the need of conducting observation
actions. Not only that, the planner is aware that these observations are noisy and that it
has to use many of them in order to estimate the desired magnitude correctly. While the

77

Figure 6.1: Comparison between a good grip (left) and a bad grip (right). The similitudes between
the detected blobs in both cases and the triangle shape were, respectively, 0.78 and 0.45. Therefore,
a value of bmin = 0.5 would successfully distinguish each situation and ask for feedback accordingly.

operator does not deal directly with the numeric values of the coordinates and the rotations
(it does not need them for anything) it knows that these variables exist and that enough
observations are required in order to calculate a good estimation. The locations of the pieces
are required in order to grasp them, and their rotations are needed so we can insert them
in the sphere successfully. This contrasts with a symbolic domain that always assumes that
the world state is known and does not care about geometrical restrictions whatsoever (e.g.
the well-known “blocks-world” problem).

Also we have introduced several ideas that we think can be interesting for future work
in this line:

• The use of matrix scaling for stablishing bijections between sets of equal cardinalities
based on a similitude function between elements.

• The use of the entropy of discrete states to establish a decision criterion based on
uncertainty. In our case we have used this to decide whether to ask for feedback nor
act without supervision.

Of course, we also recognize the limitations and possible improvements of our work,
namely:

• The implementation is highly experimental. In the future we would like to take
advantage of the latest advancements in planning engines.

• Although they are not in the main scope of our project, the perception and actiation
techniques can, of course, be improved. The Picker acts in an open loop, deciding
where to go based just on the calibration between the robot and the camera.

As an additional idea for future work, and from a more technology-oriented point of view,
we would like to implement an interface between one of the latest planners (e.g. PROST
or Gourmand) and ROS. We think that a standarized API for symbolic planning in ROS
would indeed be beneficial for encouraging more research and experimentation in the area
of planning. Currently there exists a package with a similar idea in the ROS catalogue

78

of packages1. However it is slightly outdated and for an old version of ROS. Even so, it
provides very interesting features like a monitoring GUI (Graphical User Interface).

All in all, we hope that some, if not all, of our experiences and idea may be useful for
future work on this or related topics.

1http://wiki.ros.org/symbolic_planning

79

http://wiki.ros.org/symbolic_planning

Appendices

80

A
Proof of mathematical expresions

A.1. Optimality of the mode estimator based on the sample
mean

The estimator based on the sample mean is clearly unbiased (i.e. E(X̂n) = X̄ ∀n). We
demonstrate here that the estimator accomplishes the Cramér-Rao bound with equality.

First let us remind the inequality:

var(X̂) ≥ 1

I(X̂)
, I(X̂) = E

[(
∂`(X; X̄)

∂X̄

)2
]

In this expression, `(X; X̄) is the natural logarithm of the likelihood function, that
measures how likely is a certain set of observations for the given mode X̄. In our case,
the likelihood function is the product of the Gaussian PDFs (since the observations are
independent) particularized to each one of the observations. This means that:

`(X; X̄) = log

(
1√

(2πσx)n

)
+

n∑
i=1

(Xi − X̄)2

2σ2
x

where n is the number of observations. Then:

∂`(X; X̄)

∂X̄
= −

n∑
i=1

Xi − X̄
σ2
x(

∂`(X; X̄)

∂X̄

)2

= −
n∑
i=1

n∑
j=1

Xi − X̄
σ2
x

Xj − X̄
σ2
x

= −
n∑
i=1

n∑
j=1

XiXj −XiX̄ −XjX̄ + X̄2

σ4
x

The last step is to compute the expected value of the former expression:

E

[(
∂`(X; X̄)

∂X̄

)2
]

= −
n∑
i=1

n∑
j=1

E(XiXj)− E(Xi)X̄ − E(Xj)X̄ + X̄2

σ4
x

=

(n2X̄2 + nσ2
x)− n2X̄2 − n2X̄2 + n2X̄2

σ4
x

=
n

σ2
x

Therefore, var(X̂2) ≥ σ2
x
n . We have already seen in equation 4.4 that this lower bound

is the variance of the sample mean estimator. Therefore, the Cramér-Rao bound is reached
with equality and we are done.

81

A.2. Proof of expression 4.6

In equation 4.6 we saw that the optimum way of updating an estimator that follows a
Gaussian distribution with another Gaussian observation is:

X̂new =
σ2
obs

σ2
obs + σ2

current

X̂current +
σ2
current

σ2
obs + σ2

current

Xobs

This is obtained as the result of a simple optimization problem. We suposse a generic
weight of α for the old estimator, and a weight of 1−α for the second (it must be this way
or the new estimator would be biased):

X̂new = αX̂current + (1− α)Xobs

We want the value of α that minimizes the variance of the new estimator:

σ2
new = α2σ2

current + (1− α)2σ2
obs

We calculate for which α the derivative is 0:

dσ2
new

dα
= 2ασ2

current + 2(1− α)σ2
obs = 0

This is a simple linear equation. We solve it for α to obtain:

α =
σ2
obs

σ2
obs + σ2

current

, 1− α =
σ2
current

σ2
obs + σ2

current

and we are done.

A.3. Proof of expression 4.8

This result comes as a direct consequence of Proposition 4 from [Kaelbling and Lozano-Pérez, 2013].
The authors were interested in planning backwards from the goal, so they have come to the
following result (adapting the authors’ notation to ours):

εcurrent = 1− erf

(√
erf−1 (1− εnew)2 − δ2

2σ2
obs

)
We can obtain equation 4.8 just rearranging the terms of the former expression and

isolating εnew.

A.4. Proof of expression 4.10

First we obtain the probability of the estimation being inside a δ-sphere centered on the
mode. This can be obtained integrating the multivariate Gaussian PDF in spherical coor-
dinates: ∫ π

0
dθ

∫ 2π

0
dφ

∫ δ

0
dr

1√
(2π)3σ3

xyz

exp

(
− r2

2σ2
xyz

)
r2 sin θ

We can solve in a single step the two outer integrals and obtain:

4π√
(2π)3σ3

xyz

∫ δ

0
dr exp

(
− r2

2σ2
xyz

)
· r2

82

At this point we can apply integration by parts, with dv = r · exp
(
− r2

2σ2
xyz

)
and u = r.

After rearranging terms we would get the following:

2√
π

∫ δ√
2σxyz

0
exp

(
−τ2

)
dτ − 2√

π

δ√
2σxyz

exp

(
−δ2

2σ2
xyz

)
In the previous expression:

2√
π

∫ δ√
2σxyz

0
exp

(
−τ2

)
dτ = erf

(
δ√

2σxyz

)

Therefore we have that:

Pr(dist((X̄, Ȳ , Z̄), (X̂, Ŷ , Ẑ)) < δ) = erf (x)− 2√
π
x · exp

(
−x2

)∣∣∣∣
x= δ√

2σxyz

= g(
δ√

2σxyz
)

And:

Pr(dist((X̄, Ȳ , Z̄), (X̂, Ŷ , Ẑ)) < δ) = 1− g(
δ√

2σxyz
)

At this point, we are done.

83

References

[Beetz et al., 2011] Beetz, M., Klank, U., Kresse, I., Maldonado, A., Mosenlechner, L., Pangercic, D., Ruhr,
T., and Tenorth, M. (2011). Robotic roommates making pancakes. In Humanoid Robots (Humanoids),
2011 11th IEEE-RAS International Conference on, pages 529–536. IEEE.

[Bohlin and Kavraki, 2000] Bohlin, R. and Kavraki, L. E. (2000). Path planning using lazy prm. In Robotics
and Automation, 2000. Proceedings. ICRA’00. IEEE International Conference on, volume 1, pages 521–
528. IEEE.

[Bonet and Geffner, 2003] Bonet, B. and Geffner, H. (2003). Labeled RTDP: Improving the convergence of
real-time dynamic programming. In ICAPS, volume 3, pages 12–21.

[de Silva et al., 2013] de Silva, L., Pandey, A. K., Gharbi, M., and Alami, R. (2013). Towards combining
htn planning and geometric task planning. arXiv preprint arXiv:1307.1482.

[Erol et al., 1996] Erol, K., Hendler, J., and Nau, D. S. (1996). Complexity results for HTN planning.
Annals of Mathematics and Artificial Intelligence, 18(1):69–93.

[Erol et al., 1995] Erol, K., Nau, D. S., and Subrahmanian, V. S. (1995). Complexity, decidability and
undecidability results for domain-independent planning. Artificial Intelligence, 76(1):75–88.

[Fikes and Nilsson, 1972] Fikes, R. E. and Nilsson, N. J. (1972). Strips: A new approach to the application
of theorem proving to problem solving. Artificial intelligence, 2(3):189–208.

[Ghallab et al., 2014] Ghallab, M., Nau, D., and Traverso, P. (2014). The actor’s view of automated planning
and acting: A position paper. Artificial Intelligence, 208:1–17.

[Hockstein et al., 2007] Hockstein, N., Gourin, C., Faust, R., and Terris, D. (2007). A history of robots:
from science fiction to surgical robotics. Journal of robotic surgery, 1(2):113–118.

[Ilghami and Nau, 2003] Ilghami, O. and Nau, D. S. (2003). A general approach to synthesize problem-
specific planners. Technical report, DTIC Document.

[Ilghami et al., 2002] Ilghami, O., Nau, D. S., Munoz-Avila, H., and Aha, D. W. (2002). Camel: Learning
method preconditions for htn planning. In AIPS, pages 131–142.

[Kaelbling and Lozano-Pérez, 2011] Kaelbling, L. P. and Lozano-Pérez, T. (2011). Hierarchical task and
motion planning in the now. In Robotics and Automation (ICRA), 2011 IEEE International Conference
on, pages 1470–1477. IEEE.

[Kaelbling and Lozano-Pérez, 2013] Kaelbling, L. P. and Lozano-Pérez, T. (2013). Integrated task and
motion planning in belief space. The International Journal of Robotics Research.

[Keller and Eyerich, 2012] Keller, T. and Eyerich, P. (2012). PROST: Probabilistic Planning Based on UCT.
In Proceedings of the 22nd International Conference on Automated Planning and Scheduling (ICAPS
2012), pages 119–127. AAAI Press.

[Kolobov et al., 2012] Kolobov, A., Mausam, and Weld, D. (2012). LRTDP vs. UCT for online probabilistic
planning. In AAAI Conference on Artificial Intelligence.

[LaValle, 1998] LaValle, S. M. (1998). Rapidly-exploring random trees a new tool for path planning.

[LaValle, 2006] LaValle, S. M. (2006). Planning algorithms. Cambridge university press.

84

[Lozano-Pérez and Kaelbling, 2014] Lozano-Pérez, T. and Kaelbling, L. P. (2014). A constraint-based
method for solving sequential manipulation planning problems. In Intelligent Robots and Systems (IROS
2014), 2014 IEEE/RSJ International Conference on, pages 3684–3691. IEEE.

[Mart́ınez et al., 2014a] Mart́ınez, D., Alenyà, G., Jimenez, P., Torras, C., Rossmann, J., Wantia, N., Aksoy,
E. E., Haller, S., and Piater, J. (2014a). Active learning of manipulation sequences. In Robotics and
Automation (ICRA), 2014 IEEE International Conference on, pages 5671–5678. IEEE.

[Mart́ınez et al., 2014b] Mart́ınez, D., Alenya, G., and Torras, C. (2014b). Finding safe policies in model-
based active learning.

[Martınez et al., 2015] Martınez, D., Alenya, G., and Torras, C. (2015). V-min: Efficient reinforcement
learning through demonstrations and relaxed reward demands.

[Mart́ınez et al., 2016] Mart́ınez, D., Alenya, G., and Torras, C. (2016). Relational reinforcement learning
with guided demonstrations. Artificial Intelligence.

[Meyer, 1992] Meyer, F. (1992). Color image segmentation. In Image Processing and its Applications, 1992.,
International Conference on, pages 303–306. IET.

[Nau et al., 1999] Nau, D., Cao, Y., Lotem, A., and Munoz-Avila, H. (1999). Shop: Simple hierarchical
ordered planner. In Proceedings of the 16th international joint conference on Artificial intelligence-Volume
2, pages 968–973. Morgan Kaufmann Publishers Inc.

[Nau et al., 2003] Nau, D. S., Au, T.-C., Ilghami, O., Kuter, U., Murdock, J. W., Wu, D., and Yaman, F.
(2003). Shop2: An HTN planning system. J. Artif. Intell. Res.(JAIR), 20:379–404.

[Nau et al., 2015] Nau, D. S., Ghallab, M., and Traverso, P. (2015). Blended planning and acting: Prelimi-
nary approach, research challenges. In AAAI, pages 4047–4051.

[Quigley et al., 2009] Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
and Ng, A. Y. (2009). Ros: an open-source robot operating system. In ICRA Workshop on Open Source
Software.

[Sanner, 2010] Sanner, S. (2010). Relational dynamic influence diagram language (RDDL): Language de-
scription. http://users.cecs.anu.edu.au/~ssanner/IPPC_2011/RDDL.pdf.

[Silver and Veness, 2010] Silver, D. and Veness, J. (2010). Monte-carlo planning in large POMDPs. In
Advances in neural information processing systems, pages 2164–2172.

[Sinkhorn, 1964] Sinkhorn, R. (1964). A relationship between arbitrary positive matrices and doubly
stochastic matrices. The annals of mathematical statistics, 35(2):876–879.

[Somani et al., 2013] Somani, A., Ye, N., Hsu, D., and Lee, W. S. (2013). Despot: Online POMPD planning
with regularization. In Advances In Neural Information Processing Systems, pages 1772–1780.

[Stone, 2004] Stone, W. L. (2004). Robotics and automation handbook, chapter 1. CRC press.

[Şucan et al., 2012] Şucan, I. A., Moll, M., and Kavraki, L. E. (2012). The Open Motion Planning Library.
IEEE Robotics & Automation Magazine, 19(4):72–82. http://ompl.kavrakilab.org.

85

http://users.cecs.anu.edu.au/~ssanner/IPPC_2011/RDDL.pdf
http://ompl.kavrakilab.org

	Contents
	List of Figures
	List of Tables
	Code snippets
	I Project management documentation
	Scope and contextualization
	Introduction
	Contextualization
	Related concepts
	Project justification
	Involved actors

	Problem formulation and objectives
	Scope
	Potential future applications

	State of the art
	Task planning
	Motion planning
	Related work

	Methodology and rigour
	Methodology
	Monitoring tools

	Limitations and risks
	Limitations
	Risks

	Planning
	Schedule baseline and work breakdown structure
	Work breakdown structure
	Milestones
	WBS dictionary

	Action plan

	Budget and sustainability
	Budget
	Cost identification and estimation
	Budget control

	Sustainability
	Economic sustainability
	Social sustainability
	Environmental sustainability

	II Technical report
	Theoretical concepts
	Relevant terms
	Rigid geometric transformations
	Forward kinematics
	Inverse kinematics

	Mathematic formalism
	Estimation of magnitudes based on noisy observations
	Assignment of discrete probabilities with matrix scaling

	Planning
	Approaches for planning for robotic agents
	Hierarchical Task Network formalism
	Definition of the world state
	Operators

	Implementation
	Overview
	Introduction to ROS
	LabRobòtica philosophy
	Planning engine: Pyhop
	Implemented modules
	Source code

	Simulation assets
	Perception pipeline
	Filtering
	Segmentation
	Obtaining the 3D centroids of pieces and cavities
	Obtaining the similitude between shapes

	World interface

	Experiments and conclusions
	Description of the experimentation process
	Results
	Test with just one piece per colour

	Final regards

	Appendices
	Proof of mathematical expresions
	Optimality of the mode estimator based on the sample mean
	Proof of expression 4.6
	Proof of expression 4.8
	Proof of expression 4.10

	References

