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PARALLEL ROBOTS WITH UNCONVENTIONAL JOINTS TO ACHIEVE
UNDER-ACTUATION AND RECONFIGURABILITY

Patrick Grosch

Abstract

The aim of the thesis is to define, analyze, and verify through simulations and practical im-
plementations, parallel robots with unconventional joints that allow them to be under-actuated
and/or reconfigurable. The new designs will be derived from the:

1. 6SPS robot (alternatively 6UPS or 6SPU, depending on the implementation) when
considering the spatial case (i.e., robots with 3 degrees of freedom of rotation and 3
degrees of freedom of translation).

2. S-3SPS robot (alternatively S-3UPS or S-3SPU, depending on the implementation)
when considering spherical robots (i.e., robots with 3 degrees of freedom of rotation).

In both cases, we will see how, through certain geometric transformations, some of the
standard joints can be replaced by lockable or non-holonomic joints. These substitutions permit
reducing the number of legs (and hence the number of actuators needed to control the robot),
without losing the robot’s ability to bring its mobile platform to any position and orientation (in
case of a spatial robot), or to any orientation (in case of a spherical robot), within its workspace.

The expected benefit of these new designs is to obtain parallel robots with:

1. larger working spaces because the possibility of collisions between legs is reduced, and the
number of joints (with their intrinsic range limitations) is also reduced;

2. lower weight because the number of actuators and joints is reduced; and

3. lower cost because the number of actuators and controllers is also reduced.

The elimination of an actuator and the introduction of a motion constraint reduces in one the
dimension of the space of allowed velocities attainable from a given configuration. As a result,
it will be necessary, in general, to plan maneuvers to reach the desired configuration for the
moving platform. Therefore, the obtained robots will only be suitable for applications where
accuracy is required in the final position and a certain margin of error is acceptable in the
generated trajectories.
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1
Introduction

1.1 Motivation

A serial robot is a set of rigid bodies, or links, connected in series through actuated joints, which

are typically either revolute (i.e., rotational) or prismatic (i.e., translational). One extremity of

this serial chain of links is called the base and the other the end-effector. In a parallel robot,

the end-effector (also known in this case as the moving platform) is connected to the fixed base

through several serial chains. Most of the joints in a parallel robot are not actuated, and many

of these passive joints have several degrees of freedom (DoF) (e.g., spherical, universal, and

planar joints).

Innocenti et al. [59] and Dasgupta et al. [20] give an introductory overview of the different

parallel robot architectures. The origin of parallel robots is attributed to Gough and Stewart.

Their work led to what is now known as The Gough-Stewart platform [36, 99]. In 1965,

Stewart formalized the concepts that define a parallel robot (Fig. 1.1), although there are

previous patents describing equivalent mechanical concepts (e.g., the patent filed in 1931 for

a mobile platform to support the audience in a movie theater [48], Fig. 1.2). Since then,

many developments and studies have been carried out in this area. The set of articles in

references [73] and [18] permit to establish a good starting point where to find solutions to the

computation of the direct and inverse kinematics, the configuration space and its singularities,

the manipulability and accuracy, etc., of different parallel robots.

A fully parallel robot (FPM) is a particular parallel robot that includes as many serial chains

(known as legs) as the number of DoF of its moving platform. Moreover, in this case, every

leg possesses only one actuated joint and no link of the legs can be linked to more than two

bodies [76,91].

The most popular spatial FPM is the telescoping-leg hexapod (Stewart-Gough platform)

used in most motion simulators. This robot is also said to be a 6SPS robot, meaning that each
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Figure 1.1: Gough platform at birth in 1954 (image from [36,99]).

Figure 1.2: Gwinnett Amusement Device 1931 (US Patent 1,789,680, image from [48]).

of its 6 legs consists of a prismatic joint (P joint) connected to the fixed base and the moving

platform through passive spherical joints (S joints). The underline is commonly used to identify
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Figure 1.3: The Agile Eye is a 3-DoF 3RRR spherical parallel manipulator (images from [35]).

Figure 1.4: The 3UPU spherical wrist manipulator (image from [24]).

the actuated joint.

The most popular spherical FPM probably is the 3RRR robot, in which each leg is com-

posed of three revolute joints (R joints) whose axes pass through the center of spherical mo-

tion [35] (Fig. 1.3). The 3UPU robot also behaves as a spherical robot when the revolute

axes of the universal joints (U joints) are properly arranged [24] (Fig. 1.4). Nevertheless, the

spherical counterpart of the Stewart-Gough platform is the S-3SPS robot where the moving
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Figure 1.5: The S-3SPS robot, spherical counterpart of the Stewart-Gough platform (image
from [19]).

platform is articulated with respect to the fixed base through a passive spherical joint and three

SPS legs connect the base and the platform in parallel [19] (Fig. 1.5).

Throughout this thesis, we will use as a reference of spatial and spherical parallel robots the

6SPS and S-3SPS robots, respectively. In other words, we will limit our study to parallel robots

with SPS legs. Since these legs contain a redundant DoF (the rotation about the axis defined

by the centers of the two spherical joints), they can be substituted by UPS or SPU legs, which

is a common practice in most implementations.

FPM are used in applications where accuracy, stiffness or high speeds and accelerations are

required [77]. However, one of its main drawbacks is a relatively small workspace compared to

their serial counterparts. This is due mainly to the existence of potential collisions between the

different elements of the robot and working range of the joints. Another feature which seriously

reduces the workspace of fully-parallel manipulators is the existence of singularities. It is well

known that two Jacobian matrices appear in the kinematic relations between the joint-rate and

the Cartesian-velocity vectors, which are called the "inverse kinematics jacobian" and the "direct

kinematics jacobian" matrices. The study of these matrices allows to define the parallel and the

serial singularities, respectively [34]. They appear when two solutions of the direct kinematics

(respectively inverse kinematics) meet. Parallel singularities generally appear inside the robot’s

workspace thus highly complicating its control unless the workspace is artificially reduced to

leave these singularities out of it.

In this thesis, we propose new parallel robots that can be seen as parallel robots with SPS
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legs where some of their joints have been replaced by non-holonomic or lockable joints. With

this substitutions we will be able to reduce the number of legs, and hence the number of

actuators, without reducing the dimension of the robot’s configuration space and retaining, at

the same time, some of the aforementioned advantages that make parallel robots so interesting.

Reducing the number of actuators has important consequences including a reduction in robot’s

weight and cost, and in the possibility of collisions between legs. This opens the opportunity of

enlarging the robot’s workspace. Unfortunately, we will see how this reduction in the number of

actuators makes these new robots unable to follow arbitrary trajectories in their configuration

spaces, thereby increasing the complexity of their motion planning algorithms as they have to

perform, in general, maneuvers to reach the desired pose.

The limitation to follow arbitrary trajectories is not a problem for most applications. Robots

usually require a high positioning accuracy in some locations defined by the task to be per-

formed, while the path connecting them can run inside predetermined margins. For example,

in pick-and-place tasks, while high accuracies are needed in the initial and final configurations,

the exact trajectory followed by the robot is unimportant, or is limited to a wide range.

We will see how replacing ordinary joints by non-holonomic or lockable joints leads to

under-actuated or on-line reconfigurable robots, respectively. In both cases, the resulting robots

have, in general, a larger workspace at a lower cost. The price to pay is a reduction in speed

as maneuvers have to be introduced in general to either approximate arbitrary trajectories or to

reach arbitrary configurations. The design of the motion planning algorithms to automatically

generate these maneuvers is the major challenge faced during the development of this thesis.

To better understand the complexity of the problem, next we briefly introduce the kind of

robots generated by the aforementioned substitutions.

1.1.1 Reconfigurable robots with lockable joints

A lockable revolute joint (bR) can be seen as a standard R plus a binary actuator (usually

implemented using a clutch) that enables or disables the mobility of the joint at will.

If a leg is removed in a parallel robot, the moving platform is free to move and the remaining

passive joints in the platform are also free to move within certain ranges. Then, if any one of

these joints is locked, the system stiffness is recovered, but the moving platform would have

fewer DoF with respect to that of the initial robot. As an alternative, instead of only locking

one of the remaining passive joints, we can lock some of them alternatively. The resulting robot

will still have one DoF less, but depending on which joints are locked and released, the robot’s

architecture changes.

If the lockable joints are properly placed, the union of the mobility of all possible architec-

tures that can be generated will equal that of the original parallel robot. In other words, the
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x̂

ẑ

Disengaged clutch

x̂

ẑ

Engaged clutch

Figure 1.6: The series connection of a lockable revolute joint (bR), implemented using a clutch,
and a ordinary revolute joint (R) behaves as a universal joint (U) if the clutch is disengaged
(left), or as a revolute joint (R) if it is engaged (right).

robot may move in the same workspace as that of the original robot despite having one actuator

less. Now, in general, the robot will have to pass through different configurations of locked and

released joints to reach a desired configuration. As with non-holonomic joints, maneuvers need

to be planned to reach arbitrary configurations.

As an example, consider the series connection of a lockable revolute joint and a ordinary

revolute joint whose axes are perpendicular and intersecting in a point (Fig. 1.6). The first joint

is lockable which can be easily implemented using an electromechanical clutch, and the second

joint is passive. As a consequence, this joint behaves as a U if the clutch is disengaged, or as a

R if it is engaged.

The first part of this thesis is devoted to the study of the parallel robots resulting from

replacing the universal joint in their UPS legs by the aforementioned bRR set of joints. As

with the proposed non-holonomic joint explained below, this permits reducing the number of

legs. At least one bR per each leg substitution is needed to keep the robot away from collapsing,

but more are needed to enable full mobility using switching sequences.
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Figure 1.7: Non-holonomic spherical joint (nS).

1.1.2 Sub-actuated robots with non-holonomic joints

Let us considered the non-holonomic spherical joint shown in Fig. 1.7. It can be seen as a

standard spherical joint where a cylinder, free to rotate about its axis, is put in contact with the

sphere. According to the chosen reference frame centered on the sphere, the cylinder is placed

so that its rotating axis is parallel to the x-axis, and the contact point with the sphere intersects

the y-axis. Then, the possible sphere movements are as follows:

- it can rotate around the x-axis. As the sphere rotates about the x-axis, a rotation of the

cylinder is induced due to friction forces at the contact point.

- it can rotate around the y-axis, pivoting around the contact point. As no torque is gener-

ated on the cylinder axis, its orientation remains unaltered.

- it cannot rotate about the z-axis. Since the cylinder cannot rotate about the z-axis, the

friction forces at the contact point prevents the rotation of the sphere about this axis.
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Although the resulting "non-slip" contact only allows the sphere to rotate about the x or the y

axis, by combining both rotations, the sphere can attain an equivalent rotation about the z-axis.

For example, a rotation of π/2 radians about the x-axis, followed by a rotation of θ radians about

y-axis, and finally a rotation of −π/2 radians about the x-axis is clearly equivalent to a rotation

of θ radians about the z-axis.

If a conventional spherical joint in a parallel robot is substituted by such a joint, the possible

orientations between the two bodies this joint connects remain unconstrained, only the relative

velocities between them are limited because of this substitution. In other words, only the trajec-

tories connecting two arbitrary orientations between the two connected bodies are constrained.

This non-holonomic constrain also introduces reaction forces that can be used to reduce the

number of actuators, thus allowing designs having less actuators than the dimension of their

configuration spaces.

The second part of this thesis is devoted to the study of the parallel robots resulting from

replacing the spherical joint in their SPU legs by the aforementioned non-holonomic joint. This

permits reducing the number of legs, one per each substitution.

1.2 Previous work

To the best of our knowledge, at the beginning of the development of this thesis, there were

no previous results on under-actuated or reconfigurable parallel robots using non-holonomic or

lockable joints, respectively. Then, in absence of directly connected previous works, next we

summarize those ones that have been used, as a source of inspiration, during the development

of this thesis.

1.2.1 Precursors of robots with lockable joints

The use of lockable joints in robot designs is not common. A very small number of examples can

be found in the literature which can be categorized into the two groups described below.

One group uses lockable revolute joints that can be engaged with a single motor common to

all joints. Then, joints can be switched between locked or actuated state. It is a good strategy to

meet the design requirements of minimum weight by minimizing the number of motors and the

battery size. Within this group, we can find serial robots like the LARM clutched arm described

by Gu and Ceccarelli in [46, 47] (see Fig. 1.8), or like the hyper-redundant snake-like robot

presented by Zhu in [107] (see Fig. 1.9), which uses gears for transmission between modules.

Another two examples of hiper-redundant serial robots with lockable or clutched revolute joints

are the uni-drive modular robot [64] and the 3D-Trunk [87]. The first one, in contrast to the
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Figure 1.8: Example of serial robot with lockable revolute joints and only one motor. LARM
clutched arm conceptual design (top) and mechanical design (bottom) (images from [46]
and [47]).

one presented by Zhu, uses a flexible transmission shaft with clutches at each point of actuation

as shown in Fig. 1.10(a). The second one, depicted in Fig. 1.10(b), exploits the use of two pairs

of opposed tendons to generate torsion on all joints and, by unlocking the nth clutch, to generate

a rotation on the nth link.

The other group is represented by the serial robots using linear lockable links. This device

allows changing the robot’s link lengths and the orientation of the revolute pairs axis. They were

first proposed by Aghili and Parsa [1,2] [see Fig. 1.11 (top)]. This brings two main advantages:

it is possible to on-line expand the robot’s workspace [see Fig. 1.11 (bottom)], and to reduce

the robot’s dimensions for transportation.
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Figure 1.9: Example of serial robot with lockable revolute joints and only one motor. Modular
20-joints hyper-redundant serial robot propose by Zhu (image from [107]).

1.2.2 Precursors of robots with non-holonomic joints

We have just seen how designing a robot manipulator with fewer actuators than the dimension

of its configuration space —to reduce bulk, weight and cost— becomes feasible by introducing

lockable joints. Now, we will show how this is also possible by introducing non-holonomic

mechanical elements. Unfortunately, as with lockable joints, the mechanical advantages of these

non-holonomic designs are usually darkened by the complexity of their control. Considerable

effort has been made to clarify different aspects of non-holonomic mechanical systems [6]. A

challenge in control of these systems results from a limited applicability of the feedback control,

discovered by Brockett [10] and Lizárraga [72].

The joints of standard robots, either serial or parallel, implement lower kinematic pairs. An

alternative to these joints are non-holonomic joints, a mechanical concept probably used for the

first time in [67], which can be implemented using convex bodies rolling on spherical surfaces.

Two kinds of contacts have been considered: marble rolling, when the convex body can freely

roll in contact with the sphere without slipping [8], and rubber rolling, when the convex body

satisfies additionally a no-twist condition [68].

In the practical implementations of non-holonomic joints, the rolling convex body is usually

a disk implementing a marble rolling contact with the sphere. If the disk rolls upon the interior

surface of a spherical shell, the resulting joint is said to implement the Suslov constraint [104].

Alternatively, if the contact is performed on the outer surface of the spherical shell, the resulting
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(a) Top.

(b) Bottom.

Figure 1.10: Examples of two serial robots with lockable revolute joints and only one motor.
Schematics of the uni-drive modular robot propose by Karbasi (top) (image from [64]), and the
3D-Trunk wire-drive system proposed by Ning and Worgotter (bottom) (image from [87]).
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Figure 1.11: The RRR serial robot with lockable linear joints proposed by Aghili and Parsa.
Kinematics of the reconfigurable robot (top). Typical maneuver to change its link lengths
(bottom) (images from [1,2]).

joint is said to implement the Veselova constraint [7], the kind of non-holonomic joint used

throughout this thesis. Lower-mobility spatial parallel robots have become an active research

topic in the field of parallel robot during the last decade because of their simple structure, low

price and easy control. The dimension of the space of admissible velocities for the end-effector

of this kind of parallel robots is lower than six and, if singular configurations are excluded, equal
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Figure 1.12: The robotic wrist proposed by Stammers et al. (images from [98]).

to the dimension of the tangent space of the reachable manifold. The substitution of a standard

joint in a lower-mobility parallel robot by a non-holonomic joint with equivalent instantaneous

kinematics has dramatic consequences: while the dimension of the space of admissible velocities

for the end-effector remains the same, the dimension of the reachable space is increased. To

the best of our knowledge, this idea was first used by Ben-Horin and Thomas in [4], where

a three-legged parallel robot is proposed, where each leg is connected to the base through a

non-holonomic joint.

Non-holonomic constraints appear in multiple areas of robotics [22, 30, 52, 94], mainly

in those related to mobile robots (either terrestrial, outer-space, or underwater vehicles), or

the manipulation of objects with multiple contacts. In all of these cases the non-holonomic

restrictions are inherent. Angeles in [3], O’Reilly in [88], and more particularly Hennessey

in [49], give a general view on how to deal with problems involving non-holonomic constraints.

In particular, Hennessey presents an analysis of a unicycle moving on a sphere, an example

closely related to the non-holonomic spherical joint proposed in these thesis. The difference is

that in our case the moving element is the sphere and one of the control inputs affect only one

of the state variables.

The literature on the use of non-holonomic devices in the design of manipulators is limited

to few examples. For example, in [98], Stammers et al. present a robot wrist that can attain any

orientation with only two motors. This is achieved by means of a friction drive, using rollers

on a spherical ball to which the end effector is fixed, and by fixing the two motors to the arm.

The roller axes are perpendicular to each other, which means that rotate instantaneously around

the normal of the plane defined by them is not possible except by composition of rotations (see

Fig. 1.12).
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Figure 1.13: Conceptual design of a spherical Cobot (left) and a planar Cobot (right) based on
non-holonomic joints (images from [90]).
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Figure 1.14: Conceptual design of a 6-DoF Cobot Haptic Device based on non-holonomic joints
(image from [33]).
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Figure 1.15: Illustration of the four-joint manipulator with only two actuators proposed by
Nakamura et al.(left), and its implementation (right) (image from [84]).

Peshkin et al. [90] presented a group of haptic devices, named Cobot, with programmable

constraints generated by non-holonomic joints. The non-holonomic constraints are introduced

by rollers moving over different surfaces. The axis of rotation of each roller is adjustable, the

axis is normal tangent plane at the contact point surface-roller. Each Cobot differ in the type

of surface used. The spherical Cobot consist of a sphere with a joystick resting on three rollers.

The plannar Cobot is a single roller over a plane (see Fig. 1.13). The most interesting Cobot,

from this thesis point of view, is a 6-DoF FPM with architecture 6PSU, which uses the rollers

in contact with a continuous rolling cylinder to actuate the prismatic joint, the non-holonomic

pair is used as a continuous varying transmission (see Fig. 1.14).

Nakamura et al. [84] proposed a serial manipulator with n-joints which can reach any pose

in its n-dimensional configuration space with only two actuators. The joints of this manipulator

are coupled by non-holonomic devices, based on spheres and rollers, so that it reaches a desired

pose by following a path whose computation is algorithmically equivalent to maneuvering a car

with n-trailers (see Fig. 1.15).

More recently, in [4], Ben-Horin and Thomas proposed a three-legged parallel robot where

each leg is connected to the base through a sphere whose motion is constrained by a roller. This

parallel architecture permits to attain any position and orientation for the platform using only

three prismatic actuators. It can be said that this work triggered the part of research in this

thesis devoted to the use of non-holonomic joints in fully parallel robots.
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1.3 Organization of the thesis

We start in Chapter 2 with a digression that can be skip on a first reading. In this digression, we

take the possibility of substituting continuous actuators with binary ones to the limit. We actually

prove that a single motor is enough for a robot with 6PUS architecture to attain any pose in

its workspace. Two motion strategies to solve the path-planning problem for this particular

robot are proposed. Despite this robot was initially designed and analyzed as a pure intellectual

exercise to exemplify the possibility of using a single continuous actuator, we believe that it

could have practical interest in some applications with constraints on the robot’s weight and its

power consumption.

Chapter 3 is devoted to parallel robots with lockable joints. In this case the binary actuators

are clutches. The considered lockable joints behave as a universal joints if the clutch is released,

or as a revolute joint if it is engaged, as explained above. Due to its symmetry, an important

effort is devote to the analysis, control and implementation of a parallel robot consisting of four

bRRPS legs.

While the study of other designs of parallel robots involving the considered lockable joint

will closely follow the one presented in Chapter 3, the situation is much more complicated

when working with parallel robots having non-holonomic joints. This is why the following five

chapters of this thesis are devoted to parallel robots with this kind of joints, analyzing separately

the spatial and the spherical case.

Chapter 4 deepens in the aforementioned idea of generating under-actuated parallel robots

by substituting spherical pairs by non-holonomic spherical pairs. Particular attention is also

paid in this chapter to the practical implementation of non-holonomic joints. In Chapter 5,

the kinetostatic analysis of an under-actuated spatial parallel robot with only three actuators is

presented. This analysis is then used both in the design of this manipulator, and in its control,

presented in Chapter 6. The study of the under-actuated spherical parallel robot is done in

Chapters 7 and 8. In Chapter 7, first the kinematics and then the workspace of the robot are

analyzed. In Chapter 8, different path planners are developed, including one that can be used as

part of a controller. Finally, in Chapter 9, a recap of the contributions of the thesis and prospects

for future research are given.
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Full-mobility with only one continuous actuator

This chapter discusses the possibility of having an under-actuated parallel manipulator with

6PUS topology. The proposed device exploits the fact that, in some applications like work-tables

in CNC machine tools, the path between the initial and final poses of the mobile platform is not

assigned to reduce the number of actuators to only one. Part of the work presented in this

chapter appeared in [42].

2.1 Introduction

The need of making an object move along an assigned path arises only in a limited number

of applications. In most cases, the only initial and final poses of the object are assigned,

whereas the path between them must just satisfy weak constraints (e.g., obstacle avoidance,

preventing interferences among machine components, etc.) which leave the choice of the

path practically free. Such a freedom can be exploited during design to simplify the machine

architecture. Work-tables of machine tools usually either perform simple translations or just lock

the workpiece during cutting. Thus every time the workpiece has to be reoriented or, in general,

repositioned with respect to the spindle axis either manual operations or external devices must

intervene. Repositioning workpieces is a manipulation task that involves small six-dimensional

workspaces, good positioning precision and high stiffness in the final configuration; it does not

impose any constraint to the path between the initial and final poses. Parallel manipulators

can satisfy the requirements on positioning precision and stiffness; moreover, they are specially

suitable for applications that involve small workspaces. Therefore, they are natural candidates

to move the work-table during workpiece repositioning.

How to exploit the free path for reducing the complexity of a manipulator destined to

move the work-table during repositioning is an open problem. In this chapter, we propose

an under-actuated parallel manipulator that, by exploiting the free path, is able to control the
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Figure 2.1: Under-actuated 6PUS.

Figure 2.2: Details of the proposed under-actuated 6PUS robot. The racks, the guides, and
some of the revolute-pair housings (left). Revolute-pair housing at the intersection between the
two racks (right).
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mobile platform pose in a six-dimensional workspace by using only one motor. Section 2.2

describes the manipulator architecture and illustrates its operation. Section 2.3 addresses the

kinetostatic analysis of the machine and gives conditions the path must satisfy to keep the mobile

platform pose controllable during motion. Eventually, the conclusions are drawn in Section 2.4.

2.2 Manipulator architecture and operation

Fully parallel mechanisms with topology 6PUS feature a mobile platform connected to a fixed

base through six in-parallel kinematic chains (legs) of type PUS. Their architectures vary ac-

cording to the relative disposition of the prismatic-pair sliding directions, the platform geometry,

and the six fixed distances (U-S link lengths) between universal-joint center and spherical-pair

center of each leg. By changing these geometric parameters, a number of 6PUS have been

proposed in the literature (see [79, Chap. 2] for references). Boye and Pritschow [9] named

them linapods. Honegger et al. [51] proposed the Hexaglide that has six parallel and coplanar

guides. Moreover, some of the proposed architectures (Bernier et al. [5], and Pritschow et

al. [92]) exhibit coincident guides for couples of prismatic pairs, and, in particular, decouple

linapod Nabla 6, proposed by Bernier et al. [5], has three coplanar guides each carrying two

sliders. The actuation of each prismatic pair is independent of the other actuations in all the

linapods proposed in the literature.

Fig. 2.1 shows the proposed linapod. On the base, a single motor, through a transmission,

actuates, one at a time, two racks that are constrained to slide along two mutually orthogonal

guides forming a cross-shaped path (T-paths). The transmission is able to actuate one or the

other rack by using two clutches that also act as brakes for the non-actuated rack. The racks

carry suitably shaped hooks which can firmly lock revolute-pair housings (the cubes attached to

the racks in Fig. 2.2(left)). In these revolute-pair housings, legs’ universal joints insert one pin

of their cross link so that the resulting revolute pair has the axis perpendicular to the plane of

the guides. In so doing, all the universal joints have the other revolute-pair axis parallel to the

plane of the guides, and their centers are constrained to lie on T-paths that are all parallel to the

plane of the guides (T-paths are parallel but not coplanar). The universal-joint centers slide on

these T-paths when the racks are moved.

On the mobile platform, the housing of the spherical pairs, which join the leg endings to the

platform, are embedded in the platform.

The hooking between rack and revolute-pair housing is managed by a purely mechanical

device carried either on the revolute-pair housing or on the guides. This hooking device and the

hooks on the racks are conceived so that the following functional requirements are satisfied:
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Figure 2.3: Sequence of rack motions (the numbered boxes represent the revolute-pair
housings): (a) initial configuration, (b) rack-I was moved to make housing-III touch rack-II,
(c) rack-II was moved to make the dotted box centered on rack-I, (d) rack-I was moved to make
housing-II touch rack-II, (e) rack-II was moved back to its initial position, (f) final configuration
obtained by moving back rack-I to its initial position.
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1. if the revolute-pair housing is in contact with only one rack, the hooking device must

provide a constraint that, combined with the constraint of rack’s hooks, firmly holds the

housing fixed to the rack;

2. if the revolute-pair housing is in contact with both racks (i.e., at the intersection of the

T-path), the hooking device must not provide any constraint, whereas the hooks of both

racks must provide the constraints necessary to hold the housing;

3. if the revolute-pair housing is at the intersection of the T-path and one rack starts moving,

the hooks of the moving rack must be able to tow the housing, whereas the hooks of the

other rack must not forbid this towing and must be so shaped that, during the housing

motion, make the hooking device intervene to provide its constraint.

Many hooking devices and complementary hooks for the racks can be easily devised to satisfy

the above technical requirements. For instance, in Fig. 2.2(right), the hooks of rack-I are dovetail

joints parallel to rack-II, whereas the hooks of rack-II are frontal teeth with rectangular cross

section; moreover, the hooking device is constituted of two lateral stops fixed to guide-I, and of

dovetail joints, identical to the ones of rack-I, fixed to guide-II [see Fig. 2.2(right)]. The many

design alternatives for these equipments will not be discussed here, for the sake of conciseness.

By exploiting the above-reported properties of hooking device and racks’ hooks the positions

of the universal-joint centers on the T-paths can be about freely changed. In fact, if, for instance,

housing-II, on rack-I, [Fig. 2.3(a)] must be moved to the dotted position on rack-II and housing-

III must be moved to the actual position of housing-II, the sequence of operations shown in

Fig. 2.3 can be implemented.

In general, many different rack-motion sequences lead to the same final configuration, and

the number of operations to implement may decrease when the number of housing permutations

increases.

2.3 Kinetostatics and constraints on the T-path

The inverse kinematics that, for this linapod, means the determination of the housing positions

on the racks for an assigned platform pose (position and orientation) must be solved every

time the platform is repositioned. This determination is straightforward once the positions of

the universal-joint centers have been computed. The assigned relative pose between base and

platform involves that the six T-paths (one per leg), the universal-joint centers must lie on, have

assigned poses with respect to the spherical-pair centers embedded in the platform. Thus, for

each leg, the determination of the universal-joint center’s position reduces itself to compute the
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intersection points between the T-path the universal-joint center must lie on and a sphere, with

center at the spherical-pair center and radius equal to the leg length. This geometric problem

has at most four solutions: the two sets of intersections between the sphere and the two sides

of the T. At most four solutions for each leg yields at most 46 (i.e., 4096) leg arrangements

compatible with an assigned platform pose. Such a high number of inverse kinematics solutions

is mainly theoretical. In fact, many line-sphere intersections will fall out of the line segments

actually occupied by the T-path’s sides. Moreover, other solutions will be excluded by the fact

that two or more housings cannot be located on the same position, and that, on each rack, the

hooks’ sequence has a fixed pitch, which implies that the distance between couples of housings

positioned on the same rack can only be multiples of the hooks’ pitch. Eventually, all the leg

arrangements that give a singular configuration (see below) must be excluded.

The direct kinematics of the proposed linapod consists in the determination of the platform

poses compatible with an assigned disposition of the revolute-pair housings on the two racks.

If the positions of the revolute-pair housings are assigned, the positions of the universal-joint

centers will be assigned, too. Thus this problem reduces itself to the determination of the

assembly modes of the 6US structure (i.e., two rigid bodies connected by six in-parallel US

legs), which was broadly treated in the last two decades in connection with the direct kinematics

solution of the general Stewart platform (see [79] for references). The result of these studies is

that the 6US structure can have at most forty assembly modes which can be even analytically

determined [53,56].

The singularities of the forward instantaneous kinematics are, for this linapod, the configu-

rations where the platform can perform instantaneous motions even though the racks are locked

(i.e., they are uncertainty configurations of the 6US structure). At a singularity of this type, the

platform pose is not controllable, and the internal loads of one or more links of the legs are

not able to equilibrate the external loads applied on the platform. Thus, they must be identi-

fied during design and avoided during operation. The uncertainty configurations of the 6US

structure have been studied by many authors, and, in the literature, both geometric and analytic

conditions to identify them have been provided [23, 75, 76, 97]. The actual implementation of

the proposed linapod requires that all this literature be exploited to correctly design and control

it. Herein, we will only give the justification of some design choices due to the need of avoiding

uncertainty configurations.

From a static point of view, in 6US structures, an uncertainty configuration occurs when

the six forces applied to the platform through the spherical pairs are not able to equilibrate

any system of external loads. The fact that these forces are aligned with the leg axes (the axes

connecting the centers of the universal and spherical joints for each leg) allowed the geometric

classification of the singular configurations through particular arrangements of the six leg axes
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[75]. All these singular arrangements satisfy at least one out of the following three geometric

conditions: (a) the six axes either intersect or are parallel to a line, (b) the six axes are all

parallel to a plane, and (c) the six axes are tangent to coaxial helices with the same pitch.

For the linapod under study, the possibility of locating all the revolute-pair housings on

one rack would greatly improve the path planning algorithms (see below). Therefore, making

this housing arrangement non-singular is important. Once all the housings are located on the

same rack all the universal-joint centers lie on the same plane. And, in order to avoid the

geometric conditions (a) and (b), the universal-joint centers must not be located at the same

height on the rack (i.e., the T-paths must not coincide); whereas the spherical-pair centers must

be suitably distributed on the platform. The manufacturing conditions that allow condition (c)

to be avoided are much more difficult to be visualized and a careful numerical check is necessary.

It is worth noting that the leg arrangements with all the housings on the same rack geometrically

coincide with the Hexaglide architecture [51], and the results obtained for the Hexaglide can

also be usefully exploited.

A path-planning algorithm for the proposed linapod has to take into account all the above-

reported kinetostatic considerations. In addition, it needs the implementation of a motion

strategy for choosing the sequence of rack motions able to move from the initial platform pose

to the final one. Each step of this sequence finishes with a particular arrangement (state) of

the revolute-pair housings on the racks that is reached when both the racks are at rest and the

actuation is about to be switched from one rack to the other. Thus, a path-planning algorithm

has to determine the states’ sequence by respecting the rule that the transition from one state to

the successive one must be possible by moving only one rack. For instance, the motion described

in Fig. 2.3 is characterized by six states and five transitions. Two different paths that have the

same initial and final housing arrangements can be compared on the basis of the number of

intermediate states, and, of course, the lower is the number the better is the path.

The sequence that moves only one housing from any position to any other without changing

the positions of the other housings, in the final state, can be easily automated. Thus, a simple

path-planning algorithm could reduce itself to implement six separate sequences each of which

brings only one housing from its initial to its final position and, in the final state, does not

change the positions of the housings already brought to their final positions. Such a motion

strategy employs a great number of intermediate states. For instance, it is easy to realize that,

in Fig. 2.3, the motion of the only housing-II without changing the position of housing-III would

have required nine states, whereas the strategy reported in Fig 2.3 uses only six states to move

both housing-II and housing-III to their final positions.

A much better motion strategy can be obtained by finding a state (parking state) from which

any other state can be reached through a reduced number of intermediate states. The state with
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all the housings located on rack-II and no housing at the rack intersection could be a parking

state. In fact, from this parking state, a housing can be put on rack-I, at any position, with

a sequence involving only two intermediate states, whereas only four intermediate states are

required to change the position of a housing on rack-II. A path-planning algorithm based on this

parking state, first, has to implement the sequences that bring all the housings on rack-II (note

that the only housings located on rack-I in the initial state are involved in this phase); then, it

has to move all the housings from the parking positions to their final positions.

2.4 Conclusions

The feasibility study of an under-actuated parallel manipulator with 6PUS topology, destined

to handle work-tables in CNC machine tools, has been presented. The proposed device exploits

the fact that, in such an application, the path between the initial and final poses of the mobile

platform is not assigned to reduce the number of actuators to only one. For the proposed

manipulator, all the hardware critical points have been addressed. Its kinematic and static

characteristics have been discussed, and the availability of the solutions to all the problems

involved in its design and control has been verified. Two motion strategies that can be used in

the path-planning algorithms have been proposed.

A formalization of the allowed rearrangements using group theory will probably provide

a deeper insight into this path planning problem [63]. This is certainly a point that deserves

further attention.



3
Parallel robots with lockable revolute joints

This chapter introduces a class of reconfigurable parallel robots consisting of a fixed base and

a moving platform connected by n-serial chains, n < 6, having bRRPS (Lockable Revolute -

Revolute-Prismatic-Spherical) topology. Only the prismatic joint is actuated and the first revolute

joint in the chain can be locked or released during operation. It will be shown how the

introduction of these lockable joints allow the prismatic actuators to maneuver to approximate

6-DoF motions for the moving platform, despite having less than six actuators. An algorithm for

generating these maneuvers is also described. Then, a motion planner, based on the generation

of a Probabilistic Road Map, whose nodes are connected using the described maneuvers, is

presented. The generated trajectories avoid singularities and possible collisions between legs.

Part of the work presented in this chapter has appeared in [40].

3.1 Introduction

The Gough-Stewart platform consists of a base and a moving platform connected by six UPS

(Universal-Prismatic-Spherical) legs, where the underline indicates that the prismatic joint is

actuated. Thus, it is usually referenced as a 6UPS platform. If a number of these UPS legs

are eliminated, the mobility (remaining set of passive joints) must be reduced by as many leg

substitutions to keep the platform location controllable. The resulting parallel manipulator will

have a number of DoF equal to the number of remaining legs. Substitution of all the remaining

UPS legs by bRRPS legs, where bR denotes a revolute joint lockable at any time during

operation through a clutch, is one possibility for implementing this mobility reduction. To keep

the mobility reduction at all times, the number of activated bR must be equal or greater to

the number of eliminated legs. Each bRRPS will behave as a RPS chain when the bR joint

is locked and, by properly arranging the axis of the revolute joints, as a UPS when it is not.

The maximum number of leg eliminations is three, as many are the manipulators that can be
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Figure 3.1: The proposed parallel robot (left) and associated notation (right). It consists of four
bRRPS legs attached to the base through passive lockable revolute joints. Since two clutches
must be engaged at any time to keep the platform rigidly linked to the base, it behaves as a
reconfigurable 2RPS-2UPS platform.

generated from the Gough-Stewart platform with this technique. Table 3.1 summarizes the

family of generated manipulators. The 5bRRPS and 4bRRPS architectures are of interest

because their motion possibilities can be increased by on-line switching the lockable joints. Two

kinds of reconfigurable parallel platforms with low mechanical complexity are thus obtained.

The architecture involving four legs is probably the most attractive because it uses the least

number of actuators (see Fig. 3.1). This chapter is devoted to its study.

The rest of this chapter is organized as follows. Section 3.2 studies the kinematics of the

proposed platform. Section 3.3 shows how to maneuver to locate the platform in any arbitrary

pose. Section 3.4 shows how to generate a roadmap in the configuration space of the platform

that permits to obtain paths, far from singularities and leg collisions, connecting two arbitrary

poses. Section 3.5 and 3.6 describes practical aspects concerning the implemented prototype.

Finally, the main results are summarized in Section 3.7.
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Table 3.1: The three possible architectures for parallel robots, having UPS legs, using bRRPS

legs as replacement.

Legs removed
(minimum #
of bR locked
at any time)

# of legs
replaced

Architecture Robot space
Related

references

1 5 4UPS+RPS

5-DoF

(reconfigurable,
covering 6-DoF)

[74]

2 4 2UPS+ 2RPS

4-DoF

(reconfigurable,
covering 6-DoF)

[55], [73],
[71]

3 3 3RPS
3-DoF (non-

reconfigurable)
[57], [95]

3.2 Kinematics of the 2RPS-2UPS parallel robot

If the leg lengths of the robot in Fig. 3.2 are fixed and clutches of legs 1 and 2 are locked

the resulting parallel structure is 2RS-2US. In case the platform is removed, points P1 and

P2 would move on circular arcs, while P3 and P4 would be constrained to move on spheres.

With reference to this figure, Pi, i = 1, . . . , 4, are the centers of the spherical pairs. Points Ai,

i = 1, . . . , 4, are the projections of Pi onto the revolute-pair axes adjacent to the spherical pair,

Pi being its center. A3 and A4 are also chosen as centers of the two universal joints without

losing generality. Points B3 and B4 are the projections of P3 and P4, respectively, onto the line

through P1 and P2. The ith leg length ‖pi − ai‖ will be denoted li, the magnitude of the vector

(p2 − p1) will be denoted a, whereas the magnitudes of the vectors (pj − bj) for j = 3, 4 will be

denoted rj . Moreover, the following unit vectors and scalars are defined

q̂ =
(p1 − a2)

‖p1 − a2‖
,

ĥ1 = û1 × v̂1,

ĥ2 = û2 × v̂2,

û3 =
(p2 − p1)

a
,

ĝi =
(pi − ai)

li
i = 1, . . . , 4,

v̂3 =
q̂ × û3

‖q̂ × û3‖
,

ĥ3 = û3 × v̂3,

b3 = (b3 − p1) · û3,

b4 = (b4 − p1) · û3.
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Figure 3.2: Notation associated with the 2RS-2US structure resulting from fixing the leg
lengths and locking the revolute joints centered at A1 and A2 for the more general case in
which P1, P2, P3 and P4 are not necessarily coplanar.

3.2.1 Position analysis

The determination of the actuated-joint variables (leg lengths) for an assigned pose of the

platform (the inverse kinematics problem) is straightforward. In fact, once the positions of

Pi, i = 1, . . . , 4, are known, the leg lengths can be immediately computed since the positions
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of Ai, i = 1, . . . , 4, are geometric data linked to the base reference frame (see Fig. 3.1). On

the contrary, the determination of the platform pose for assigned leg lengths (the forward

kinematics problem) requires the solution of the 2RS-2US closure equations which constitute a

non-linear equation system. This problem coincides with the one encountered when solving the

forward kinematics of the 6-4 fully-parallel mechanism [55] since that mechanism generates an

2RS-2US structure when the actuated joints are locked. In [55], Innocenti gave the analytical

solution of this problem and showed that, in general, up to 32 platform poses may be compatible

with an assigned set of leg lengths. In the following part of this subsection, the 2RS-2US closure

equations will be deduced in a form slightly different, from the one reported in [55], which is

more appropriate to the analysis presented in the next subsection. With reference to Fig. 3.2

and the adopted notations, the 2RS-2US closure equations can be written as follows:

(p2 − p1) · (p2 − p1) = a2, (3.1)

(p3 − a3) · (p3 − a3) = l23, (3.2)

(p4 − a4) · (p4 − a4) = l24, (3.3)

where

p1 = a1 + l1(c1v̂1 + s1ĥ1), (3.4)

p2 = a2 + l2(c2v̂2 + s2ĥ2), (3.5)

p3 = p1 + b3û3 + r3(c3v̂3 + s3ĥ3), (3.6)

p4 = p1 + b4û3 + r4(c4v̂3 + s4ĥ3), (3.7)

and

c4 = c3 cos(φ34)− s3 sin(φ34), (3.8)

s4 = c3 sin(φ34) + s3 cos(φ34), (3.9)

where ci and si for i = 1, . . . , 4 stand for cos(θi) and sin(θi), respectively.

Equation (3.1) is a trigonometric c-s-linear equation that involves only c1, c2, s1 and s2. It is

the closure equation of the RSSR loop. Equations (3.2) and (3.3) involve c1, c2, c3, s1, s2 and

s3. By eliminating c3 and s3 from these equations, the resultant will contain c1, c2, s1 and s2 and

can be used with equation (3.1) for a further elimination which yield an univariate polynomial

equation.
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3.2.2 Singularities

The configurations where the platform can perform elementary motions, even though the actu-

ators are locked, are called parallel singularities. Parallel singularities are critical both from the

control (the platform pose becomes no longer controllable) and the statics (some links should

stand infinite internal loads) point of views. Thus, they must be avoided during operation.

When the 2RPS-2UPS platform is at a parallel singularity, the 2RS-2US structure ob-

tained by locking the actuators is singular, too (i.e., the structure is not rigid). Thus, by looking

for the 2RS-2US singular geometries, the parallel singularities of the associated 2RPS-2UPS

can be found.

When the 2RS-2US structure assumes a singular geometry, the platform can perform ele-

mentary motions that must fulfill the following velocity equations, deduced by differentiating

equations (3.1), (3.2), and (3.3):

(ṗ2 − ṗ1) · û3 = 0, (3.10)

ṗ3 · ĝ3 = 0, (3.11)

ṗ4 · ĝ4 = 0, (3.12)

where

ṗ1 =θ̇1l1(û1 × ĝ1), (3.13)

ṗ2 =θ̇2l2(û2 × ĝ2), (3.14)

ṗ3 =θ̇1l1(û1 × ĝ1) +
b3
a

[

θ̇2l2(û2 × ĝ2)− θ̇1l1(û1 × ĝ1)
]

+ θ̇3 [û3 × (p3 − b3)] + r3

[

c3 ˙̂v3 + s3
˙̂
h3

]

, (3.15)

ṗ4 =θ̇1l1(û1 × ĝ1) +
b4
a

[

θ̇2l2(û2 × ĝ2)− θ̇1l1(û1 × ĝ1)
]

+ θ̇3 [û3 × (p4 − b4)] + r4

[

c4 ˙̂v3 + s4
˙̂
h3

]

, (3.16)

and

˙̂u3 =
θ̇2l2(û2 × ĝ2)− θ̇1l1(û1 × ĝ1)

a
, (3.17)

˙̂q =
θ̇1l1 [(û1 × ĝ1)− (q̂ · û1 × ĝ1)q̂]

‖p1 − a2‖
, (3.18)
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˙̂v3 =

˙̂q × û3 + q̂ × ˙̂u3 −
[

v̂3 · ( ˙̂q × û3 + q̂ × ˙̂u3)
]

v̂3

‖q̂ × û3‖
, (3.19)

˙̂
h3 = ˙̂u3 × v̂3 + û3 × ˙̂v3, (3.20)

which are obtained by differentiating equations (3.4)-(3.7). The introduction of (3.13)

and (3.14) into (3.10) yields

θ̇2 = θ̇1
l1(û3 · û1 × ĝ1)

l2(û3 · û2 × ĝ2)
. (3.21)

In the above relationship, θ̇2 is undefined when û3, û2, and ĝ2 are coplanar. The configu-

ration where this geometric condition occurs are singularities of the internal RSSR loop and,

in general, they are singularities of the 2RS-2US structure, too. The introduction of (3.21)

into (3.15)-(3.20) and of the resultant relationships into equations (3.11) and (3.12) yield a

linear and homogeneous system of two equations in two unknowns which can be written as

follows:

(

m11 m12

m21 m22

)(

θ̇1

θ̇3

)

= 0. (3.22)

This linear system admits a non-null solution for θ̇1 and θ̇3 (i.e., a singular configuration

occurs for the 2RS-2US structure) if and only if

m11m22 −m12m21 = 0. (3.23)

The above relationship is the analytic expression of the singularity condition of the 2RS-2US

structure. It is satisfied either when the two vectors mi = (m1i,m2i)
T , i = 1, 2, are parallel or

when at least one of them is a null vector. The dimensionless parameters

k1 =
‖m1‖
‖m2‖

, k2 =
‖m1‖ ‖m2‖
‖m1 ·m2‖

(3.24)

can be used to evaluate how far from singularity a configuration is. The farthest-from-singularity

configuration is the one where k1 is equal to 1 and k2 is equal to infinity; whereas a singular

configuration occurs when at least one of the following conditions occur: (a) k1 is equal to 0,

(b) k1 is equal to infinity, (c) k2 is equal to 1. Based on these values, the following objective

function, to be maximized during the platform motion, can be defined

n =
k1

(k1 − 1)4
+ (k2 − 1). (3.25)
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The value of such a function tends to infinity when k1 (k2) tends to 1 (infinity); and it decreases

when either k1 (k2) tends to 0 (1) or k1 tends to infinity. It will be useful later, when assigning

a cost to a path.

3.3 Maneuvers

Let us assume that we want to generate a trajectory connecting XI = (lI ,φI) = (lI1, . . . , l
I
4,

φI
1, . . . , φ

I
4) to XF = (lF ,φF ) = (lF1 , . . . , l

F
4 , φ

F
1 , . . . , φ

F
4 ) where li is the length of leg i and φi is

the angle formed by ŵ1i and the x-axis of the world reference frame (see Fig. 3.1). Since the

robot is not capable, in general, of reaching the final pose directly, it is necessary to introduce

an intermediate one (a via pose XV = (lV ,φV )) where the lockable joints are switched. The

leg lengths in the via pose, lV , can be computed numerically by setting the released joints to

their values in the final pose and solving a local optimization problem starting from the initial

pose. This can be efficiently implemented using the Newton’s method [66]. Then, the proposed

maneuver consist of two clutches-switching and two legs movement detailed in Fig. 3.3.

Note that there are up to six sets of possible maneuvers connecting two given poses: one

for each possible pair of locked joints. Once we have a candidate for a maneuver, and its cor-

responding via pose, it must be execute by driving the robot’s prismatic actuators, as explained

above. The simplest driving law is that consisting in linearly interpolating the leg lengths from

lI to lV , and then from lV to lF . During this process, it might happen that the system reaches

a different solution from the expected one (remind that the forward kinematics problem has no

single solution). If so, the generated maneuver is not valid. This might happen mainly when

the maneuver involves a path close to a singularity. For the sake of simplicity, in this case the

obtained maneuver would not be considered as valid, though a more sophisticated driving law

might connect the initial to the final configuration through the obtained via pose.

There is one more reason to reject a candidate for a maneuver: it leads to collisions or the

joints are not kept within their valid range of motion. A complete test for collision detection

can be implemented using available collision detection packages such as GJK, SOLID, V-Clip,

I-Collide, etc. (see [11, p. 201] and the references therein).

Once all valid maneuvers are computed, it is reasonable to choose the one that keeps the

platform as far as possible from its parallel singularities. Unfortunately, there is no proper

distance to a singularity [78]. As a simplification in our particular design, the quality measure

to decide whether the maneuver is close to a singularity is taken to be (3.25) evaluated in the

corresponding via pose. It is assumed that the bigger this value is, the farther the via pose is

from a singularity. Then, the reciprocal of this value is taken as the cost of a maneuver.

The above procedure to find the best maneuver connecting two arbitrary configurations is
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summarized in pseudocode in Algorithm 3.1. Function Candidate implements the Newton’s

method that computes the leg lengths in the via pose. Function ValidPath verifies if the final

configuration is reached by linearly interpolating the leg lengths, checks if no collisions arise,

and verifies if the joints are kept within their range along the trajectory. Finally, function Cost

assigns a cost to the maneuver based on the objective function (3.25) to a singularity of the via

pose.

Algorithm 3.1: BestViaPose(Xi, Xj)

1: Maneuvers← {[1,2,3,4],[1,3,2,4],[1,4,2,3],[2,3,1,4],[2,4,1,3],[3,4,1,2]}
2: /* The first two indices of each 4-tuple correspond to the locked joints */
3: /* during the first motion of the maneuver */
4: XV ← void
5: for all M ∈ Maneuvers do

6: [i, j, k, l]← M
7: φx[i]← φI [i]
8: φx[j]← φI [j]
9: φx[k]← φF [k]

10: φx[l]← φF [l]
11: lx ← Candidate(XI ,φx,M)
12: Xx ← (lx,φx)
13: if ValidPath(XI , Xx, XF ) = TRUE then

14: /* The maneuver is valid */
15: if Cost(Xx) < Cost(XV ) then

16: /* Cost(void) returns∞ */
17: XV ← Xx

18: end if

19: end if

20: end for

21: return XV

It is clear that the above algorithm might fail to find a path mainly when the initial and final

poses are far apart in the configuration space of the robot. In these cases, one alternative is

to subdivide the trajectory into segments whose initial and final poses can be connected using

the above algorithm. Unfortunately, this simple idea might also fail. The alternative is to use a

motion planner, as described in the next section.
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Figure 3.3: The proposed maneuver connecting two configurations, XI = (lI ,φI) and XF =
(lF ,φF ) passing by the via pose XV = (lV ,φV ), with φV = (φI
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l ) and lV to be found,

is performed in three steps. Top: with clutches i and j engaged and clutches k and l disengaged,
the prismatic actuators are driven from lI to lV ; Center: all four clutches are switched around,
clutches k and l engaged and clutches i and j disengaged; Bottom: the prismatic actuators are
driven from lV to lF .
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Algorithm 3.2: GenerateRoadmap

1: for i = 1 to NumPoses do

2: Xi ← RandomPose()
3: Poses← FindNeighborPoses(Xi)
4: for all Xj ∈ Poses do

5: XV ← BestViaPose(Xi, Xj)
6: ManMatrix[i,j]← XV

7: CostMatrix[i,j]← Cost(XV )
8: /* Cost(void) returns∞ */
9: end for

10: end for

3.4 Path planning

There are many possible approaches for implementing a motion planner but those based on

Probabilistic Road Maps [65] have demonstrated their potential in many applications [11, Chap-

ter 7]. This approach has already been successfully applied to ordinary parallel robots in

[18]. Next, it is adapted to the proposed reconfigurable robot. Within this approach, the

proposed robot would be subjected to a learning phase where its configuration space is randomly

sampled. These samples are connected to their neighbors through the maneuvers, presented in

the previous section, to generate a roadmap. Then, in the query phase, in which a path between

two arbitrary poses must be found, the initial and final poses are firstly linked to their neighbors

in the roadmap and, using a graph search algorithm, the best path according to a given criterion

is found.

3.4.1 Generating the roadmap

The roadmap is built by sampling poses in the configuration space of the robot. When a sample

is chosen, the best maneuvers to connect it to its neighboring poses previously generated are

computed (see Fig. 3.4). Two poses are considered to be neighbors if the Euclidean norm

between both their position and orientation components are below a given threshold. If a valid

maneuver is found, its corresponding via pose is stored in an adjacent matrix together with its

associated cost. If not, the stored cost will be infinite. Algorithm 3.2 gives this description in

pseudocode.

To increase the density of the roadmap, it is always possible to add an intermediate configu-

ration when two configurations fail to be connected directly through one of the six maneuvers

that can be obtained using the procedure described above.
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Figure 3.4: Learning phase of the proposed path planning algorithm. As a result, a roadmap
is generated. Left: Random generation of poses. Center: Connection generation between
neighboring poses. Right: Resulting roadmap.

3.4.2 Finding a path

If a trajectory —free from collisions and as far as possible from any singularity— connecting

XI to XF must be generated, it is firstly necessary to connect these two poses to the previously

generated roadmap (see Fig. 3.5). That is, the best maneuvers to connect them to their neigh-

bors should be computed. Once the initial and final poses are connected to the roadmap, it is

only needed to find the shortest path connecting them in terms of costs. Dijkstra’s algorithm

is well-suited to this end [17, p. 595]. Finally, when the path is obtained, if one exists, the

corresponding maneuvers —described in terms of leg lengths settings and sequences of locked

and released revolute joints— can be executed by the robot.
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Figure 3.5: Query phase of the proposed path planning algorithm. The initial and final poses
are represented in blue and green, respectively. Left: The initial and final poses are connected
to the roadmap. Center: The starting pose is connected to the via pose. Right: The via pose is
connected to the end pose.

3.5 Hardware implementation

After verifying the kinematic behavior of the proposed robot in simulation, the prototype in

Fig. 3.6(left) was built. The base and the moving platform were made of 3mm thick nickel-

plated steel plates. They are disks of 400 mm and 200 mm in diameter, respectively. The lockable

revolute joints have been implemented using electromagnetic clutches manufactured by Huco-

Dynatork Co. [12]. When one of this clutches is energized, the corresponding axis of rotation

is disengaged, otherwise it remains locked. The actuated prismatic joints are implemented

using miniature servo linear motors manufactured by Firgelli Technologies Inc. [54]. The four

actuators are controlled through a USB servo card. An interesting feature of this prototype is

that the legs are attached to the base and the moving platform through magnetic fixtures. This

simplifies any leg rearrangement during tests. Finally, all plastic elements were manufactured

using a 3D printer.
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Figure 3.6: The two implemented prototypes.

It was observed that, even when all clutches were engaged, the moving platform was slightly

shaky because the lockable joints were not completely stiff. This was directly connected with

the diameter of the clutch and the mechanical play of the linear actuators and the clutches. As a

consequence the second prototype shown in Fig. 3.6(right) was implemented, using more robust

elements. It was implemented using EMTorq industrial clutchs [31] and HDLS-12.00-2.00

(12.00" Stroke, 2.00"/sec., 12V) linear servos from ServoCity [16]. While in the first version,

one of the main goals was to have a robot where the bRR joints could be easily relocated,

in the second version, the relocation objective was left a side, so more permanent anchoring

between base-legs and platform-legs were used. Both, platform and base, are squared-shaped,

with diagonal tensors pursuing high rigidity, build from metallic Item profiles [13]. Videos of

this implementation can be found in [38] and [37].

The first video shows the 4bRRPS reconfigurable parallel robot implementation performing

a maneuver. The maneuver consists of several steps. Each step consists of changing the leg

length from their maximum to minimum stroke and vice versa. Between each stroke, the

clutches are switched following the sequence, ON( [2, 4])-OFF( [1, 3]),OFF( [2, 4])-ON( [1, 3]).

The normal behavior of the platform is a rotation around the z-axis. The second video shows

the special case where all leg planes, defined by ŵ1i (see Fig. 3.1), intersect on a line and the

legs move with the same vertical velocity. In this case there is a stagnation of the rotation, no

matter neither the number of maneuver iterations, nor which pair of clutches are engaged. In

theory they could all be engaged or not and the effect will still occur.



3.6 Software implementation 39

3.6 Software implementation

In order to verify the behavior of the proposed parallel robot and the described path planner, a

simulator using MATLAB and Simulink whose output is connected to a VMRL 3D model of the

robot was implemented. Using the equations presented in Section 3.2, it simulates the motion

of the platform generated by applying the leg lengths settings and the sequence of switchings

obtained by the path planner. A typical output of this simulator can be seen by accessing at [39].

Table 3.2: Statistics for the roadmap generated in the example

Number of random configurations 100

Intermediate configurations added 3229

Connections
Evaluated connections 19070
Possible direct connections 4950

Failed direct connections 2275
Failed after adding one intermediate configuration 644

Established connections 9356

Manoeuvres
Evaluated (6 per connection) 114420
Discarded 92245

Go outside joint limits 64180
Do not converge to solution 87967
Lead to collisions 201

The data used for the simulation is as follows. The diameters of the base and the platform

are 0.4m and 0.2m, respectively. When the legs are extended at half their maximum extension,

the platform is located at 0.3m from the base. This is taken as the home configuration. The gen-

erated roadmap has been obtained by taking 100 configurations randomly sampled in a region

centered at the home configuration with x ∈ [−0.04, 0.04], y ∈ [−0.04, 0.04], z ∈ [0.115, 0.125],

θx ∈ [−0.05, 0.05], θy ∈ [−0.05, 0.05], and θz ∈ [−0.05, 0.05] (where distances are given in meters

and the orientation angles in radians using the roll-pitch-yaw convention). When each of these

configurations have been tried to be connected to all others, 2,275 connections fail (out of the

4,950 possible connections) for the six possible maneuvers. If an intermediate configuration is

added in these cases, the amount of failed connections drops to 644. Due to these intermediate

configurations, the total number of configurations in the roadmap is 3,229 and the total number

of maneuvers checked for validity amounts to 114,420. 92,245 are discarded for different

reasons (e.g., out of range of the linear actuator stroke, over the limit of the maximum angle of

U or S joints, etc.). Table 3.2 compiles this information. The same software is used to control
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the implementation, the only variation is sending information, via a USB connection, to the real

actuators and clutches instead of to the simulator.

3.7 Conclusions

By introducing legs of type bRRPS, where bR stands for a lockable revolute joint, two novel

reconfigurable parallel robots of reduced mechanical complexity —the 5bRRPS and the

4bRRPS— have been proposed. Moreover, the 4bRRPS has been studied in depth, and a

practical implementation of it has been presented.

Regarding the 4bRRPS robot, it has been demonstrated that: (i) its moving platform can be

moved in a six-dimensional operational space by using only four actuators that are maneuvered

so that via poses, where the couple of locked bR pairs is changed, are introduced; (ii) the

parallel singularities can be avoided and the maximum forces in the actuators can be reduced

by suitably managing the insertion of via poses. Eventually, these theoretical results have been

verified on the built prototype.



4
Parallel robots with non-holonomic joints

In this chapter, we show how to generate under-actuated manipulators by substituting

non-holonomic spherical pairs (nS pairs) for (holonomic) spherical pair (S pairs) in

fully-parallel manipulators. Part of the work presented in this chapter has been published

in [43] and in [41].

4.1 Introduction

As already mentioned in the introduction, non-holonomic constraints arise in many differ-

ent areas of robotics such as motion planning and control of mobile robots, reorientation of

free-flying space robots, rolling contacts of multi-fingered hands, etc. In all these cases, the

non-holonomic constraints are inherent to the problem, but there are some cases in which the

artificial introduction of this kind of constraints can provide important advantages.

In pick-and-place applications of manipulators, only the initial and the final poses (position

and orientation) of the end effector are assigned by the task, whereas the end-effector path

between them is free. The ideal manipulator for these applications should be able to make the

end effector reach any pose in the six-dimensional operational space, and, by exploiting the

free fly of the end effector, it should be able to satisfy additional design conditions that reduce

its hardware complexity. Joints with non-holonomic constraints do not reduce the reachable

relative poses of the links connected by the joint since non-holonomic constraints have the only

effect of reducing the set of paths that can be covered between two reachable relative poses.

This reduction of practicable paths is accompanied by the rising of new reaction forces in the

joint which can be usefully exploited to eliminate actuators. Thus, a manipulator with fewer

actuators than the DoF1 of its configuration space —to reduce bulk, weight and expense—

1The DoF of the configuration space, also called configuration (or finite) DoF [3], are the minimum number of
geometric parameters necessary to uniquely identify the configuration of the mechanical system [88]. They may be
different from the instantaneous DoF, also called velocity DoF [3], of the same mechanical system.
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becomes feasible by introducing mechanical elements that lead to non-holonomic constraints.

As presented in the introduction, the literature on the use of non-holonomic devices in

the design of manipulators is limited to few examples. Despite the difference of purpose, all

mentioned examples include a surface (cylinder, sphere or plane) in contact with a roller that

can freely roll without slipping laterally. This no-slip constraint is a non-holonomic constraint,

a constraint relating the velocities of the surface and the roller. For the case sphere-roller, the

kinematics of the assembly is equivalent to that of a unicycle on a sphere whose equations of

motion can be represented by first-order differential equations [49].

Many research efforts have been made to clarify different aspects of non-holonomic mechan-

ical systems including its controllability, stability, feedback stabilization, time-periodic control,

chained form transformation, etc. but, in any case, achieving a formulation for the kinematics

of the system, as compact and simple as possible, is essential to explore the applicability of all

these results available in the literature.

Herein, the under-actuated parallel architecture presented by Ben-Horin and Thomas

in [4] is reconsidered from a different point of view which allows to see it as a particular

case of under-actuated manipulator obtained through the substitution of spherical pairs by

non-holonomic pairs. Moreover, its kinetostatic analysis is reformulated so that a simple and

compact formulation necessary for its design and control is obtained.

This chapter is structured as follows. Next section describes how to generate under-actuated

parallel manipulators from fully parallel robots. Section 4.3 gives practical considerations on the

implementation of a non-holonomic joints. Finally some conclusions are drawn in Section 4.4.

4.2 Generation of under-actuated manipulators

Two rigid bodies connected by a spherical pair can assume any relative orientation, and can

move from one relative orientation to another by covering any spherical-motion path that joins

the two relative orientations. Actually, the possibility of freely orientating two rigid bodies

with respect to one another is not related to the possibility of performing relative rotations

around axes which pass through the center of spherical motion and have any direction. In fact,

a suitable sequence of finite rotations around coplanar axes that pass through the spherical-

motion center can freely orientate one rigid body with respect to another. Thus, if the only free

relative orientation of two rigid bodies is required, the use of a spherical pair will be redundant.

The use of a kinematic pair that allows only rotations around coplanar axes that pass through a

fixed point would be sufficient.

Due to frictional forces, the rolling contact between a sphere and a roller forbids the sphere

rotations around the axis through the sphere center, and perpendicular to the plane defined by
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Figure 4.1: UPnS limb (right) generated by substituting an nS pair for the S pair in the two
UPS limbs with coalesced S pairs (left).

the roller axis and the sphere center. By combining such a non-holonomic constraint with other

constraints that forbid the relative translation between the sphere center and the roller axis, a

non-holonomic joint will result. This joint constrains two rigid bodies: one fixed to the sphere

and the other fixed to the plane, defined by the roller axis and the sphere center. Then, the

resulting constrained motion permits only relative rotations around axes lying on the above-

mentioned plane and passing through the sphere center. Hereafter, this type of joint will be

called non-holonomic spherical pair (nS pair).

The constraint forces, which two rigid bodies, joined by an nS pair, exert on one another

through the joint, can be reduced to a resultant force applied on the sphere center and a torque

perpendicular to the plane defined by the roller axis and the sphere center. The torque is the

static effect of the non-holonomic constraint, whereas the resultant force on the sphere center

is the same static effect that an S pair would have generated.

From a manufacturing point of view, it is worth noting that, in an nS pair, the presence of
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any number of roller-sphere contacts does not alter the kinetostatics of the nS pair, provided

that all the roller axes lie on a same plane passing through the sphere center2. Moreover, the

maximum torque transmitted through the nS pair, due to its frictional origin, can be fixed by

suitably choosing the number of roller-sphere contacts together with the normal force transmit-

ted through each contact.

The above discussion brings to the proposition: i) the substitution of a number of nS pairs

for as many S pairs in a kinematic chain does not change the configuration space of that chain.

That is, neither the DoF of the configuration space nor the reachable configurations change3.

It only reduces the practicable paths for moving that chain from one configuration to another.

Moreover, due to the torque that arises in a nS pair in a parallel robot, the substitution

of a number of nS pairs for as many S pairs does not change its workspace and allows the

elimination of a number of actuators equal to the number of introduced nS pairs (i.e., generates

an under-actuated manipulator).

Fully-parallel manipulators feature two platforms, one mobile (end effector) and the other

fixed (frame), connected to each other by means of six universal(U)-prismatic(P)-spherical(S)

kinematic chains (UPS limbs) where the prismatic pairs are the only actuated pairs. In each

limb, the centers of the universal joint and of the spherical pair (limb’s attachment points) are

points, fixed either to the end effector or to the frame, whose distance (limb length) is controlled

by the actuated prismatic pair. Two or more attachment points, either in the end effector or in

the frame, can coalesce into a unique point. According to the number of attachment points (no

matter if they are multiple or not) in the end effector, say p, and in the frame, say q, different

architectures, named p-q, are distinguished [59].

Due to the high number of S pairs appearing in fully parallel robots, the substitutions of nS

pairs for S pairs, accompanied by as many eliminations of actuators in the prismatic pairs, can

be operated in many ways in all the fully parallel architectures. By exploiting all the possible

substitutions, a lot of new under-actuated parallel manipulators can be generated. It is worth

noting that a passive UPS limb only affects the workspace borders since it has connectivity six,

and, if this effect is not necessary, the elimination of the actuator in a prismatic pair could be

accompanied by the elimination of the whole resulting passive UPS limb.

2In general, two rollers whose axes locate with the sphere center two different planes constrains the sphere to
rotate around the intersection line between the two planes, whereas three rollers whose axes locate with the sphere
center three different planes lock the sphere.

3The presence of non-holonomic constraints does not change the configuration DoF [3, 88]. It only affects the
instantaneous DoF of the mechanism. Hereafter, the acronym DoF used alone will mean configuration DoF.
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ẑ

Roller

Sphere

Figure 4.2: Conceptual design (left) and proof of concept (right) of the proposed non-holonomic
joint.

4.3 Implementation of non-holonomic joints

The considered non-holonomic spherical joint consists of a spherical joint, an element with

3-DoF of rotation and no translation, in contact with a roller with its rolling axis fixed and a

working element attached the spherical joint (Fig. 4.2). In the case of robots with arquitecture

3nSPU, the working element is a prismatic joint and in the case of the wrist robot nS-2SPU

the working element is the platform (see Chapters 5 and 7 respectively).

To experiment and get some insight into the behavior of the proposed joint, a prove of

concept was assembled as shown in Fig. 4.2. Experiments with this assembly led us to establish

a set of constrains that the final design must satisfy. Namely,

1. The sphere should be secured to avoid it translating, but letting it to freely rotate.

2. The roller should be put in contact with the sphere with a high contact force. The

coefficient of friction and the magnitude of the force will determine the maximum moment

that the sphere can undergo before it slips with respect to the roller.
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3. The location of the roller and the securing elements must be chosen so that the range of

motion of the working element is maximized.

Ball transfer unit

Sphere

Top View

Side View

Contact Circle

Equator

Figure 4.3: Securing the sphere within its housing.

Our design is also limited by the characteristics of the spheres commercially available. The

chosen sphere is a stainless steel ball of 50 mm in diameter (RS code 687-629) drilled using

an electric discharge machine to fasten the working element. The chosen securing elements are

four ball transfer units (RS code 687-679) arranged as shown in Fig. 4.3. This arrangement

disables sphere’s translation while still allowing it to freely rotate. Observe how three contact

points occur over the sphere’s equator, thus preventing it from getting out of the housing.

To obtain the non-holonomic effect, we have to place a roller in contact with the sphere. One

of the ball transfer units could actually be replaced by a roller. Nevertheless, this is not enough

because a high contact force is needed to prevent slippage between the sphere and the roller.

The high contact force on the sphere must be counteracted by the remaining ball transfer units,

which is not possible as they can only support a low load in order to rotate freely. An alternative

solution is to place two opposing rollers in contact with the sphere at polar points so that the

counteraction on the ball transfer units is minimized. The introduction of the second roller also

doubles the friction force, and in consequence doubles the allowed torque, which adds to the

lateral non-slip objective of the design. Nevertheless, this option has an important drawback:
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Figure 4.4: To guarantee a high contact force, a device is needed to adjust α and b.

the rollers’ axes must be parallel and their contacts with the sphere must be exactly polar, which

is not easy to achieve. If any of these two conditions is not satisfied, slippage at the contact

points with the roller will occur, or the sphere will only rotate about a single axis. Therefore, the

mechanism should include the possibility of both adjusting the orientation of the rollers’ axes

and their location to ensure the polarity of the contact points.

The required high contact forces between the rollers and the sphere can be obtained by

taking advantage of the rollers’ stems flexibility, as illustrated in Fig. 4.4. If the rollers are just

touching the sphere, no forces are obviously generated [Fig. 4.4(top)]. If the rollers are too close

and parallel before placing the sphere, the rollers’ axes will not be parallel and the contact points

will not be polar [Fig. 4.4(center)]. On the contrary, if the orientations and the anchor points

of the rollers’ stems can be adjusted by an angle α and a displacement b [Fig. 4.4(bottom)], the

stems’ rollers will bend when the sphere is placed so that the axes of the rollers become parallel

and the contact points are polar. Nevertheless, since the values of α and b are very difficult to

determine beforehand, a device to adjust them must be included in the design. In summary, the

design, besides including adjustments for the rollers axes orientations and the location of the

contact points, should also include adjustments for α and b.
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a)

b)

c)
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Figure 4.5: Device to adjust angle α and distance b.

Fig. 4.5 shows the device designed to adjust α and b. It consists of a central block and two

side blocks to which the rollers are attached. The side blocks are fasten to the central one by

eight screws, four per side. Two cylindrical bars are placed between the blocks so that they can

pivot on these bars and the angles between them can then be adjusted with the screws. The

center block is split into three elements so that we have the possibility to add spacers between

them. Adding or subtracting spacers changes the distance b. To adjust the lateral contact points

between the rollers and the sphere, we have also added the possibility of adding spacers at the

housing of the ball transfer units. This will move the sphere sideways as shown in Fig. 4.6.

As a result of the above analysis, we came out with the CAD design shown in Fig. 4.7(left).

Its implementation can be seen in Fig. 4.7(right).
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Ball transfer units
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Cylindrical bar pivot
Adjusting screws

Figure 4.6: Device to adjust the contact points between the rollers and the sphere.

Figure 4.7: CAD design (left) and final implementation (right) of the proposed non-holonomic
joint.
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4.4 Conclusions

It has been shown that, if a number of non-holonomic spherical pairs replaces as many spherical

pairs in a parallel manipulator, the same number of actuators can be eliminated. The resulting

manipulator will keep the same workspace of the original manipulator, but it will become

under-actuated.

The explained technique for generating under-actuated manipulators has been applied to

fully-parallel manipulators, where many spherical pairs are present, and the elimination of an

actuator in an UPS limb can be accompanied with the elimination of the whole limb.



5
Kinetostatics of the 3nSPU Robot

In this chapter, a simple and compact formulation for the kinetostatics of the 3nSPU

under-actuated robot is presented. This is needed both in the design of this under-actuated

robot, and in its control. Part of the work presented in this chapter has appeared in [43] and

in [41].

5.1 Introduction

In the previous chapter, we showed how under-actuated manipulators can be generated through

the substitution of a spherical pair by a particular non-holonomic pair in ordinary (i.e., not

under-actuated) manipulators. In this chapter, as a case study, the under-actuated parallel

architecture presented in [4] is demonstrated to be generable from an inversion of the 6-3

fully-parallel manipulator. Its kinetostatic analysis is reformulated, and a simple and compact

formulation, useful for its design and control, is obtained.

This rest of this chapter is structured as follows. Section 5.2 is devoted to the case study: a

compact formulation for its instantaneous kinematics and statics is obtained, and some clues for

the characterization of its singularities and controllability are provided. Section 5.3 presents a

numerical example of the behavior of singularities and controllability for a particular 3nSPU.

Eventually, Section 5.4 offers the conclusions.

5.2 The 3nSPU Robot

In this section, an under-actuated parallel manipulator generated from the 6-3 FPM

[Fig. 5.1(top)] is studied.



52 Kinetostatics of the 3nSPU Robot

S

U

P

Platform

Base

nS

U

P

Platform

Base

Figure 5.1: A fully parallel robot with 6-3 architecture (top), and under-actuated parallel robot
with 3nSPU architecture resulting from applying the joint substitution presented in Chapter 4
(bottom).

A fully parallel robot with 6-3 architecture features three couples of UPS limbs with co-

alesced S pairs in the end effector [Fig. 5.1(top)]. This architecture was proposed first by

Stewart [99], in the 1965, for a flight simulator. Successively, with the renewed interest for

the parallel architectures, started at the end of the eighties, it was diffusely studied. In par-

ticular, regarding the direct position analysis of the 6-3 parallel robot, Innocenti and Parenti-

Castelli [57] demonstrated that at most sixteen end-effector poses correspond to a given set of

limb lengths. Then, Parenti-Castelli and Di Gregorio [89] demonstrated that the end-effector
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pose is uniquely determined when the value of one passive joint variable is measured besides

the six limb lengths. The direct position analysis of this parallel manipulator can also be used for

spatial parallel manipulators that become 3RS structures when the actuators are locked (see,

for instance, [32,62,93,96]).

Starting from the 6-3 architecture, each couple of UPS limbs with coalesced S pairs

[Fig. 5.1(top)] can be transformed into an nSPU limb without affecting the workspace of

the manipulator, as explained in the previous chapter. By operating this substitution in all

the three couples of UPS limbs together with the inversion of the end effector with the

frame, the under-actuated manipulator with topology 3nSPU, shown in Fig. 5.1(bottom), is

obtained. This under-actuated manipulator is able to move the end effector in a six dimensional

workspace by changing only the three limb lengths.

Regarding the direct position analysis of the obtained robot, since its configuration space has

six dimensions, a number of closure equations equal to the number of unknowns can be written

if, and only if, over the three limb lengths, three more passive joint variables are measured. By

measuring the three joint variables of the three revolute pairs1 not adjacent to the end effector,

the closure equation system coincides with the one of the 6-3 parallel manipulator for assigned

limb lengths [89], and admits at most sixteen solution for the end-effector pose. Moreover, if the

joint variable of a revolute pair adjacent to the end effector is measured (or coherently assigned)

too, only one end-effector pose satisfies the closure equations [89].

5.2.1 Instantaneous kinematics

Fig. 5.2 shows the ith limb, i = 1, 2, 3, together with the notation that will be used. ŵ1i and ŵ2i

are two any mutually orthogonal unit vectors fixed to the frame and lying on the plane defined

by the roller axis and the center, Ai, of the sphere, in the roller-sphere contact. ŵ3i and ŵ4i

are the two mutually orthogonal unit vectors of the axes of the two revolute pairs constituting

the U joint. Bi is the center of the U joint. ai and bi are the two position vectors which locate

the points Ai and Bi, respectively, in a generic Cartesian reference fixed to the frame, whereas

p is the position vector of an end-effector point, P , in the same Cartesian reference. θji, for

i, j = 1, . . . , 4, is a joint variable denoting a rotation angle around the joint-axis defined by ŵji,

for i, j = 1, . . . , 4, and positive if counterclockwise with respect to ŵji. The length of the ith

limb is equal to ‖bi − ai‖, and it will be denoted li. Moreover, the limb-axis’ unit vector, ĝi, and

the unit vector, ĥi (r̂i) normal to the plane located by the U-joint’s revolute-pair axes (by the

1Each U joint can be seen as two revolute pairs: one adjacent to, and the other not adjacent to the end effector.
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ŵ1i

ŵ2i

ŵ3i

ŵ4i

p

ai

bi θ1i

θ2i

θ4i
θ3i

Figure 5.2: Notation associated with the ith limb of the studied 3nSPU robot.

roller axis together with the sphere center in the nS joint) satisfy the following relationships:

liĝi = bi − ai, ĥi = ŵ3i × ŵ4i and r̂i = ŵ1i × ŵ2i. (5.1)

The time differentiation of the first of the relationships (5.1) yields

l̇i ĝi + li ˙̂gi = ḃi. (5.2)

Since ˙̂gi = (θ̇1i ŵ1i + θ̇2i ŵ2i)× ĝi, and ḃi = ṗ+ω × (bi−p), where ω denotes the end-effector

angular velocity, equation (5.2) can be rewritten as

l̇i ĝi + li

[

θ̇1i (ŵ1i × ĝi) + θ̇2i (ŵ2i × ĝi)
]

= ṗ + ω × (bi − p). (5.3)

The dot products of (5.3) by ŵ1i and ŵ2i yield the following two scalar equations:

l̇i (ĝi · ŵ1i) + li θ̇2i (ŵ2i × ĝi · ŵ1i) = ṗ · ŵ1i + ω × (bi − p) · ŵ1i, (5.4)

l̇i (ĝi · ŵ2i) + li θ̇1i (ŵ1i × ĝi · ŵ2i) = ṗ · ŵ2i + ω × (bi − p) · ŵ2i. (5.5)

On the other hand (see Fig. 5.2), the end-effector angular velocity is equal to
∑

j=1,4 θ̇ji ŵji,
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whose dot product by ĥi gives the following expression

ω · ĥi = θ̇1i (ŵ1i · ĥi) + θ̇2i (ŵ2i · ĥi).

Solving (5.4) and (5.5) for θ̇2i and θ̇1i, respectively, and replacing the result in the above

equation, yields:

ω · ĥi =

(

ṗ · ŵ2i + ω × (bi − p) · ŵ2i − l̇i ĝi · ŵ2i

li (ŵ1i × ĝi · ŵ2i)

)

(ŵ1i · ĥi)

+

(

ṗ · ŵ1i + ω × (bi − p) · ŵ1i − l̇i ĝi · ŵ1i

li (ŵ2i × ĝi · ŵ1i)

)

(ŵ2i · ĥi).

(5.6)

Taking into account the vector identities

ĥi × r̂i = ĥi × (ŵ1i × ŵ2i) = (ŵ2i · ĥi)ŵ1i − (ŵ1i · ĥi)ŵ2i,

r̂i × ĝi = ŵ1i × ŵ2i · ĝi = −ŵ1i × ĝi · ŵ2i = ŵ2i × ĝi · ŵ1i,

the relationship (5.6) can be rewritten as:

l̇i ĝi · (ĥi × r̂i) = ṗ · (ĥi × r̂i) + ω ·
[

(bi − p)× (ĥi × r̂i)− li (r̂i · ĝi)ĥi

]

. (5.7)

Since l̇i can also be obtained as the projection of ḃi on ĝi (see Eq. (5.2)), the following

expression holds

l̇i = ḃi · ĝi = ṗ · ĝi + ω · [(bi − p)× ĝi] . (5.8)

Replacing expression (5.8) for l̇i in (5.7), gives

ṗ · si + ω ·
[

(bi − p)× si − li(r̂i · ĝi)ĥi

]

= 0, (5.9)

where

si = ĥi × r̂i −
[

ĝi · (ĥi × r̂i)
]

ĝi, (5.10)

is the component of ĥi × r̂i perpendicular to ĝi.

Eventually, rewriting equations (5.8) and (5.9), for i = 1, 2, 3, in matrix form yields

(

I3×3

O3×3

)

l̇ =

(

G3×3 K3×3

S3×3 J3×3

)(

ṗ

ω

)

, (5.11)

where I3×3 and O3×3 are the 3 × 3 identity and zero matrix, respectively, l̇ = (l̇1, l̇2, l̇3) is the
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vector collecting the joint rates of the actuated joints, and

KT [i, :] = (bi − p)× ĝi, (5.12)

GT [i, :] = ĝi, (5.13)

JT [i, :] = (bi − p)× si − li(r̂i · ĝi)ĥi, (5.14)

ST [i, :] = si, (5.15)

with the notation AT [i, :] to mean the ith column of matrix A3×3
T .

Matrix relationship (5.11) is the sought-after input-output instantaneous relationship neces-

sary to implement the control algorithms of the 3nSPU.

5.2.2 Statics analysis

p

ai

bi

f bi

fai

mhiĥi

mrir̂i

Figure 5.3: Free-body diagram associated with the ith limb of the studied 3nSPU robot.

The input-output static relationship can be immediately deduced from (5.11) through the

principle of virtual work. Nevertheless, in order to highlight how the loads act upon the

limbs and are transmitted through the joints, the complete static analysis of the 3nSPU will

be developed here independently of (5.11).

Fig. 5.3 shows the free-body diagram of the ith limb. With reference to Fig. 5.3, the force
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f bi (fai), applied on Bi (Ai), together with the torque mhi ĥi (mri r̂i) are the resultants of

constraint forces exerted by the end effector (frame) on the ith limb through the U joint (the nS

joint). Moreover, the force f ext, applied on the end-effector point P , together with the torque

mext will denote the resultants of the interaction forces exerted on the end effector. The force

τi ĝi will denote the axial force exerted on the upper part of the ith limb by the actuator in the

prismatic pair. It is worth noting that the force equilibrium, along the limb axis, of the the upper

part of the ith limb yields the following relationship τi = f bi · ĝi.
With the introduced notation, the equilibrium of the forces applied on the ith limb yields

f bi + fai = O; whereas, taking Ai as reference point, the equilibrium of the moments applied

on the same limb is:

mhi ĥi +mri r̂i + li ĝi × f bi = O. (5.16)

The dot product of Eq. (5.16) by ĝi, yields the relationship

mri = −mhi

ĥi · ĝi
r̂i · ĝi

, (5.17)

whose substitution for mri in (5.16), gives

mhi

r̂i · ĝi

[

(r̂i · ĝi)ĥi − (ĥi · ĝi)r̂i
]

+ li ĝi×f bi =
mhi

r̂i · ĝi

[

ĝi × (ĥi × r̂i)
]

+ li ĝi×f bi = O, (5.18)

where the vector identity ĝi × (ĥi × r̂i) = (r̂i · ĝi)ĥi − (ĥi · ĝi)r̂i has been used.

The dot product of Eq. (5.18) by ĥi× r̂i yields the relationship: (ĝi×f bi)·(ĥi× r̂i) = 0. Such

a relationship is satisfied if, and only if, f bi is a linear combination of ĝi and ĥi× r̂i. Subtracting

from ĥi × r̂i its component along ĝi, si is obtained. Since ĝi and si are two orthogonal vectors

that span the same subspace as ĝi and ĥi × r̂i, f bi can be expressed as follows:

f bi = τi ĝi + τ⊥i si. (5.19)

Equation (5.19) can be interpreted as the equilibrium of the forces applied on the upper part

of the ith limb. In fact, the two forces τi ĝi and τ⊥i si are, respectively, the active axial and the

passive shear forces applied through the actuated prismatic pair.

Replacing expression (5.19) for f bi in (5.18), and taking into account that ĝi × (ĥi × r̂i) =

ĝi × si yields
(

mhi

r̂i · ĝi
+ li τ

⊥
i

)

(ĝi × si) = O,

which is satisfied if

mhi = −li τ⊥i (r̂i · ĝi). (5.20)
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Using equation (5.17), eq. (5.20) can be rewritten as

mri = li τ
⊥
i (ĥi · ĝi). (5.21)

Regarding the end-effector equilibrium, the equilibrium of the forces is:

f ext = −
3
∑

i=1

f bi = −
3
∑

i=1

τi ĝi −
3
∑

i=1

τ⊥i si, (5.22)

and, taking the end-effector point P as reference point, the equilibrium of the moments is:

mext = −
3
∑

i=1

mhi ĥi −
3
∑

i=1

(bi − p)× f bi. (5.23)

Substituting f bi, according to (5.19), and mhi, according to (5.20), yields

mext = −
3
∑

i=1

τi(bi − p)× ĝi −
3
∑

i=1

τ⊥i [(bi − p)× si − li (r̂i · ĝi)ĥi] (5.24)

Finally, equations (5.22) and (5.24), for i = 1, 2, 3, can be rewritten in matrix form as

follows:
(

f ext

mext

)

= −
(

G3×3 K3×3

S3×3 J3×3

)T (

τ

τ⊥

)

, (5.25)

where τ = (τ1, τ2, τ3) is a vector collecting the signed magnitudes of forces applied by the

actuators in the prismatic pairs, whereas τ⊥ = (τ⊥1 , τ⊥2 , τ⊥3 ) from equation 5.19.

Matrix relationship (5.25) is the input-output static relationship of the 3nSPU. It is worth

noting that (5.11) and (5.25) satisfy the instantaneous power balance: f ext ·ṗ+mext ·ω = −τ ·l̇.

5.2.3 Singularity analysis

Singularities are manipulator configurations where the relationship (input-output instantaneous

relationship) between the rates of the actuated-joint variables and the end-effector twist, (ṗ,ω),

fails [34, 108]. Three types of singularities can be distinguished [34]: (I) singularities of

the inverse kinematic problem, (II) singularities of the direct kinematic problem, and (III)

singularities both of the inverse and of the direct kinematic problems. Type-I singularities occur

when the actuated joint rates cannot be uniquely computed for an assigned end-effector twist.

Vice versa, type-II singularities occur when the end-effector twist cannot be uniquely determined

for assigned actuated joint rates.

For the 3nSPU, the input-output instantaneous relationship is (5.11) where the actuated
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joint rates are collected in the vector l̇ . This relationship highlights that the 3nSPU has only

three instantaneous DoF. Therefore, its singularity analysis can be addressed by using the

scheme proposed in [25].

Regarding type-I singularities, provided that the assigned twist, (ṗ,ω), satisfies the last three

equations of system (5.11), it can be always solved. Note the system (5.11) does not model

the mobility limitations due to the physical constitution of the real joints, and to the real sizes

of the links. Such limitations bound the workspace and, when correctly modeled, yield type-I

singularities.

Regarding type-II singularities, the equation of the singularity locus is

det

(

G3×3 K3×3

S3×3 J3×3

)

= 0. (5.26)

The geometric interpretation of the above algebraic condition is not straightforward.

Nevertheless, the last three equations of system (5.11) allows the elimination of ṗ provided

that det(S3×3) = s1 · s2 × s3 is different from zero. In this case, system (5.11) becomes

l̇ = Qω , (5.27)

where Q is the 3 × 3 matrix (K3×3 − G3×3S3×3
−1J3×3) Thus, the analytic expression of the

singularity locus becomes

det(Q3×3) = q1 · q2 × q3 = 0, (5.28)

where the vectors qi, for i = 1, 2, 3, are the column vectors of matrix Q. In conclusion, if the

mixed product s1 · s2 × s3 is different from zero (i.e., the three vectors si, for i = 1, 2, 3, are

neither coplanar nor null vectors), the type-II singularities are geometrically identified by either

the coplanarity of the three vectors qi, for i = 1, 2, 3, or by the fact that at least one of the qi

vectors is a null vector.

If the mixed product s1 ·s2×s3 is zero, the determinant of the whole 6× 6 matrix appearing

in (5.26) must be considered, and geometric interpretations of (5.26) are much more difficult

to provide.

The zeroing of s1 · s2 × s3 can be geometrically identified since it occurs when either (a)

at least one of the si vectors is a null vector, or (b) the three si vectors are coplanar. Vector si

(see definition (5.26)) is related to the configuration of the ith limb, and it is the component of

ĥi × r̂i perpendicular to ĝi (i.e., to the limb axis).

As a consequence, condition (a) occurs when, in at least one limb, either (a.1) the two unit

vectors ĥi and r̂i are parallel (i.e., when, in a limb, the revolute pair axes in the U joint are both
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parallel to the plane defined by the roller axis and the sphere center in the nS pair), or (a.2)

the limb axis is the intersection line between the plane, defined by the roller axis and the sphere

center in the nS pair, and the plane, defined by the revolute pair axes of the U joint. Condition

(a.2) is forbidden in practice by the actual sizes of joints and links. Regarding condition (a.1),

a very special case occurs when ĥi and r̂i are parallel in all the limbs. This occurrence makes

the matrix S3×3 a null matrix and allows the determinant at the left-hand side of (5.26) to be

factorized as det(G3×3)det(J3×3) where det(G3×3) is equal to ĝ1 · ĝ2× ĝ3, whereas, in this case,

det(J3×3) is equal to −l1l2l3(r̂1 · ĝ1)(r̂2 · ĝ2)(r̂3 · ĝ3)ĥ1 · ĥ2 × ĥ3. Thus, in this case, a type-II

singularity occurs when either the limb axes are all parallel to a unique plane, or the ĥi vectors

are coplanar, or, finally, in at least one limb, the limb axis lies on the plane defined by the roller

axis and the sphere center of the nS pair. Moreover, it is worth noting that, in this case, the end

effector performs an instantaneous translation, if neither det(G3×3) nor det(J3×3) are equal to

zero (i.e., out of singularity).

Regarding condition (b) (i.e., the coplanarity of the si vectors), it occurs when the limb axes

are all parallel, and in other configurations more difficult to visualize.

5.2.4 Local and global controllability

Each end-effector configuration (pose) can be modeled as a point in R3×SO(3) which is locally

diffeomorphic to R6 equipped with a proper set of local coordinates: x = (pT ,ηT )T where η

is a three-dimensional vector collecting the values of the three orientation parameters chosen to

locate end-effector’s orientation.

By using the orientation parameters’ rates, η̇, the end-effector’s angular velocity, ω , can be

expressed as:

ω = H3×3η̇. (5.29)

Relationship (5.29) allows system (5.11) to be rewritten in the form

ẋ = V6×6

(

l̇

O3×1

)

, (5.30)

with

V6×6 , (v1,v2,v3,v4,v5,v6) =

(

I3×3 O3×3

O3×3 H3×3
−1

)(

G3×3 K3×3

S3×3 J3×3

)−1

, (5.31)

where vi is the ith 6-dimensional column vector of matrix V6×6. The vectors vi depend only on

x; so, they are vector fields defined on end-effector’s configuration space.
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Definition (5.31) allows (5.30) to be further simplified as follows:

ẋ = v1 l̇1 + v2 l̇2 + v3 l̇3. (5.32)

Relationship (5.32) states that, in the neighborhood of a generic configuration, x0, all the

configurations, x, reachable without maneuvering (i.e., without a sequence of coordinated

actions of the actuators) are so located that (x − x0) ∈ Span(v1,v2,v3).

(5.32) is the relationship to be considered for discussing end-effector’s ability to reach any

configuration in the neighborhood of a generic configuration, x0 [11, 82]. The presence of

non-holonomic constraints in the 3nSPU manipulator might allow all neighboring configu-

rations be reachable possibly by maneuvering. If this happens, the system would be "locally

controllable" [11] at the configuration x0.

It can be shown (see [82, pp. 323-324]) that, if a system, satisfying (5.32) and at the

configuration x0, first follows vi, i ∈ {1, 2, 3}, for a small time ε, then follows vj , j ∈ {1, 2, 3 :

j 6= i}, for the same time ε, then -vi for ε, and finally -vj for ε, it will reach the following

configuration of x0’s neighborhood:

lim
ε→0

x(4ε) = x0 + ε2[vi,vj ], (5.33)

where [vi,vj ] is the 6-dimensional vector field named Lie product of vi and vj , defined as follows

[vi,vj ] =
∂vj

∂x
vi −

∂vi

∂x
vj , (5.34)

and the trailing subscript, x = x0, indicates the point the two vector fields, vi and vj , are

evaluated at.

By reiterating the same reasoning (first, on pairs of vector fields of type vi and [vj ,vk],

i, j, k ∈ {1, 2, 3 : i 6= j 6= k}, and, successively, on pairs of vector fields belonging to the

set which collects all the vector fields that, in the previous iterations, were demonstrated to

point from x0 toward reachable configurations), it can be demonstrated that all the vector

fields obtained through Lie products of any degree of elements of the set {v1,v2,v3} point

toward configurations that are reachable by maneuvering from x0 [11]. In other words, for any

reachable configuration, say x, the vector (x = x0) belongs to the Lie algebra of {v1,v2,v3}
(The "Lie algebra" of a set of vector fields is the linear span of all Lie products, of all degrees, of

vector fields belonging to that set [11].).

In our case, demonstrating that the dimension of the linear space

Span(v1,v2,v3, [v1,v2], [v2,v3], [v3,v1]) is six2 is sufficient for concluding that the manipulator

2 It is worth noting that, if the dimension of Span(v1,v2,v3, [v1,v2], [v2,v3], [v3,v1]) equals six, all the Lie
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is locally controllable at a given configuration since end-effector’s configuration space is 6-

dimensional (Chow’s theorem [82]). Moreover, showing that the set of configurations where

the system is locally controllable is a simply connected region is sufficient to demonstrate the

existence of finite regions of end-effector’s configuration space where, for any two configurations

belonging to that region, at least one path exists, which the system can follow, for moving from

one configuration to the other (i.e., the system is “globally controllable" in that region).

According to the above discussion, the configurations where the local controllability of our

manipulator is not guaranteed are the geometric locus of the roots of the following equation

det[L6×6] = 0, (5.35)

where

L6×6 , [v1,v2,v3, [v1,v2], [v2,v3], [v3,v1]] . (5.36)

The locus of the roots of (5.35) is in general a 5-dimensional variety; thus, a finite region

where our manipulator is globally controllable in general exists. This statement will be verified

through the following numerical example.

5.3 Example

x̂

ŷ

ẑ

A1

B1

Platform

Base
a
1

b
1

r̂1

ŵ41

O

p

Figure 5.4: Identification of parameters in example.

According with the notation used in the Figs. 5.2 and 5.3 let us consider a 3nSPU platform

products of any degree in {v1,v2,v3} must belong to Span(v1,v2,v3, [v1,v2], [v2,v3], [v3,v1]); thus, all the
reachable configurations, x, satisfy the condition (x − x0) ∈ Span(v1,v2,v3, [v1,v2], [v2,v3], [v3,v1]).
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where the points Ai (Bi), i = 1, 2, 3, are at the vertices of an equilateral triangle fixed to

the frame (to the end effector). The Cartesian reference system fixed to the frame (to the

end effector) has the origin O (P ) at the centroid of the equilateral triangle, the z-axis is

perpendicular to the plane of the triangle and, the x-axis pass through A3 (B3) with positive

direction from A3 (B3) toward O (P ). In an arbitrary unit of length (aul), the distance of the

triangle vertices Ai (Bi) from its centroid is 39.7 aul (11.76 aul). In the same unit, the geometry

of the frame and of the end effector are defined by the following data (the vector without any

leading superscript are measured in the reference frame, whereas the vectors with the leading

superscript e(·) are measured in the end-effector reference frame):

Leg 1 Leg 2 Leg 3

ai [19.84;−34.38; 0.0]T [19.85; 34.38; 0.0]T [−39.70; 0.0; 0.0]T

r̂i [0.353;−0.612; 0.707]T [0.353; 0.612; 0.707]T [−0.707; 0.0; 0.707]T

bei [5.883;−10.19; 0.0]T [5.884; 10.19; 0.0]T [−11.76; 0.0; 0.0]T

we
4i [0.353;−0.612; 0.707]T [0.353; 0.612; 0.707]T [−0.707; 0.0; 0.707]T

With this manipulator geometry, the singularity locus defined by Eq. (5.26) and the root

locus of Eq. (5.35) have been computed for a fixed orientation of the end effector with respect

to the base reference frame.

The results of these two computations are shown in the Figs. 5.5(top) and 5.5(bottom),

respectively. By comparing the singularity locus [Fig. 5.5(top)] and the root locus of Eq. (5.35)

[Fig. 5.5(bottom)], a wide free-from-singularity region that is also globally controllable can be

identified.
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Figure 5.5: Top: Axonometric and zenithal views of the singularity loci, defined by
equation (5.26). Bottom: Axonometric and zenithal views of the region, defined by
equation (5.35), where the robot is not controllable. In both cases the moving platform is swept
in the xyz-space from −50 to 50 aul, while keeping its orientation fixed to (0, 1, 0) radians,
usingXZX Euler angles.
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5.4 Conclusions

In this chapter, a compact formulation for the kinetostatics of the 3nSPU robot has been pre-

sented. Using this formulation, we have identified the regions of its configuration space where it

is controllable. This information is needed both in the design of this particular manipulator, and

in its control. It will be the base for the path planning algorithm presented in the next chapter.





6
Motion planning for the 3nSPU robot

The kinetostatics analysis of the 3nSPU robot allowed us, in the previous chapter, to prove that

this robot is able to locally move its moving platform —excluding singular configurations— in a

six-dimensional configuration space. In this chapter we go a step further by presenting a solution

to the motion planning problem for this robot which can be adapted to other non-holonomic

parallel robots. This chapter presents some results obtained in cooperation with professors

Krzysztof Tchoń and Janusz Jakubiak (Wroclaw University of Technology, Poland), which already

appeared in [101].

6.1 Introduction

The motion planning problem for the 3nSPU robot will be addressed using the endogenous

configuration space approach [100], specified in [61] to the class of mechanical systems in-

cluding this parallel non-holonomic robot. The solution to this motion planning problem is

decomposed into two steps: first the control system representing the robot’s kinematics is

subject to a feedback transformation, and afterwards the end-point map of the obtained system

is inverted.

This chapter is organized as follows. Section 6.2 introduces the motion planning algorithm

whose performance is illustrated in Section 6.3 by a numeric example. Some conclusions are

drawn in Section 6.4.
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6.2 Motion planning

In the previous chapter, it is proven that the instanteneous kinematics of the 3nSPU robot can

be expressed in a very compact way as:

(

I3×3

O3×3

)

l̇ =

(

G3×3 K3×3

S3×3 J3×3

)(

ṗ

ω

)

, (6.1)

where l̇ = (l̇1, l̇2, l̇3)
T is the vector of velocities in the actuators,

(

ṗ

ω

)

is the vector of linear and

angular velocities of the moving platform, I3×3 and O3×3 are the 3 × 3 identity and the zero

matrix, respectively, and G = G(p,R), K = K(p,R), S = S(p,R), J = J(p,R) are 3 × 3

matrices dependent on the end-effector pose (position and orientation) (p,R) ∈ R3×SO(3)

whose entries are defined as

KT [i, :] = (bi − p)× ĝi, GT [i, :] = ĝi,

JT [i, :] = (bi − p)× si − li(r̂i · ĝi)ĥi, ST [i, :] = si,
(6.2)

where A[i, :] denotes the ith row of a matrix A.

Now, assuming invertibility of the whole block matrix standing on the r.h.s. of (6.1) and

taking u = l̇ as a control variable, the kinematics model is converted to the driftless control

system

ṗ = E(p,R)u, Ṙ = [F(p,R)u]×R, (6.3)

used in [61], where [ ]× : R3 → so(3) denotes the standard Lie algebras isomorphism of

R3 with the cross product and the space of skew symmetric 3 × 3 matrices with the matrix

commutator, so that [v ×w]× = [v]×[w]× − [w]×[v ]× = [[v]×, [w]×], and

[

E(p,R)

F(p,R)

]

=

[

G K

S J

]−1
∣

∣

∣

∣

∣

∣

3 first columns

. (6.4)

Given the control system (6.3), the motion planning problem for the parallel non-holonomic

robot can be stated in the following way: compute a control function u(t) steering the system

from an initial end effector pose (p0,R0) to the desired one (pd,Rd) within a prescribed time T .

More formally, setting p(t) = pp
0
,R0,t

(u(·)), R(t) = Rp
0
,R0,t(u(·)) to be the trajectory of (6.3)

starting at (p0,R0) and driven by the control u(t), this means that at time T the end-point map

of (6.3) assumes the prescribed values p(T ) = pd and R(T ) = Rd.

Due to the complexity of the matrix entries on the r.h.s. of (6.1), the analytic form of (6.3)
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is not very enlightening. To make it more tractable, two regularity assumptions will be made.

First, the matrix G will be assumed invertible, resulting in the following form of the system

(6.4)
[

E(p,R)

F(p,R)

]

=

[

G−1 + G−1K(J − SG−1K)−1SG−1

−(J − SG−1K)−1SG−1

]

. (6.5)

The second assumption is the invertibility of S. Under this assumption the feedback

u = GS−1(J − SG−1K)v , (6.6)

where v ∈ R3 is a new control, makes the control system (6.3) equivalent to

ṗ = S−1Jv , Ṙ = −[v ]×R. (6.7)

Thanks to the above regularity assumptions, the solution of the motion planning problem may

be obtained in two steps: first a control v(t) solving the motion planning problem for the system

(6.7) is found, and then the original control u(t) is computed using (6.6). The first step can be

accomplished in accordance with the guidelines presented in [61], that will be concisely recalled

below. Let vθ(t) be a family of control functions smoothly dependent on a parameter θ ∈ R,

and

pt(θ) = pp
0
,R0,t

(vθ(·)), Rt(θ) = Rp
0
,R0,t(vθ(·)),

denote the trajectory of the system (6.7) initialized at (p0,R0) and subject to the control vθ(t).

The derivation of the motion planning algorithm for the system (6.7) relies on an assumption

that there exists a control family vθ(t), such that the error

e(θ) =
(

pT (θ)− pd, log(RT (θ))Rd
T
)

, (6.8)

decreases to zero exponentially along with θ with a prescribed decay rate γ > 0,

de(θ)

dθ
= −γe(θ). (6.9)

The logarithm of the rotation matrix in (6.8) is defined as logR = α
2 sinα

(

R − RT
)

, where

cosα = 1
2(TrR − 1) and the angle of rotation 0 ≤ α < π.

To proceed, a pair of auxiliary variables will be introduced, denoted by wt(θ), st(θ), satisfy-

ing the following dependencies

wt(θ) =
∂pt(θ)

∂θ
, [st(θ)]× =

∂Rt(θ)

∂θ
Rt

T (θ). (6.10)
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The differentiation with respect to θ of the matrices on the r.h.s of the system (6.7) results

in a collection of differential equations (for details see [61], proof of Theorem 2.1)

(

ẇt(θ)

ṡt(θ)

)

=

[

A11θ(t) A12θ(t)

O −[vθ(t)]×

](

wt(θ)

st(θ)

)

+

[

B1θ(t)

−I

]

dvθ(t)

dθ
, (6.11)

where the entries of the matrices A11θ(t), A12θ(t) and B1θ(t) have been computed on the basis

of the data provided in [43]. The assumption that p0(θ) = p0 and R0(θ) = R0 yields the initial

conditions for (6.11) w0(θ) = O and s0(θ) = O. With these initial conditions the solution of

(6.11) at T can be represented as

(

wT (θ)

sT (θ)

)

=

∫ T

0
Φθ(T, t)Bθ(t)

dvθ(t)

dθ
dt, (6.12)

where the fundamental matrix Φθ(T, t) satisfies the evolution equation

∂Φθ(t, s)

∂t
= Aθ(t)Φθ(t, s), Φθ(s, s) = I6,

and

Aθ(t) =

[

A11θ(t) A12θ(t)

O −[vθ(t)]×

]

, Bθ(t) =

[

B1θ(t)

−I

]

.

The integral operator in (6.12) can be regarded as a Jacobian operator of the parallel

non-holonomic robot [100]. Now, it has been proved in [61] that the error vanishing formula

(6.9) is tantamount to the integral equation

∫ T

0
Φθ(T, t)Bθ(t)

dvθ(t)

dθ
dt = −γ

(

pT (θ)− pd

rT (θ)

)

, (6.13)

where [rT (θ)]× = log(RT (θ)Rd
T ). This being so, the motion planning algorithm for the parallel

non-holonomic robot is obtained by solving the equation (6.13) using a generalized inverse of

the Jacobian. If the Moore-Penrose pseudo inverse is chosen, the resulting differential equation

for the control function vθ(t) takes the following form

dvθ(t)

dθ
= −γBθ

T (t)Φθ
T (T, t)Dθ

−1

(

pT (θ)− pd

rT (θ)

)

. (6.14)

The matrix Dθ =
∫ T

0 Φθ(T, t)Bθ(t)Bθ
T (t)Φθ

T (T, t)dt, is the Gram matrix of the system (6.11).

Given the system (6.14), the solution of the motion planning problem is computed by taking the
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Figure 6.1: Solution of the motion planning problem for the presented example: controls v(t)
and leg lengths l(t).

limit v(t) = limθ→+∞ vθ(t). The system (6.7) subject to the control v(t) produces a trajectory

(p(t),R(t)). A suitable substitutions to the feedback equation (6.6) defines the control u(t)

solving the motion planning problem for the parallel non-holonomic robot.

6.3 Example

Since the motion planning algorithm (6.14) operates in an infinite dimensional space of control

functions, its computer implementation needs to be preceded by the introduction of a finite

dimensional space of controls. This is done in a standard way, by representing the control

function by its truncated orthogonal expansion [100]. In this work the truncated Fourier series is
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Figure 6.2: Trajectory relative to destination for the presented example: position error ep =

p(t)− pd and orientation error er(t), where [er(t)]× = logR(t)Rd
T .

exploited, so each control vi(t), i = 1, 2, 3, will consist of a constant term and up to h harmonics,

vi(t) = λi,0 +
h
∑

k=1

(

λi,2k−1 sin
2π

T
kt+ λi,2k cos

2π

T
kt

)

, (6.15)

so the control is finitely parametrized by Λ = (λ1,0, . . . , λ1,2h, . . . , λ3,0, . . . , λ3,2h)
T ∈ R6h+3. In

the finite dimensional case the control family takes the form vθ(t) = P(t)Λ(θ), where the block

matrix P(t) aggregates the basic harmonic functions. Consequently, the differential equation

(6.14) underlying the motion planning algorithm determines the control coefficients Λ

dΛθ

dθ
= −γJ#

p
0
,R0,T

(Λθ)

(

pT (θ)− pd

rT (θ)

)

, (6.16)



6.4 Conclusion 73

where J
#
p
0
,R0,T

(Λθ) denotes the Moore-Penrose pseudo inverse of the 6 × (6h + 3) Jacobian

matrix

Jp
0
,R0,T (Λθ) =

∫ T

0
Φθ(T, t)Bθ(t)P(t)dt,

of the parallel non-holonomic robot. The differential equation (6.16) should be integrated

numerically in accordance with a suitable integration scheme. In the sequel, the simplest Euler

scheme will be applied leading to the following difference equation for Λθ, where θ = 0, 1, . . .

Λθ+1 = Λθ − γJ#
p
0
,R0,T

(Λθ)

(

pT (θ)− pd

rT (θ)

)

. (6.17)

Performance of the motion planning algorithm will be illustrated with a numeric

example. The initial position of the platform is p0 = (0, 0, 25)T , while its orientation

R0 = RPY (0, 0,−π/6) corresponds to the Roll-Pitch-Yaw angles (0, 0,−π/6). The desired

end effector position and orientation pd = (−0.4,−0.2, 35)T and Rd = RPY (0, 0,−π/2). The

initial values of control parameters have been set to 0, except for λ11 = λ21 = λ32 = 0.5,

λ30 = 1. The planning time horizon T = 1. The algorithm has been stopped when the total

error E(θ) =
√

∥

∥pT (θ)− pd

∥

∥

2
+
∥

∥rT (θ)
∥

∥

2 drops below 10−3. In the computations the number h

of harmonics is set to two. Results of computations are shown in Figs. 6.1 and 6.2. In Fig. 6.2

the relative trajectories are shown, define as ep(t) = p(t)− pd and [r(t)]× = log(R(t)Rd
T ).

6.4 Conclusion

We have presented a motion planning algorithm for the 3nSPU robot. The algorithm’s synthesis

has been based on an application of the endogenous configuration space approach preceded by

a feedback transformation of the system (6.3). The presented results provide a novel motion

planning algorithm and essentially extend the applicability of the endogenous configuration

space approach.

Besides the controllability assumption, the presented algorithm requires two regularity as-

sumptions concerned with the matrices G and S. Geometrically, the regularity of G means

that vectors g1, g2, g3 should not be either parallel or co-planar, which is guaranteed by

design unless the moving platform of the robot coincides with the base. The regularity of

the matrix S does not seem to have so transparent geometric interpretation, and needs a

further analysis. In principle, it is possible to devise a motion planning algorithm without these

regularity assumptions, however, at the expense of increased computational complexity of the

algorithm. The trade-off between regularity and complexity should be subject to further studies.

Since the motion planning algorithm relies on the Jacobian inversion, only a local con-
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vergence can be guaranteed. This means that the initial vector of control parameters should

be chosen with some care. It is known that in the Jacobian inversion algorithms there is a

substitution of locality and the speed of convergence; this question in the context of parallel

non-holonomic robots has not been addressed before. An issue traditionally raised in the context

of the motion planning algorithm (6.14) refers to the choice of basic control functions and of

the integration procedure. Alternative choices to those made in this work can be examined.

The motion planning algorithm proposed in this chapter can be applied only off-line. Speed-

ing up the algorithm may be achieved by a suitable program code optimization and by using a

dedicated hardware, but likely it will also require a simplification of the mathematical model of

the robot’s kinematics and of the motion planning algorithm. This opens up another avenue of

future research.



7
The nS-2UPS non-holonomic parallel orienting

robot and its kinetostatics

This chapter analyzes the kinetostatic of a non-holonomic parallel orienting robot which can

maneuver to reach any orientation for its moving platform. We show how by (a) properly

locating the actuators, and by (b) representing the platform orientation using Euler parameters,

the analysis admits a simple bilinear formulation by introducing a local feedback transformation.

Interestingly enough, we also show that the singularities introduced by this transformation

coincide with the mechanical singularities of the robot system. Thus, no extra singularities are

added. A complete description of the robot’s workspace is presented, made-up by a singularity

free space combined with all joints ranges reachability. Part of the work presented in this chapter

has been published in [44].

7.1 Introduction

Consider a mechanism consisting of a sphere whose center is fixed with respect to the world

and whose orientation is controlled by three prismatic actuators anchored by their ends to the

sphere and the world through spherical joints, as shown in Fig. 7.1 (left). Using the mechanism

nomenclature this system can be referred as a 3SPS mechanism, or 3UPS, more frequently

used as two rotation axis of the S joints are always collinear. This kind of mechanism, which

can be regarded as a parallel robot, have been studied by several authors due to their practical

interest as a robotics wrist or, in general, as an orienting platform. The works of Innocenti and

Parenti-Castelli [58], and Wohlhart [105], are usually referred as the pioneering ones on the

kinematics analysis of this parallel platform.

As already mentioned in the introduction, in some applications, it is possible to substitute

one of the prismatic joints by a disk that rolls without slipping with respect to the sphere as
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x̂

ŷ

ẑ

x̂

ŷ

ẑ

r̂

A1

A2

B1

B2

Figure 7.1: In a parallel orienting platform actuated by three prismatic joints (left), one of there
joints can be substitute by a disk that rolls without slippage to obtain a non-holonomic parallel
orienting platform (right).

shown in Fig. 7.1(right). This idea was first introduced by Stammers in [98], and generalized

by Di Gregorio [27] following the ideas presented by Grosch et al. [43]. The new mechanism

can be referred as a nS-2UPS mechanism which belongs to a family of non-holonomic parallel

spherical robots studied and developed by different authors (see, for example, [26, 28, 29, 44,

60]).

If the system is analyzed at a first-order kinematic level (the dynamics of the system is not

considered), it can be shown that the differential equations that describe the system can be

expressed in the standard form of two-input driftless (no motion takes place for null inputs)

non-holonomic system. If the dynamics of the system is introduced, the system will exhibit drift

but an invertible feedback control can eliminate the dynamic parameters [21]. Therefore, the

analysis of the system can be addressed as that of a two-input driftless non-holonomic system.

An important class of non-holonomic systems for which a satisfactory understanding has been

reached is the class of systems that can be put, by feedback transformation, in the so-called

chained form [83]. A complete characterization of such systems (i.e., necessary and sufficient

conditions for the existence of a feedback transformation to chained-form) has been provided

by [81], while an algorithm for finding the necessary coordinate transform has been presented

in [103]. This is important in the presented problem because it has been shown that a two-

input driftless non-holonomic system with up to four generalized coordinates can always be

transformed in chained form [50,80,83]. Once in chained form, different methods can be used

for motion planning. Essentially two kinds of steering inputs signals have been considered:

sinusoidal and piecewise constant. While the first approach was pioneered by [83], the second
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is attributed to [69].

Putting a system in chained form is not an easy task and the result is not always satisfactory.

The generated feedbacks introduce, in general, singularities that lead to unfeasible control

inputs (i.e., infinite steering rates). Moreover, the characterization of these singularities, in the

general case, is difficult due to the complexity of the generated expressions. Besides this, the

standard procedures to derive chained forms assume that the number of generalized coordinates

coincides with the number of degrees of freedom of the system. This leads to an important

drawback when working with spatial orientations as they cannot be parameterized by only three

parameters without introducing more singularities.

In this chapter, it is shown how, by properly arranging the actuators and representing the

platform orientation using Euler parameters, a bilinear model can be derived and this derivation

requires an endogenous feedback whose singularities coincide with the mechanical singularities

of the platform. Thus, no extra singularities are added. Then, it is shown how this bilinear

model admits a closed-form formula for the path planning problem by relying on linear algebra

arguments.

This chapter is organized as follows. The kinematic model of the general parallel orienting

platform with one non-holonomic joint and two prismatic actuators is derived in Section 7.2.

Next, Section 7.3 shows how this model can be expressed in bilinear form by properly arranging

the actuators. This bilinear form depends on two matrices whose properties are investigated

in Section 7.5. The singularities of the system are analyzed in Section 7.4. In Section 7.6, the

robot workspace is analyzed, taking into account its mechanical singularities and the ranges of

all joints. Finally, Section 7.7 summarizes the main results and gives some prospects for further

research.

7.2 Kinematic model of non-holonomic parallel orient-

ing platforms

7.2.1 Notation

R 3× 3 rotation matrix defining the orientation of the moving platform.

ω vector of angular velocities.

r̂ unit vector of the non-holonomic constraint. Rotations about this axis are forbidden.

ai position vector of leg attachment i to the base in the base reference frame.
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bei position vector of leg attachment i to the moving platform in the moving platform refer-

ence frame.

bi position vector of leg attachment i to the moving platform in the base reference frame.

bi = Rbei .

li length of leg i. That is, li = ‖bi − ai‖ .

ĝi unit vector in the direction of leg i. That is, ĝi =
bi−ai

li
.

7.2.2 Holonomic constraints

x̂

ŷ

ẑ

a

b

Figure 7.2: A holonomic constraint is imposed on a freely rotating sphere by attaching a
prismatic actuator anchored by its ends to the rotating body and the world through spherical
joints.

Let us suppose a sphere that rotates ωx rad/s, ωy rad/s, and ωz rad/s, about the x, y, and z

axes, respectively. The linear velocity, due to these angular velocities, of a point attached to this

sphere with reference position vector b is

v = ω × b,

where ω = (ωx, ωy, ωz)
T . Then, the linear velocity of this point along the direction given by the

unit vector ĝ is

l̇ = ĝ · (ω × b) = ω · (b × ĝ). (7.1)
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Now, if we introduce a prismatic actuator anchored by its ends to the rotating sphere and

the world through spherical joints, as depicted in Fig. 7.2, 1-DoF of the rotating sphere is

constrained according to (7.1), where ĝ is a unit vector in the direction of the actuator and l̇, its

linear velocity.

7.2.3 Non-holonomic constraints

x̂

ŷ

ẑ

r̂

Figure 7.3: A non-holonomic constraint is imposed on a freely rotating sphere by putting in
contact with it a disk that freely rolls without slipping.

Alternatively to the holonomic constraint introduced above, we can also constrain the motion

of the freely rotating sphere by putting in contact with it a disk that rolls without slipping as

shown in Fig. 7.3. This disk prevents the sphere to rotate about the axis oriented in the direction

of the wheel. In other words,

ω · r̂ = 0. (7.2)

7.2.4 Constraining the motion of a sphere

Now, let us consider the case depicted in Fig. 7.1(right) in which the rotation of the sphere is

constrained by two actuated prismatic joints and a disk. In this case, the angular velocity of the
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sphere must satisfy the following system of equations (see equations 7.2 and 7.1 )

l̇1 = ω · (b1 × ĝ1)

l̇2 = ω · (b2 × ĝ2)

0 = ω · r̂















,

which can be expressed in matrix form as

Jω =









l̇1

l̇2

0









,

where

J =
(

b1 × ĝ1 b2 × ĝ2 r̂

)T

. (7.3)

Since ĝi = (bi − ai)/li and bi = Rbei , the above expression for J can be rewritten as:

J =









1/l1 0 0

0 1/l2 0

0 0 1









(

a1 × Rbe1 a2 × Rbe2 r̂

)T

. (7.4)

Therefore,

ω = K

(

l̇1l1

l̇2l2

)

, (7.5)

where

K =

[

(

a1 × Rbe1 a2 × Rbe2 r̂

)T
]−1









1 0

0 1

0 0









. (7.6)

7.3 Deriving a bilinear model

Although three is the minimum number of parameters required to describe the kinematics of

a rotating rigid body, every such three-dimensional parametrization of the motion is singular.

This is the case of the Euler angles and the Cayley-Rodrigues parameters. Alternatively, a non-

singular parameterization is possible by using four parameters. This is the case of the Euler
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parameters defined as

q =













a

b

c

d













=













cos φ
2

nx sin
φ
2

ny sin
φ
2

nz sin
φ
2













, (7.7)

where n̂ = (nx, ny, nz)
T is the equivalent axis of rotation and φ, the angle rotated about it.

From this definition, one can easily derive the following constraint

‖q‖2 = a2 + b2 + c2 + d2 = 1. (7.8)

See [85] and [86] for a detailed analysis of Euler parameter and their connections with other

parameterizations.

It can be shown that the rotation matrix, in terms of Euler parameters, can be expressed as

R = 2









a2 + b2 − 1
2 bc− ad bd+ ac

bc+ ad a2 + c2 − 1
2 cd− ab

bd− ac cd+ ab a2 + d2 − 1
2









. (7.9)

If we substitute this parametrization of R in (7.6), the result is rather awkward. Never-

theless, an important simplification is attained if the anchor points of the prismatic actuators

are oriented at π/2 one from each other in their local reference frames. For example, if we set

a1 = (1, 0, 0)T , a2 = (0, 1, 0)T , be1 = ka1, and be2 = ka2, the substitution of (7.9) in (7.6) yields

K =
2k

det(J)









−r2(ad+ bc) + r3(ac− bd) r2(ad− bc)

r1(ad+ bc) r1(−ad+ bc) + r3(ab+ cd)

−r1(ac− bd) −r2(ab+ cd)









,

where r̂ = (r1, r2, r3)
T . Further simplifications are still possible by properly locating the disk.

For example, if we set r̂ =
(

1√
2
, 1√

2
, 0
)T

, then

K =

√
2k

det(J)









−ad− bc ad− bc

ad+ bc bc− ad

bd− ac −ab− cd









. (7.10)

Since the relationship between angular velocities and time derivatives of Euler parameters
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is given by

q̇ =
1

2













−b −c −d
a −d c

d a −b
−c b a













ω , (7.11)

the substitution of (7.5), with the expression of K given in (7.10), in (7.11) yields

q̇ =













−b −c −d
a −d c

d a −b
−c b a





















−ad− bc ad− bc

ad+ bc bc− ad

bd− ac −ab− cd









(

u1

u2

)

, (7.12)

where

ui =

( √
2kli

det(J)

)

l̇i. (7.13)

Equation (7.13) can be seen as a transformation in the input variables. It actually represents

a local feedback transformation because both det(J) and li depend on q. Observe that this

change of inputs is singular at the mechanical singularities of the platform, that is, at those

orientations in which det(J) = 0. These singularities are studied in Section 7.4.

Now, let us define the transformation in the new input variables defined by

(

u1

u2

)

=

(

ad+ bc bc− ad

bd− ac −ab− cd

)−1(− 1√
2

0

0 1

)(

v1

v2

)

. (7.14)

This is also a local feedback transformation because it depends on the orientation of the plat-

form. Those orientations for which the matrix inverse in (7.14) is not defined are singularities

introduced by this transformation. These singularities are also analyzed in Section 7.4 where it

is shown that they coincide with the mechanical singularities of the platform. With this input

transformation, (7.12) can be rewritten as

q̇ =













−b −c −d
a −d c

d a −b
−c b a





















− 1√
2

0

1√
2

0

0 1









(

v1

v2

)

,

or, alternatively, as

q̇ = (Av1 + Bv2) q, (7.15)
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where

A =
1√
2













0 1 −1 0

−1 0 0 −1
1 0 0 −1
0 1 1 0













(7.16)

and

B =













0 0 0 −1
0 0 1 0

0 −1 0 0

1 0 0 0













(7.17)

This corresponds to the model of a driftless bilinear system with two inputs and four states,

but it is not a minimal representation because the four states are not independent. They must

satisfy (7.8). That is, q ∈ S3 where S3 = {x ∈ R3, ‖x‖2 = 1}. This dependency is already

implicit in (7.15). To make it explicit, let us derive (7.8) with respect to time to obtain

qT q̇ = 0. (7.18)

Then, by substituting (7.15) in (7.18), we have

v1q
TAq + v2q

TBq = 0.

Since the above equation must hold for any value of v1 and v2, it can be concluded that

qTAq = 0 (7.19)

and

qTBq = 0, (7.20)

but the quadratic form of a matrix is identically 0 if, and only if, the matrix is skew-symmetric,

as is our case.

7.4 Singularities

The mechanical singularities of the studied platform are the set of orientations in which det(J) =

0. From (7.3), it can be concluded that they correspond to those orientations in which the

vectors a1 × b1, a2 × b2, and r̂ lie on a plane. For the special configuration with bilinear

formulation, the expansion of (7.4) in terms of Euler parameters permits to formulate this
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geometric condition in algebraic terms as

d2a(b− c) + c2b(a− d)− b2c(a+ d)− a2d(b+ c) = 0. (7.21)

The substitution of these parameters by their definition given in (7.7) yields

(cosφ− 1)(p cosφ+ q sinφ+ r) = 0,

where

p = nxnz(1− n2
y) + nynz(1− n2

x),

q = ny(1− n2
y)− nx(1− n2

x),

r = nxnz(1 + n2
y) + nynz(1 + n2

x).

Then, the configuration is singular if, and only if, φ = 0, or

φ = atan2(q, p)± arccos

(

−r
√

p2 + q2

)

.

To derive the bilinear model presented in Section 7.3, two input transformations are needed

that might introduce extra singularities. The first input transformation (7.13) is only singular

in a mechanical singularity, so it does not introduce any new singularity. The second input

transformation (7.14) is apparently more complicated but the expansion of the determinant of

the matrix that depends on the configuration yields

−a2d(b+ c)− b2c(a+ c) + c2b(d− a) + d2a(c− b) = 0,

which is identical to (7.21), so it does not introduce any new singularity either.

In Section 7.6, the singularities will be revisited in a more general setting.

7.5 A, B, and rotations in R4

Let us define

C = AB =
1√
2













0 1 1 0

−1 0 0 1

−1 0 0 −1
0 −1 1 0













. (7.22)
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Then, it can be checked that

A2 = B2 = C2 = ABC = −I. (7.23)

Hamilton called quadruples with these rules of multiplication a quaternion. Actually, (7.23)

reproduces the celebrated formula that Hamilton carved into the stone of Brougham Bridge.

Therefore, the real linear span of {I,A,B,C} is isomorphic to the real algebra of quaternions.

As with standard quaternions, (7.23) determines all the possible products of A, B, and C

resulting in

AB = C, BA = −C,

BC = A, CB = −A,

CA = B, AC = −B. (7.24)

According to (7.23), it can be said that A, B, and C behave as imaginary magnitudes.

Then, it is not surprising that their matrix exponentials, defined according to the traditional

power series, have simple expressions similar to Euler’s formula:

eωA = sin(ω)A + cos(ω)I, (7.25)

eωB = sin(ω)B + cos(ω)I, (7.26)

eωC = sin(ω)C + cos(ω)I. (7.27)

Then, it is not either surprising to realize that eωA , eωB and eωC behave as rotations in four

dimensions. Indeed, since the exponential of an antisymmetric matrix is an orthogonal ma-

trix with determinant equal to +1 and unit length eigenvalues, eωA , eωB and eωC represent

rotations.

According to Cayley’s factorization, a 4D rotation matrix can always be expressed as the

product of two matrices of the form

RL(l1, l2, l3, l4) =













l1 −l2 −l3 −l4
l2 l1 −l4 l3

l3 l4 l1 −l2
l4 −l3 l2 l1













, (7.28)
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and

RR(r1, r2, r3, r4) =













r1 −r2 −r3 −r4
r2 r1 r4 −r3
r3 −r4 r1 r2

r4 r3 −r2 r1













(7.29)

which are known as left- and right-isoclinic rotation matrices, respectively (see [102] for details

on Cayley’s factorization).

Now, it can observed that

RR(r1, r2, r3, r4) = γ1I + γ2A + γ3B + γ4C (7.30)

where












γ1

γ2

γ3

γ4













=













1 0 0 0

0 −
√
2
2

√
2
2 0

0 0 0 1

0 −
√
2
2

√
2
2 0

























r1

r2

r3

r4













. (7.31)

Hence,












r1

r2

r3

r4













=













1 0 0 0

0 −
√
2
2 0 −

√
2
2

0
√
2
2 0 −

√
2
2

0 0 1 0

























γ1

γ2

γ3

γ4













. (7.32)

Therefore, {I,A,B,C} is a basis for right-isoclinic rotations and, as a consequence, (7.25)-

(7.27) represent right-isoclinic rotations.

In what follows, it is shown that three consecutive rotation around A, B and A, covers

all the rotational space in 4D. This is the key result used in the next chapter to solve the path

planning problem. From (7.25) and (7.26), we obtain

eω3Aeω2Beω1A =(sin(ω3)A + cos(ω3)I)(sin(ω2)B + cos(ω2)I)(sin(ω1)A + cos(ω1)I)

= sin(ω3)A sin(ω2)B sin(ω1)A + cos(ω3)I sin(ω2)B sin(ω1)A

+ sin(ω3)A cos(ω2)I sin(ω1)A + cos(ω3)I cos(ω2)I sin(ω1)A

+ sin(ω3)A sin(ω2)B cos(ω1)I + cos(ω3)I sin(ω2)B cos(ω1)I

+ sin(ω3)A cos(ω2)I cos(ω1)I + cos(ω3)I cos(ω2)I cos(ω1)I.
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Then, using equations (7.24), we obtain

eω3Aeω2Beω1A =sin(ω3) sin(ω2) sin(ω1)B − cos(ω3) sin(ω2) sin(ω1)C

− sin(ω3) cos(ω2) sin(ω1)I + cos(ω3) cos(ω2) sin(ω1)A

+ sin(ω3) sin(ω2) cos(ω1)C + cos(ω3) sin(ω2) cos(ω1)B

+ sin(ω3) cos(ω2) cos(ω1)A + cos(ω3) cos(ω2) cos(ω1)I.

That is,

eω3Aeω2Beω1A =(cos(ω3) cos(ω1)− sin(ω3) sin(ω1)) cos(ω2)I

+ (cos(ω3) sin(ω1) + sin(ω3) cos(ω1)) cos(ω2)A

+ (sin(ω3) sin(ω1) + cos(ω3) cos(ω1)) sin(ω2)B

+ (sin(ω3) cos(ω1)− cos(ω3) sin(ω1)) sin(ω2)C.

Now, after somewhat tedious algebraic manipulations, it can be checked that:

eω3Aeω2Beω1A = cos(ω2) cos(ω3 + ω1)I

+ cos(ω2) sin(ω3 + ω1)A

+ sin(ω2) cos(ω3 − ω1)B

+ sin(ω2) sin(ω3 − ω1)C. (7.33)

Therefore, any arbitrary right-isoclinic rotation can be expressed as:

γ1I + γ2A + γ3B + γ4C = eω3Aeω2Beω1A . (7.34)

Then, to find an expression for ω1, ω2, and ω3, we can identify (7.33) and (7.34)

γ1 = cos(ω2) cos(ω3 + ω1),

γ2 = cos(ω2) sin(ω3 + ω1),

γ3 = sin(ω2) cos(ω3 − ω1),

γ4 = sin(ω2) sin(ω3 − ω1). (7.35)

Therefore, from the first and the second equation above, we have that

ω3 + ω1 = atan2(γ2, γ1), (7.36)
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and, from the third and the fourth,

ω3 − ω1 = atan2(γ4, γ3). (7.37)

As a consequence, the subtraction of (7.36) from (7.37) yields

ω1 =
1

2
(atan2(γ2, γ1)− atan2(γ4, γ3)). (7.38)

Likewise, the addition of (7.36) and (7.37) yields

ω3 =
1

2
(atan2(γ2, γ1) + atan2(γ4, γ3)). (7.39)

Now, dividing the third equation by the first one in (7.35), we obtain:

γ3
γ1

=
sin(ω2) cos(ω3 − ω1)

cos(ω2) cos(ω3 + ω1)
.

That is,

tan(ω2) =
γ3
γ1

cos(ω3 + ω1)

cos(ω3 − ω1)
.

Then, replacing (7.36) and (7.37) in the above expression, we finally obtain:

ω2 = arctan

(

γ3
γ1

cos(atan2(γ2, γ1))

cos(atan2(γ4, γ3))

)

. (7.40)

The values of ω1, ω2 and ω3 obtained using (7.38), (7.40), and (7.39), respectively, permit

to solve equation (7.33) in closed form.

7.6 Workspace computation

A fundamental element in the design of any robot is the computation of its workspace. In what

follows the workspace of the robot is determined by taking into account separately:

1. the robot singularities;

2. the stroke range of the prismatic actuators;

3. the working range of the S and U joints; and

4. the collisions between base, legs and platform.

To define the robot design, without loss of generality, a1 is set to (1, 0, 0) and a2 is assumed

lo lie in the xy-plane of the base reference, be1 will lie on the x-axis of the platform reference
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and be2 will lie in the xy-plane of the platform reference. Moreover, we introduce the following

parameters:

α Angle between a1 and a2. That is, a2 = Rz(α)a1.

β Angle between be1 and be2. That is, be2 = Rz(β)b
e
1.

k Factor size between a1 and be1. That is, be1 = ka1.

Thus, the robot design will be defined by the 4-tuplet (α, β, k, r̂) (see Fig. 7.4).
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Figure 7.4: Identification of design parameters of a nS-2UPS robot.

7.6.1 Graphical representation of the platform orientation

To analyze the influence of the four restrictions, given above, on the robot workspace, a

parametrization leading to a workspace representation that can be easily and intuitively

interpreted, is needed.

There are multiple sets of parameters to represent the orientation of an object (Euler pa-

rameters, Euler angles, rotation matrix, vector-angle, etc.) and each of them has its pros and

cons. Choosing a point in a plot using any of these sets of parameters and trying to imagine how

the platform is oriented is, in general, far from intuitive. The situation worsens when trying to
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imagine how the orientation changes when following a trajectory in the same plot. With these

difficulties in mind, an ad-hoc representation of the platform orientation have been adopted for

graphical purposes.

The platform orientation will be represented by a unit vector ê and an angle γ (see Fig. 7.4).

ê will be the unit vector pointing from the origin to the midpoint of the segment connecting

b1 and b2. Since ê is a unit vector, we only need ex and ey to define it, all possible values for

ex and ey will be inside the unit circle of the xy-plane. Then, we can represent the platform

pose as the position of the center line of the platform, ê, and the angle γ rotated about it, using

the right hand convention. For example, when γ = 0, the line defined by b1 and b2 is parallel

to the xy-plane. Thus, the scalars ex, ey and γ can be used to unambiguously represent the

platform orientation. Like any other set of three parameters, this orientation representation has

singularities. They correspond to the case in which ê = (0, 0, 1)T . In this case any value of

γ makes the line defined by b1 and b2 to be parallel to the xy-plane, so the orientation of the

platform cannot be defined. This corresponds to the case in which the moving platform plane is

orthogonal with respect to the base plane, so it is excluded from the analysis.

7.6.2 Workspace boundaries due to singularities

The singularities of the studied robot are those orientations in which, according to (7.3),

det(J) = 0. To characterize this singularity locus, let us introduce two unit vectors, n̂1 and n̂2,

and two planes, Π1 and Π2. n̂1 and n̂2 are the normas of the planes defined by b1 × a1 and

b2 × a2 respectively. As a1 (a2) is constant, n̂1 (n̂2) necessarily swivels around a1 (a2) in a fix

plane, Π1 (Π2), as b1 (b2) varies.Thus, the normal of Π1 (Π2) is parallel to a1 (a2).

The set of singular orientations can be classified in three types:

1. Type I: singular orientations in which n̂1 or n̂2 are not defined. They occur when a1 ‖ b1
or a2 ‖ b2. They will always be present, no matter the robot design parameters.

2. Type II: singular orientations in which n̂1, n̂2, and r̂ are coplanar. To describe this type

of singularities a third plane, Πr, is introduced. It contains and swivels around r̂. These

singularities arise when n̂1 and n̂2 are at the intersection of Π1 with Πr, and Π2 with Πr,

respectively.

3. Type III: singular orientations in which n̂1, n̂2, and r̂ are also coplanar but they do not

occur under the same conditions as those of Type II. They arise when:

(a) n̂1 ‖ n̂2. Since a1 is not parallel to a2 by construction, this only occurs when the base

and the platform planes coincide. This singularities always are present no matter the

robot design parameters.
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(b) n̂1 ‖ r̂. This only occurs when r̂ lies in Π1, and n̂1 lies on the intersection of Πr and

Π1.

(c) n̂2 ‖ r̂. This only occurs when r̂ lies in Π2, and n̂2 lies on the intersection of Πr and

Π2.

(d) n̂1 ‖ n̂2 ‖ r̂. This only occurs when r̂ lies in the intersection of Π1 and Π2, and n̂1

and n̂2 lie on the intersection of Π1 and Π2.

If the robot is near to a singularity, it will still withstand any external force, at least in

theory, but the internal forces generated to counteract the external forces would be as high

as leading to a possible slippage between the roller and the sphere, or to the break down of

some mechanical elements. Thus, in practice, not only the orientations at which det(J) = 0

have to be determined, but it is also important to examine the condition number of J in the

whole workspace. In general, a linear system is said to be ill-conditioned if the logarithm of its

defining matrix condition number is higher than the precision of the matrix entries [3]. Thus, in

our case, we will say, as a rule of thumb, that an orientation with condition number lower than

10 is well-conditioned.
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Figure 7.5: Singularity analysis of an nS-2UPS robot with design parameters k = 0.5, α = π/2,
β = π/4 and r̂ = (1/

√
3, 1/
√
3, 1/
√
3)T . The blue surfaces represent the singularity locus, and

the red surfaces the orientations with condition number equal to 10. Left: Isometric view. Right:
Top view.
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Figure 7.6: Singularity analysis of an nS-2UPS robot with same design parameters as those in
figure 7.5 except for r̂ = (0, 0, 1)T . The blue surfaces represent the singularity locus, and the
red surfaces the orientations with condition number equal to 10. Left: Isometric view. Right:
Top view.
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Figure 7.7: Singularity analysis of an nS-2UPS robot with same design parameters as those
in figure 7.5 except for r̂ = (0.1, 0.1,

√
0.6)T . The blue surfaces represent the singularity locus,

and the red surfaces the orientations with condition number equal to 10. Left: Isometric view.
Right: Top view.
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As an example, let us set the robot design parameters to k = 0.5, α = π/2, β = π/4 and r̂ =

(1/
√
3, 1/
√
3, 1/
√
3)T . For this particular robot, Fig. 7.5 shows two views of the singularity locus,

represented as a blue surface. In the same figure, the red surface represents those orientations

in which the condition number is 10. Any pose containing or in between the red and blue surface

should be avoided, they are not well-conditioned. In this particular example we can see (due to

the adhoc parametrization) that the singularity locus breaks up the workspace in a very intricate

way.

If no other particular objective than maximizing the workspace is considered in the design

phase, the best solution is placing r̂ on the intersection of Π1 and Π2, that is, setting r̂ =

(0, 0, 1)T . In this case, all singularities, both of type I and II, are concentrated and limited to the

case in which b1, or b2, are coplanar with a1 and a2, which makes n̂1 ‖ r̂ or/and n̂2 ‖ r̂. To

see the effect on the singularity locus, let us continue with the previous example, changing only

r̂ = (0, 0, 1)T . For this particular design, Fig. 7.6 shows two views of the resulting singularity

locus as a blue surface, and those configurations in which the condition number is 10 as a red

surface. Observe how the region in which ez >
√
1− 0.82 can be consider as well-conditioned

configurations. Therefore, setting r̂ = (0, 0, 1)T leads to a very favorable design.

Another interesting aspect to study in the singularity locus is the influence on it due to small

variations of r̂ that could come from construction or assembly inaccuracies. Performing the

same singularity locus exploration as to the previous example, but with r̂ = (0.1, 0.1,
√
0.6)T ,

shows an insignificant variation with respect to r̂ = (0, 0, 1)T . The resulting singularity locus

appears in Fig. 7.7. Thus, it can be concluded that, in general, the choice of r̂ = (0, 0, 1)T is a

good and robust solution.

7.6.3 Workspace boundaries due to joint limits

As already pointed out, the workspace is not only determined by the robot singularities. The

stroke of the prismatic actuators and the working ranges of the spherical and universal joints

have to be taken into account for its complete characterization. The workspace due to the range

stroke of the legs in the same example above (k = 0.5, α = π/2, β = π/4 and r̂ = (0, 0, 1)T )

can be performed by characterizing the platform poses in a cylindrical mesh and finding the leg

length at each discretized pose. Surfaces are constructed for poses with equal values, values

used are 1 to 0.5 for each leg. Fig. 7.8 shows four views of the surfaces, two views for each leg.

The plot information on where the platform is capable of arriving with each leg, assuming that

the other leg has no length restriction. Each plot shows six surfaces. Each surface represent an

specific leg length. In the case in which the leg length for leg 1 is 0.5 the surface degenerates

into a curve passing through ex = 0.9239, ey = 0.3827, and γ = 0.

The plots in Fig. 7.8 are the workspaces for each leg independent from each other. The actual
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Figure 7.8: Contribution of the stroke range for each leg to the analyzed nS-2UPS robot
workspace. Each surface corresponds to orientations in which the robot has a leg with the same
length. The color code is as follows: Leg length: 1 (Blue), 0.9 (Red), 0.8 (Green), 0.7 (Magenta)
and 0.6 (Yellow). Top: Leg 1 (Left: Isometric view. Right:Top view). Bottom: Leg 2 (Left:
Isometric view. Right:Top view).
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Figure 7.9: Workspace limits of analyzed nS-2UPS robot due to the stroke ranges of both legs.
Both legs lengths are in the range [0.5, 1]. Left: Isometric view. Right: Top view.
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Figure 7.10: Workspace limits of analyzed nS-2UPS robot due to the joint ranges. All four
joints working ranges are assumed to be cones with 70o of aperture. Left: the four regions
resulting from computing the limit for each joint independently. Right: Intersection of all four
regions.
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robot workspace is the intersection of the contribution of each leg. Fig. 7.9 shows the result.

Another factor that limits the workspace is the working range of the universal and spherical

joints. Typically, universal joints have a working range of 35 degrees measure from their center

line. In other words, they can move inside a 70 degree cone. Spherical joints have an equivalent

work range although they have an additional degree of freedom. They freely spin around the

axis of the prismatic actuator. Thus, for our analysis, they can be treated as universal joints.

Next, a pose is chosen to be the reference pose. At this orientation all the joints are centered at

the middle of their working range. Repeating the same procedure as in the case of leg ranges,

the volumes containing feasible poses for each joint are found, where the surface of the volume

are poses at the limit of the joint range. The feasibility of a pose is determined by doing the

dot product of the vector along the leg, ĝi, at the actual pose and the vector along the leg, ĝi,

at the reference pose. The process is done for the four joints [see Fig. 7.10(left)], and then an

intersection of the four volumes is found [see Fig. 7.10(right)]. The obtained volume contains

all the feasible orientations of the nS-2UPS robot, without violating the joints ranges.

Finally, we should find the limits of the workspace due to collisions between platform, legs

and non-holonomic restriction, but in this particular case the limits due to joint ranges are so

restrictive that there is no possible collision inside the allowed region. Thus, it is not necessary to

perform this computation. Moreover, it is interesting to observe that the limits of the workspace

due to the joint ranges is a subset of the one due to the stroke ranges of the actuators, and also

to the one due to the mechanical singularities.

7.7 Conclusions

We have shown how designing a parallel orienting platform with only two actuators becomes

feasible by introducing mechanical elements that lead to non-holonomic constraints. The ad-

vantages of the presented design might seem dubious when facing the necessity of introducing

a path planner to generate the required maneuvers to reach a target from a given initial configu-

ration. Nevertheless, in the next chapter, we present a set of alternative geometric techniques to

the dominating Lie algebraic methods applicable to our particular design, like the one presented

in this chapter, whose simplicity make the proposed robot architecture a real alternative in some

applications where the reduction of bulk, weight or cost is a must.
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Motion planning for the nS-2UPS parallel

orienting robot

Any system with two inputs and up to four generalized coordinates can always be transformed

into chained form. Then, since the nS-2UPS non-holonomic robot has two inputs (its leg

lengths) and three generalized coordinates (its orientation parameters), its kinematics can be

formulated in chained form. Given a system in chain form, its path planning problem can be

solved using well-established procedures (see [70] and the references therein) which means the

path planning problem for the analyzed nS-2UPS parallel orienting robot can be solved using

one of these procedures, as Jakubiak did in [60] for a particular configuration of the system. In

this case, Jakubiak used control functions given by truncated trigonometric series, as we already

did in Chapter 6 for the 3nSPU robot. Nevertheless, the use of these procedures requires a good

understanding of sophisticated methods in non-linear control whose technicalities have proven

a challenge to many practitioners who are not familiar with them. As an alternative, geometric

path planners have been proposed, for example, in [29]. The main advantage of this kind of path

planners is that they are based on elementary kinematics arguments. However, they generate

stepped maneuvers, that is, maneuvers with intermediate instants with zero velocity that guide

the moving platform to the desired orientation. This chapter goal is to present a geometric path

planner able to steer the robot to the desired orientation in a continuous maneuver (maneuvers

with no intermediate instants with zero velocity). Part of the work presented in this chapter has

appeared in [45].

8.1 Introduction

The path planning problem for the studied non-holonomic parallel robot can be decomposed

into the following two steps: (1) first solve the planning problem considering only the sphere
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and the disk that constrains its motion, and then (2) obtain the required motion for the prismatic

joints in the legs using the inverse kinematics of the robot. Separating both problems, instead of

considering both at once, leads to an important simplification. However, this does not go without

a price as the first step does not take into account the robot singularities. This is not an important

drawback if a workspace free from singularities is defined beforehand (see Section 7.6).

Based on a rather old result on linear time-varying systems, this chapter shows that there are

infinitely many differentiable paths connecting two arbitrary configurations in SO(3) such that

the instantaneous axis of rotation along the path rest on a fixed plane. This theoretical result

leads to a practical path planner for non-holonomic parallel orienting robots. A path planner

which is a closed-form solution and whose derivation requires no other tools than ordinary linear

algebra. To present this result, we start with a path planner based on three-move maneuvers,

and then we proceed by progressively reducing the number of moves to one, thus providing a

unified treatment with respect to previous geometric path planners.

This chapter is organized as follows. The first approach, the three-move maneuver, is

presented in Section 8.2. It takes advantage of the bi-linear formulation presented in Section 7.3.

It consists of three consecutive rotations around two orthogonal axes on the plane defined by the

non-holonomic constraint. The second approach, presented in Section 8.3, is a generalization

of the first one. It is based on quaternion formulation instead of the bi-linear formulation,

which overrides the robot configuration restrictions assumed for the development of the bi-

linear formulation. Section 8.4 presents the third approach, a two-move maneuver. It uses

only two consecutive constant velocity rotations around two axes non-necessarily orthogonal

on the plane defined by the non-holonomic constraint. Finally, in Section 8.5, a one-move

maneuver is presented. It uses a rotation about a varying axis that rests on the plane defined

by the non-holonomic restriction. To compare the procedures, a detailed example is developed

in Section 8.6. A description of the experimental testbed, where the derived path planner have

been verified, is presented in Section 8.7. We conclude in Section 8.8 with a summary of the

main points.

8.2 Three-move maneuver

It has been proved in Section 7.3 that, by properly arranging the actuators of an nS-2UPS

parallel orienting robot, its instantaneous kinematics is governed by the simple differential

equation

q̇ = (Av1 + Bv2)q, (8.1)

where v1 and v2 stand for generalized inputs. Remember that the actuated leg lengths
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velocities, the actual inputs, can be expressed as:

(

l̇1

l̇2

)

=
det(J)√

2k

(

1/l1 0

0 1/l2

)(

ad+ bc bc− ad

bd− ac −ab− cd

)−1(− 1√
2

0

0 1

)(

v1

v2

)

. (8.2)

Now, let us suppose that the generalized inputs are constant, then (8.1) becomes a linear

differential equation which can be easily integrated yielding

q(t) = e(v1A+v2B)tqI ,

where qI stands for the initial orientation of the platform. Even if v1 and v2 vary with time, the

above equation might still be used as a good approximation of the evolution of the system for

small values of t.

Thus, for piecewise constant generalized inputs, the motion of the orienting platform can be

easily computed. Let us introduce a maneuver consisting in a sequence of actuations in which

during ∆t seconds v1 = k1 and v2 = 0, then during ∆t seconds v1 = 0 and v2 = k2 and, finally,

during ∆t seconds v1 = k3 and v2 = 0. The configuration reached by the moving platform, after

this maneuver, can be expressed as:

qF = eω3Aeω2Beω1AqI , (8.3)

where ωi = ki∆t. Then, if we compare (8.3) with (7.33), it can be concluded that this sim-

ple maneuver permits to reach any desired configuration by finding the proper values of ωi,

i = 1, 2, 3. To this end, we first need to find the right-isoclinic rotation that drives the moving

platform from qI = (aI , bI , cI , dI)
T to qF = (aF , bF , cF , dF )

T , that is, the set of parameters

r1, r2, r3 and r4 that satisfies













r1 −r2 −r3 −r4
r2 r1 r4 −r3
r3 −r4 r1 r2

r4 r3 −r2 r1

























aI

bI

cI

dI













=













aF

bF

cF

dF













,

which can be rewritten as













aI −bI −cI −dI
bI aI −dI cI

cI dI aI −bI
dI −cI bI aI

























r1

r2

r3

r4













=













aF

bF

cF

dF













. (8.4)
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Then, substituting (7.32) in (8.4), we obtain













aI
√
2
2 (bI − cI) −dI

√
2
2 (bI + cI)

bI
√
2
2 (−aI − dI) cI

√
2
2 (−aI + dI)

cI
√
2
2 (aI − dI) −bI

√
2
2 (−aI − dI)

dI
√
2
2 (bI + cI) aI

√
2
2 (−bI + cI)

























γ1

γ2

γ3

γ4













=













aF

bF

cF

dF













.

Solving this linear system yields













γ1

γ2

γ3

γ4













=













aI bI cI dI
bI−cI√

2
−aI+dI√

2
aI−dI√

2
bI+cI√

2

−dI cI −bI aI
bI+cI√

2
−aI−dI√

2
−aI+dI√

2
− bI−cI√

2

























aF

bF

cF

dF













.

Finally, substituting these values of γi, i = 1, . . . , 4, in (7.38), (7.40), and (7.39), we get the

values of ω1, ω2, and ω3, respectively, that define the proposed maneuver. Once these values are

known, the platform orientation, as a function of time, can be expressed as

q(t) =















eω1tAqI , 0 ≤ t < ∆t

eω2
∆t−t
∆t

Beω1AqI , ∆t ≤ t ≤ 2∆t

eω3
2∆t−t

∆t
Aeω2Beω1AqI , 2∆t < t ≤ 3∆t

(8.5)

As an example, let us consider an nS-2UPS platform with the design parameters

a1 = (1, 0, 0)T , a2 = (0, 1, 0)T , be1 = ka1, be2 = ka2, r̂ = [ 1√
2

1√
2
0] and k = 0.5.

We want to drive the moving platform from the initial orientation given by qI =

(0.9537, 0.2300,−0.1835, 0.0624)T to the final orientation given in quaternion form by

qF = (0.9537, 0.1835,−0.2300,−0.0624)T . The first step is to use equation (7.31) to conclude

that (γ1, γ2, γ3, γ4) = (0.9900, 0.0000,−0.0998, 0.0993). Then, using equations (7.38), (7.40)

and (7.39), we find that (ω1, ω2, ω3) = (−1.1793, 0.1413, 1.1793). Finally, we can obtain the

platform orientation as a function of time using (8.5), and the input leg lengths velocities using

equation (8.2). The results are presented in Fig. 8.1.

In this example, it is important to observe that, despite the initial and final poses are not

far apart, the leg lengths span from 0.6 to 1.18 units. There are very few examples of linear

actuators able of performing such long strokes. This problem is alleviated using the maneuvers

proposed next.
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Figure 8.1: Example of a three-move maneuver platform motion, and the corresponding leg
lengths as a function of time. The light and dark gray triangles represent the platform in its
initial and final configurations, respectively.

8.3 Alternative three-move maneuver

Recalling the assumptions under which the bilinear formulation was developed (Section 7.3),

we had that r̂ = [ 1√
2

1√
2
0]. Nevertheless, as absolute rotations1 are reference-independent, a

maneuver can be found in the quaternion-space for a particular r̂ and then use the maneuver

with a change of reference that aligns the taken r̂ with the desired direction. Then, in what

follows, it is assumed that r̂ is parallel to the z-axis.

Using a quaternion representation, the path planning problem can be restated as follows:

given the initial orientation, qI = aI + bI î + cI ĵ + dI k̂, and final orientation, qF = aF + bF î +

cF ĵ + dF k̂, find the time varying quaternion q(t) such that qF = q(tF )qI , where q(t) would

have the following form

q(t) = cos

(

θ(t)

2

)

+
((

cos (α(t)) î + sin (α(t)) ĵ
)

cos(β(t)) + sin(β(t))k̂
)

sin

(

θ(t)

2

)

.

From the results obtained in the previous section, a three-move maneuver is the result of

1The absolute rotation, qT , is the rotation needed to rotate the platform from the initial orientation, qI , to the
final orientation, qF , qT = qFqI

∗ where q
∗ is the conjugate quaternion of q
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composing three constant rotations. That is,

qF = q3q2q1qI ,

qFqI
∗ = q3q2q1, (8.6)

qT = q3q2q1,

where the vector components of q1, q2, and q3 are orthogonal to r̂. Using a XYX sequence of

rotations, we have that

q1 = cos(θ1/2) + sin(θ1/2)î, q2 = cos(θ2/2) + sin(θ2/2)ĵ, q3 = cos(θ3/2) + sin(θ3/2)î.

Then, the time varying quaternion can be expressed as:

q(t)=



































(

cos
tθ1
2∆t

+sin
tθ1
2∆t

î

)

, 0 ≤ t < ∆t

(

cos
(t−∆t)θ2

2∆t
+sin

(t−∆t)θ2
2∆t

ĵ

)

q1, ∆t ≤ t ≤ 2∆t

(

cos
(t− 2∆t)θ3

2∆t
+sin

(t− 2∆t)θ3
2∆t

î

)

q2q1, 2∆t ≤ t ≤ 3∆t

(8.7)

where q(3∆t)=qT . To determine the three unknowns, ω1, ω2 and ω3, we rewrite (8.6) as

q3q2 = qTq1
∗ = (aT + bT î + cT ĵ + dT k̂)q1

∗,

where

aT = aIaF + bIbF + cIcF + dIdF ,

bT = −bIaF + aIbF + dIcF − cIdF ,

cT = bIdF + aIcF − dIbF − cIaF ,

dT = cIbF − dIaF + aIdF − bIcF .
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the following system of equations is obtained

cos(θ2/2) cos(θ3/2) = bT sin(θ1/2) + aT cos(θ1/2),

cos(θ2/2) sin(θ3/2) = bT cos(θ1/2)− aT sin(θ1/2),

sin(θ2/2) cos(θ3/2) = cT cos(θ1/2)− dT sin(θ1/2),

sin(θ2/2) sin(θ3/2) = cT sin(θ1/2) + dT cos(θ1/2),

whose solution can be expressed as:

θ1 = atan2

(

bT cT − aTdT
aT cT + bTdT

)

, (8.8)

θ2 = arccos(b2T + a2T − c2T − d2T ), (8.9)

θ3 = atan2

(

aTdT + bT cT
aT cT − bTdT

)

. (8.10)

Section 8.6 presents an example of this three-move maneuver and compares it to the other

methods presented below.

8.4 Two-move maneuver

The second method is inspired on the alternative three-move maneuver presented in the previ-

ous section. Instead of using three rotations over fixed vectors (XYX), it finds two constant

rotations, given by q1 and q2, whose vector component are in the plane whose normal is r̂.

Given the initial and final orientations, qI and qF , respectively, then

qF = q2q1qI ,

qFqI
∗ = q2q1,

qT = q2q1, (8.11)

where q1 and q2 have the form

qi = cos(θi/2) + (sin(αi)î + cos(αi)ĵ) sin(θi/2).
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Then, the two-move time function of the platform orientation will be given by

q(t)=















(

cos
tθ1
2∆t

+
(

sin(α1)î+cos(α1)ĵ
)

sin
tθ1
2∆t

)

, 0 ≤ t < ∆t

(

cos
(t−∆t)θ2

2∆t
+
(

sin(α2)î+cos(α2)ĵ
)

sin
(t−∆t)θ2

2∆t

)

q1, ∆t ≤ t ≤ 2∆t

(8.12)

where q(2∆t)=qT . To determine the four unknowns θ1, θ2, α1 and α2, equation (8.11) must be

solved. Rewriting this equation as

q2 = qTq1
∗,

the following system of equations is obtained

cos(θ2/2) =aT cos(θ1/2) + cT sin(θ1/2) cos(α1) + bT sin(θ1/2) sin(α1),

sin(θ2/2) sin(α2) =bT cos(θ1/2) + dT sin(θ1/2) cos(α1)− aT sin(θ1/2) sin(α1),

sin(θ2/2) cos(α2) =cT cos(θ1/2)− aT sin(θ1/2) cos(α1)− dT sin(θ1/2) sin(α1),

0 =dT cos(θ1/2)− bT sin(θ1/2) cos(α1) + cT sin(θ1/2) sin(α1).

Since we have three equations (actually one equation above is redundant) and four unknowns,

we can take one of the variables as a parameter and express the rest of variables as a function

of it. Taking α1 as a parameter, we have:

θ1 =f1(α1)

=2 atan2

(

dT
bT cos(α1)− cT sin(α1)

)

, (8.13)

α2 =f2(α1, θ1)

= atan2

(

bT cos(θ1/2) + dT sin(θ1/2) cos(α1)− aT sin(θ1/2) sin(α1)

cT cos(θ1/2)− aT sin(θ1/2) cos(α1)− dT sin(θ1/2) sin(α1)

)

, (8.14)

θ2 =f3(α1, θ1, α2)

=2 atan2

(

(cT cos(θ1/2)− aT sin(θ1/2) cos(α1)− dT sin(θ1/2) sin(α1))/ cos(α2)

(aT cos(θ1/2) + cT sin(θ1/2) cos(α1) + bT sin(θ1/2) sin(α1))

)

. (8.15)

Now, an additional criterion can be introduced to find a solution. In Section 8.6, an example is

presented where the value taken for α1 is the one that minimizes θ21 + θ22.
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8.5 One-move maneuver (continuous maneuver)

For the general angular velocity function ω(t) = [ωx(t) ωy(t) ωz(t)] the differential equation

Ṙ(t) = [ω(t)]×R(t) has no closed-form solution (it is a non integrable system). Nevertheless,

for a constant angular velocity ω = [ωx ωy ωz], there is a close-form solution, the one given

by the Rodrigues’ rotation formula

R(t) = I +
sin(θ)

θ
t[ω]× +

1− cos(θ)

θ2
(t[ω ]×)

2 where [ω ]× =









0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0









.

It represents a rotation about ω̂ the angle θ = ‖ω‖ t.
Since in our case the angular velocity component, ωz(t), must be 0, the differential equation

to solve in quaternion form is

q̇(t) =
1

2













0 −ωx(t) −ωy(t) 0

ωx(t) 0 0 ωy(t)

ωy(t) 0 0 −ωx(t)

0 −ωy(t) ωx(t) 0













q(t). (8.16)

The obvious question that comes to mind is if there are time varying functions ωx(t) and ωy(t)

for which the differential equation (8.16) can be integrated in closed-form.

Reading Hennessey’s [49] work, we find an equivalent system as the one used in this work, a

non-holonomic motion of a disc over a sphere. In particular Hennessey’s work describes circular

paths of the disc-sphere contact point. Paths obtained by varying constantly the angular velocity

axis. With this circular paths in mind, which are integrable, an orientation time function is found

and used to build a new type of maneuver.

It was proved in [106] that, if ω(t) in (8.16) satisfies the differential equation

[ω̇(t)]× = N1 [ω(t)]× − [ω(t)]× N1, (8.17)

then the solution to (8.16), in matrix form, can be expressed as:

R(t) = exp (tN1) exp (tN2)R(0),

where N1 and N2 = [ω(0)]× − N1, are 3× 3 skew-symmetric matrices. It can be seen that

the one-move rotation, at each instant t, is equivalent to two simultaneous constant angular

rotations, one with angle t ‖n1‖ around vector n̂1 and the other with angle t ‖n2‖ around vector
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n̂2 (where [n1]× = N1 and [n2]× = N2). The solution to (8.16), in quaternion form, can be

expressed as:

q(t) = exp (t ‖n1‖ n̂1) exp (t ‖n2‖ n̂2) q(0),

where

exp (t ‖ni‖ n̂i) = q (t ‖ni‖ , n̂i) = cos (t ‖ni‖/2) + sin (t ‖ni‖/2) (nix
î + niy

ĵ + niz
k̂)/ ‖ni‖ .

With some elementary algebra which is not reproduced here, it can be verified that

N1 =









0 −ω 0

ω 0 0

0 0 0









,

is a particular solution of (8.17). Indeed replacing N1 in equation (8.17) yields the following

system of equations:
ω̇y = ω ωx,

ω̇x = −ω ωy,

whose integration yields

ωx = A cos(ωt+ ω0),

ωy = A sin(ωt+ ω0). (8.18)

Then,

ω(0) =
[

A cosω0 A sinω0 0
]

,

and, as a consequence,

N2 =









0 ω A sinω0

−ω 0 −A cosω0

−A sinω0 A cosω0 0









.

In order to use the above result to solve the problem of rotating the moving platform from

qI to qF , we can scale the time variable, t, so that the maneuver is completed at t = 1. Then, at

t = 1, we have that

qF = q(ω, k̂)q(δ, p̂)qI ,
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where

p̂ =
1√

ω2 +A2
(A cosω0, A sinω0,−ω)T , (8.19)

δ =
√

ω2 +A2. (8.20)

In other words, the goal is to find ω, ω0, and A such that

q(ω, k̂) q(δ, p̂) = qF qI
∗ = qT . (8.21)

If we set qT = (a, b, c, d), it can be checked that q(ω, k̂)∗ qT can be expressed, as a function

of ω, as

a′(ω) = a cos
ω

2
+ d sin

ω

2
,

b′(ω) = b cos
ω

2
+ c sin

ω

2
,

c′(ω) = c cos
ω

2
− b sin

ω

2
,

d′(ω) = d cos
ω

2
− a sin

ω

2
.

Since, according to (8.21), q(δ, p̂) = q(ω, k̂)∗ qT , we have that

cos
δ

2
= a′(ω), (8.22)

A

δ
cosω0 sin

δ

2
= b′(ω), (8.23)

A

δ
sinω0 sin

δ

2
= c′(ω), (8.24)

−ω

δ
sin

δ

2
= d′(ω). (8.25)

Now, observe that (8.22) and (8.25) depend only on ω and δ. From (8.22), we have that

δ = ±2 arccos
(

a′(ω)
)

. (8.26)

Moreover, equation (8.22) can be rewritten as sin(δ/2) = ±
√

1− [a′(ω)]2. Then, dividing

this expression by (8.25), we conclude that −δ/ω = ±
√

1− [a′(ω)]2/d′(ω). In other words,

δ = ∓ω
√

1− [a′(ω)]2

d′(ω)
. (8.27)
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Therefore, equating (8.26) and (8.27) yields the following transcendental equation in ω

2d′(ω) arccos
(

a′(ω)
)

+ ω
√

1− [a′(ω)]2 = 0. (8.28)

Unfortunately, as it is usually the case for transcendental equations, no explicit solution has

been found for (8.28). Thus, we have to rely at this point on a numerical method.
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Figure 8.2: Typical example of plots representing the positive branches of (8.27) and (8.26)
shown in dashed blue and solid green lines, respectively.

If we plot δ as a function of ω using (8.26) and (8.27), the intersection of both curves will

correspond to the sought solutions. Fig. 8.2 depicts a typical example of the obtained plots.

Observe that if (δ, ω) is a solution of (8.26) and (8.27), then (−δ, ω) is a solution as well, but

they both correspond to the same physical motion. This simply accounts for the double covering

of SO(3) when using Euler parameters.

Finally, with the obtained solutions for ω and δ, it is concluded from (8.20) that

A =
√

δ2 − ω2, (8.29)
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and, from (8.24) and (8.23), that

ω0 = arctan

(

c′(ω)

b′(ω)

)

. (8.30)

In conclusion, the robot orientation as a function of time can simply be expressed as

q(t)=q

(

t

∆t
ω, k̂

)

q

(

t

∆t
δ, p̂

)

qI , 0 ≤ t ≤ ∆t. (8.31)

8.6 Example
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Figure 8.3: Location of the joints and the disk for the nS-2UPS robot used in the example.

To get some insight into the three methods and compare them, an example is used. Let

us consider the non-holonomic orienting robot shown in Fig. 8.3. The center of the sphere is

located at the origin, the spherical joints attached to the base are centered at a1 = (1, 0, 0)T

and a2 = (0, 1, 0)T , and those attached to the moving platform, in the reference orientation, at

be1 = (0.5, 0, 0)T and be2 = (0, 0.5, 0)T . Due to the non-holonomic constraint, the sphere cannot

rotate about r̂, which is assumed to be aligned with the z-axis, as above.
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Let us also assume that the initial and final orientations of the moving platform are given by

qI = 0.9355 + 0.0233î − 0.2188ĵ + 0.2765k̂,

qF = 0.9664 + 0.2543î + 0.0335ĵ − 0.0188k̂,

then

qT = qFqI
∗ = (0.8974, 0.2102, 0.3136,−0.2283).

8.6.1 Three-move maneuver

The three-move maneuver results from applying equations (8.8), (8.9) and (8.10). This yields

ω1 = 0.8594, ω2 = 0.7967, ω3 = −0.3993.

A representation of the robot motion following the resulting trajectory can be seen in

Fig. 8.5(top), and for the legs movement see Fig. 8.6.

8.6.2 Two-move maneuver
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Figure 8.4: The minimum of θ21 + θ22 as a function of α2 is attained at 1.7384. This value
determines the two-move maneuver used in the example.
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To obtain the two-move maneuver, the first step is to compute a set of values for α1, θ1 and

θ2 in the range −π < α2 < π using equations (8.13), (8.14) and (8.15). The second step,

since we can arbitrarily choose α2, we pick out the value that minimizes θ21 + θ22. This minimum

is attained at α2 = 1.7384 (see Fig. 8.4). For this value of α2, the remaining variables of the

two-move maneuver yield θ1 = 1.1713, α1 = 2.5829, and θ2 = −1.1708. This values define the

two-move maneuver, a rotation around n1 = (−0.848, 0.530, 0)T an angle α1 = 2.5829, followed

by a rotation around n2 = (−0.167, 0.986, 0)T an angle α2 = 1.7384. A representation of the

robot motion following the resulting trajectory can be seen in Fig. 8.5(middle), and the legs

movement can be seen in Fig. 8.6.

8.6.3 One-move maneuver

Following the procedure detailed in Section 8.5, the first move consists in plotting δ as a function

of ω using both (8.26) and (8.27) for qT = (0.8974, 0.2102, 0.3136,−0.2283). The result is

plotted in Fig. 8.2. The intersection of both curves occurs at

δ = 4.1578, ω = 3.7496.

Then, the substitution these values in (8.29) and (8.30) yields

A = 1.7965, ω0 = −0.8945.

A representation of the motion followed by the robot along the resulting path can be seen in

Fig. 8.5(bottom), and for the legs movement can be see in Fig. 8.6.

8.6.4 Comparing the three path planners

Fig. 8.5 shows the motion generated by the three path planners. On the left column, we have

light gray and dark gray triangles representing the moving platform in its initial and final

orientation, respectively. The sequence of small reference frames illustrate the path followed

by the Sb1 joint center. This is the motion generated as seen from the base reference frame.

If we fix the observer to the moving reference frame, the motion followed by the disk on the

sphere is better appreciated. This is represented on the right column of the figure.

All three trajectories behave well and quite similarly in this example. A greater difference

is observed when translating the generated motions of the platform into a variation of the two

leg lengths, li = ‖bi − ai‖ = ‖Rbei − ai‖ , i = 1, 2. The result is represented in Fig. 8.6.

The one-move maneuver generates a differentiable path. It can lead to faster motions because

the generated trajectory does not contain any zero-velocity points, thus making the use of the
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studied parallel robot possible in a larger range of applications. Finally, it is worth noting that,

although using the one-move path planner the time variation of the legs’ lengths are differ-

entiable, the trajectory followed by the point of contact between the disk and the sphere might

contain cusp points. These points play a fundamental role in non-holonomic path planners [70].

An important result is that they are here automatically generated.

It must be pointed out that any of the presented maneuvers can be used to go directly from

the initial to the final pose, or they can be used to move to intermediate poses. Fig. 8.7 shows the

leg movements introducing intermediate poses. The maneuvers, were calculated using the same

path planner: the two-move maneuver. In this particular example the legs maximum extension

has been reduced by adding intermediate poses, something useful in those cases where the

stroke needed to perform the maneuver is out of the physical range of the actuator.

A final thought on the generated maneuvers: all three methods behave well in this example,

but this is no necessarily true in general. In some examples one method could behave better

than the other. Future work aims for combinations of the presented maneuvers that will give an

optimal solution.
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Figure 8.5: Example of the motions generated by the three described path planners shown with
respect to both the reference frame of the base and that of the moving platform (see text for
details).
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generated trajectories, while rotating from qI to qF . The leg lengths for the three-move
maneuver are represented in dashed lines, for the two-move maneuver, in dotted lines, and
for the single-move maneuver, in solid lines.
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Figure 8.7: Top: leg lengths along a two-move maneuver (in solid lines), and the result of
introducing two intermediate points (in dashed lines). Bottom: representation of the platform
motion along both planned trajectories.
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8.7 Hardware and software implementation

Figure 8.8: Implemented experimental testbed.

To validate the presented path planners, the testbed shown in Fig. 8.8 has been implemented.

It features a redimensionable structure, two legs with SPS topology and a moving platform

fixed, to a non-holonomic joint.

The structure is constructed with aluminum profiles with the idea of being modular, S joints

and the non-holonomic joint can be placed where desired. Modularity also includes the ability

to re-orient the non-holonomic constraint to point in any direction.

Initially, each SPS leg had as prismatic actuators a miniature Firgelli linear actuators with
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a stroke of 100 mm [54]. Due to their slowness and inaccuracies, they have been replaced by

Dynamixel MX64 motors with USB communication [15]. The legs are attached to the base

through spherical joints based on spherical bearings housed in 3D printed plastic receptacles

that enables the relocation of the joints.

The non-holonomic joint is based on a steel ball. It has been perforated using an electric

discharge machine. Its motion is constrained by two rollers arranged in opposing positions

from the center. Three free-rolling spheres are used to keep the joint centered in the plane

perpendicular to the line between the contact points of the rollers (see Section 4.3 for a detailed

explanation of the design and construction of the non-holonomic joint).

The orientation of the platform is measured using a Phidget spatial 3/3/3 sensor that com-

municates via USB [14]. This board has a 3-axis accelerometer, gyroscope and compass. Motors

and sensor are interfaced through USB using a software developed for interfacing with Matlab.

The software enables reading the platform orientation and the leg lengths, and commanding the

motors.

8.8 Conclusions

The motion planning problem of an nS-2UPS parallel orienting robot has been solved in this

chapter using a quaternion formulation. First, we solve the problem by introducing a three-

move maneuver. Then, we observe that it can be simplified to a two-move maneuver. Finally,

we arrive at the rather surprising result that only a continuous maneuver is needed, in general,

to reach an arbitrary final configuration. That is, the analyzed orienting robot cannot follow

arbitrary paths connecting two orientations, but it is possible in general to find smooth paths

in closed-form connecting two arbitrary orientations. We do not know of any other non-trivial

non-holonomic system where such kind of closed-form solution have been found for its path

planing problem.

The continuous maneuver has been developed from a particular solution to a differential

equation. This means that there are probably infinitely many L∞ paths connecting two arbitrary

orientations in SO(3) that satisfy the non-holonomic constraint. This opens the possibility of

optimizing the path according to some criterion, or even the possibility of finding paths with

closed-form formulas for their defining parameters, instead of relying on a numerical method.

The presented path planners are open-loop methods. However, it would be desirable to

construct the input as a function of the system state to compensate for noises and errors in the

system. Path planners that generate maneuvers cannot be translated into control systems in

an obvious way. The situation changes with the presented single-move path planner. This is

certainly a point that deserves further attention. The result would be a practical algorithm
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for planning and controlling the motions of the studied platform that can help to achieve

all its potential benefits. The presented ideas seem to be applicable to other non-holonomic

mechanical systems whose orientation has to be controlled.
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Conclusions

9.1 Contributions

The aim of the thesis has been to define, analyze and implement parallel robots with unconven-

tional joints so that the resulting mechanical systems are under-actuated and/or reconfigurable.

It has been shown how these new mechanical systems pose challenging problems in path-

planning and control, thus leading to a set of new “benchmarks" in the area of non-holonomic

and reconfigurable systems. This expands the range of examples for these kind of systems, which

was limited in the past to systems like vehicles, possibly with arms, or vehicles dragging n-carts

in series, some of them having more academic than practical interest.

The new proposed designs have been derived from the Gough-Stewart platform, to which,

through certain geometric transformations, some its joints are replaced by lockable joints or

non-holonomic joints. These substitutions permit reducing the number of legs (and hence of

actuators) without losing the robot’s ability to bring its mobile platform to any position and

orientation within its workspace. In general, these new designs have:

1. larger working space compared to the Gough-Stewart platform from which they are de-

rived, as the possibility of collisions between legs is reduced; and

2. lower weight and cost due to the reduction in the number of legs and actuators.

These advantages do not come without a cost: it is necessary, in all cases, to plan maneuvers

to reach the desired position and orientation for the moving platform. Therefore, the obtained

robots will only be suitable for applications where no high speeds are needed, accuracy is re-

quired in the final pose, and a certain margin of error is acceptable in the generated trajectories.

These applications include most positioning and point-to-point tasks.

It can be said that the main contribution of this thesis has been to open a new line of research

in parallel robots. Up to our knowledge, the derived publications during the elaboration of this
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thesis contain the first research results in the use of non-holonomic and/or lockable joints in the

area of parallel robots.

The analysis of each of the derived new robots has been conducted with the greatest possible

generality. This has included in most cases:

1. the computation of its direct and inverse kinematics (both in position and velocity);

2. the analysis of its singularities;

3. the computation of its workspace;

4. the design and implementation of a motion planning algorithm; and

5. the implementation of a prototype, whenever the budget has allowed us, to validate the

theoretical model.

In all studied cases, it has been possible to design an algorithm to automatically generate

the necessary maneuvers to connect two arbitrary configurations. The nature of the presented

algorithms ranges from pure geometrical to entirely analytical. Indeed, while the generation

of trajectories for parallel platforms with lockable joints is a geometrical and combinatorial

problem, the same for platforms with non-holonomic joints requires the use of differential

geometry tools.

The following publications have been derived from this work:

- P. Grosch, R. Di Gregorio and F. Thomas. "Generation of under-actuated parallel robots

with non-holonomic articulations and kinetostatic analysis of a case-study", Proc. of the

ASME International Design Engineering Technical Conference, pp. 979-986, 2009.

- P. Grosch, R. Di Gregorio and F. Thomas. "A one-motor full-mobility 6-PUS manipulator",

ROMANSY 18 Robot Design, Dynamics and Control, Vol. 524 of CSIM Courses and

Lectures, pp. 49-56, 2010.

- P. Grosch, R. Di Gregorio and F. Thomas. "Generation of under-actuated manipulators

with non-holonomic articulations from ordinary manipulators", Journal of Mechanisms

and Robotics, vol. 2, no. 1, pp. 11005-11012, 2010.

- P. Grosch, R. Di Gregorio, J. Lopez and F. Thomas. "Motion planning for a novel re-

configurable parallel manipulator with lockable revolute articulations", Proc. of the IEEE

International Conference on Robotics and Automation (ICRA 2010), pp. 4697-4702, 2010.
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- K. Tchoń, J. Jakubiak, P. Grosch and F. Thomas. "Motion planning for parallel robots with

non-holonomic joints", Latest Advances in Robot Kinematics, J. Lenarcic and M. Husty

(editors), Springer, pp. 115-122, 2012.

- P. Grosch and F. Thomas. "A bilinear formulation for the motion planning of

non-holonomic parallel orienting platforms", Proc. of the IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS 2013), pp. 953-958, 2013.

- P. Grosch and F. Thomas. "Geometric path planning without maneuvers for non-holonomic

parallel orienting robots", accepted in IEEE Robotics and Automation Letters, 2016.

The interest of other research groups in our ideas has led to collaborations with Prof. R. Di

Gregorio, from the University of Ferrara, and Prof. K. Tchoń, from the University of Wroclaw, as

reflected in the authorship of some of the above publications. Their help during the elaboration

of this thesis is again gratefully acknowledged.

9.2 Prospects for future research

Many open problems detailed throughout this thesis might be the subject of interesting prospects

for future research, but we think that two of them deserve particular attention.

The 4bRRPS parallel platform has been proved to be able to move its moving platform in

a six-dimensional operational space by using only four actuators. Maneuvers essentially consist,

in this case, in changing the set of locked joints at via configurations. It have been shown that

parallel singularities can be avoided and the maximum forces in the actuators can be reduced by

suitably inserting these via configurations. We conjecture that, by properly locating the joints, it

would be possible to avoid all singularities. If this conjecture is eventually proved, this parallel

platform would attain a remarkable place in the universe of parallel robots.

The nS-2UPS parallel orienting platform has been proved to be able to move its moving

platform in the three-dimensional space of orientations by using only two actuators. Based on a

rather old result on linear time-varying systems, it has been shown that a single-step maneuver

allows this robot, in general, to move from one configuration to any other in its workspace by

following an infinitely differentiable path. The consequences of this fact have not been fully

explored yet. We think that its application not only to path-planning but also to control offers

the opportunity of achieving all the potentialities of this interesting platform without relying on

intricate techniques.





References

[1] F. Aghili and K. Parsa. Design of a Reconfigurable Space Robot with Lockable Telescopic
Joints. IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 4608 –
4614, 2006.

[2] F. Aghili and K. Parsa. A Reconfigurable Robot With Lockable Cylindrical Joints. IEEE
Transactions on Robotics, 25:785 – 797, 2009.

[3] J. Angeles. Fundamentals of Robotic Mechanical Systems: Theory, Methods, and
Algorithms. Mechanical Engineering Series. Berlin, Germany: Springer-Verlag, 2003.

[4] P. Ben-Horin and F. Thomas. A Nonholonomic 3-DoF Parallel Robot. Advances in Robot
Kinematics: Analysis and Design, Springer Verlag, pages 111 – 118, 2008.

[5] D. Bernier, J. M. Castelain, and X. Li. A New Parallel Structure with Six Degrees
of Freedom. In Proceedings of the 9th World Congress on the Theory of Machines and
Mechanisms, pages 8 – 12, 1995.

[6] A. M. Bloch. Nonholonomic Mechanics and Control. Interdisciplinary Applied
Mathematics, 24, 2003.

[7] A. V. Borisov and I. S. Mamaev. Chaplygin’s Ball. The Suslov Problem and Veselova’s
Problem. Integrability and Realization of Constraints. Nonholonomic Dynamical Systems.
Integrability, Chaos, Strange Attractors. Moscow-Izhevsk: Institute of Computer Science,
pages 118 – 130, 2002.

[8] A. V. Borisov and I. S. Mamaev. Rolling of a Rigid Body on Plane and Sphere. Hierarchy
of Dynamics. Regular and Chaotic Dynamics, 7:201 – 218, 2002.

[9] T. Boye and G. Pritschow. New Transformation and Analysis of a n-DoF Linapod with Six
Struts for Higher Accuracy. Robotica, 23:555 – 560, 2005.

[10] R. W. Brockett. Asymptotic Stability and Feedback Stabilization. Differential Geometric
Control Theory, Boston, 27:181 – 191, 1983.

[11] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki, and S. Thrun.
Principles of Robot Motion: Theory, Algorithms, and Implementations. Intelligent Robotics
and Autonomous Agents series, MIT Press, Boston, 2005.

[12] Huco-Dynatork Co. World Leading Manufacturers of Small Precision Couplings.
www.huco.com/, 2015.

[13] Item Co. Building Kit Systems for Industrial Applications.
http://www.item24.co.uk/, 2015.

[14] Phidgets Co. Products for USB Sensing and Control. http://www.phidgets.com/,
2015.

[15] Robotis Co. Commercializing Personal Robots. http://www.robotis.com/, 2015.

www.huco.com/
http://www.item24.co.uk/
http://www.phidgets.com/
http://www.robotis.com/


124 REFERENCES

[16] Servo City Co. Mechanical Components for use in Robotics.
http://www.servocity.com/, 2015.

[17] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
Second Edition, MIT Press, 2001.

[18] J. Cortés and T. Siméon. Probabilistic Motion Planning for Parallel Mechanisms. IEEE
International Conference on Robotics and Automation, 3:4354 – 4359, 2003.

[19] G. Cui and Y. Zhang. Kinetostatic Modeling and Analysis of a New 3-DoF Parallel
Manipulator. Computational Intelligence and Software Engineering, 2009. CiSE 2009.
International Conference on, pages 1 – 4, 2009.

[20] B. Dasgupta and T.S. Mruthyunjaya. The Stewart Platform Manipulator: a Review.
Mechanism and Machine Theory, 35:15 – 40, 2000.

[21] A. De Luca and G. Oriolo. Modelling and Control of Nonholonomic Mechanical Systems.
CISM International Centre for Mechanical Sciences (Chapter 7 ), pages 277 – 342, 1995.

[22] A. De Luca, G. Oriolo, and P. Robuffo-Giordano. Image-Based Visual Servoing Schemes
for Nonholonomic Mobile Manipulators. Robotica, 25:131 – 145, 2007.

[23] R. Di Gregorio. Singularity-Locus Expression of a Class of Parallel Mechanisms. Robotica,
20:323 – 328, 2002.

[24] R. Di Gregorio. Statics and Singularity Loci of the 3-UPU Wrist. IEEE Transactions on
Robotics, 2004.

[25] R. Di Gregorio. An Exhaustive Scheme for the Singularity Analysis of Three-DoF Parallel
Manipulators. In Proc. of the 17th International Workshop on Robotics in Alpe-Adria-
Danube Region RAAD, 2008.

[26] R. Di Gregorio. Kinematic Analysis of the (nS)-2SPU Underactuated Parallel Wrist. ASME
Journal of Mechanisms and Robotics, 4, 2012.

[27] R. Di Gregorio. Position Analysis and Path Planning of the S-(nS)PU-SPU and S-(nS)PU-
2SPU Underactuated Wrists. ASME Journal of Mechanisms and Robotics, 4, 2012.

[28] R. Di Gregorio. Type Synthesis of Underactuated Wrists Generated from Fully-Parallel
Wrists. ASME Journal of Mechanical Design, 4, 2012.

[29] R. Di Gregorio. Position Analysis, Path Planning, and Kinetostatics of Single-Loop RU-
(nS)PU Wrists. ASME Journal of Mechanisms and Robotics, 74:117Ű133, 2014.
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[61] J. Jakubiak, K. Tchoń, and W. Magiera. Motion Planning in Velocity Affine Mechanical
Systems. International Journal of Control, 83:1965 – 1974, 2010.

[62] C. Y. Ji, T. C. Chen, and Y. L. Lee. Investigation of Kinematic Analysis and Applications
for a 3-RRPS Parallel Manipulator. Journal of the Chinese Society of Mechanical Engineers,
28:623 – 632, 2007.

http://www.firgelli.com/


REFERENCES 127

[63] D. Joyner. Adventures in Group Theory: Rubik’s Cube, Merlin’s Machine and other
Mathematical Toys. The Johns Hopkins University Press, Baltimore (USA)., 40:34 – 54,
2002.

[64] H. Karbasi. Uni-Drive Modular Robots. Phd. Thesis, University of Waterloo, Canada, 2002.

[65] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars. Probabilistic Roadmaps for
Path Planning in High-Dimensional Configuration Spaces. IEEE Transactions on Robotics
and Automation, 12:566 – 580, 1996.

[66] C. T. Kelley. Solving Nonlinear Equations With Newton’s Method. Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, 2003.

[67] A. P. Kharlamov and M. P. Kharlamov. Nonholonomic Joint. Mekh. Tverd. Tela (Rigid
Body Mechanics), NAS of Ukraine, 27:1 – 7, 1995.

[68] J. Koiller and K. Ehlers. Rubber Rolling over a Sphere. Regular and Chaotic Dynamics,
12:177 – 200, 2007.

[69] G. Lafferriere. A General Strategy for Computing Steering Controls of Systems Without
Drift. IEEE Conference on Decision and Control, Brighton, UK, pages 1115 – 1120, 1991.

[70] J. P. Laumond, S. Sekhavat, and F. Lamiraux. Guidelines in Nonholonomic Motion
Planning for Mobile Robots. Robot Motion Planning and Control, Lecture Notes in Control
and Information Science, Springer, 129:1 – 53, 1998.

[71] Y. Li, Y. Song, Z. Feng, and C. Zhang. Complete Jacobian Matrix of a Class of Incompletely
Symmetrical Parallel Mechanisms with 4-DoF. Chinese Journal of Mechanical Engineering
(Jixie Gongcheng Xuebao), 43, 2007.

[72] D. A. Lizárraga. Obstructions to the Existence of Universal Stabilizers for Smooth Control
Systems. Mathematics of Control, Signals, and Systems (MCSS), 16:255 – 277, 2004.

[73] Y. Lu and J. Xu. Simulation Solving/Modifying Velocity and Acceleration of a 4UPS+SPR
Type Parallel Machine Tool During Normal Machining of a 3D Free-Form Surface. The
International Journal of Advanced Manufacturing Technology, 42:7 – 8, 2009.

[74] Y. Lu, M. Zhang, Y. Shi, and J. Yu. Kinematics and Statics Analysis of a Novel 4-DoF
2SPS+2SPR Parallel Manipulator and Solving its Workspace. Robotica, 27:771 – 778,
2009.

[75] J. M. McCarthy. Geometric Design of Linkages. Interdisciplinary Applied Mathematics,
Springer-Verlag, New York, 11, 2000.

[76] J. P. Merlet. Singular Configurations of Parallel Manipulators and Grassmann Geometry.
The International Journal of Robotics Research, 8:45 – 56, 1989.

[77] J. P. Merlet. Les Robots Paralléles. Hermes, 2nd Edition, 1997.

[78] J. P. Merlet. Jacobian, Manipulability, Condition Number, and Accuracy of Parallel
Robots. ASME Journal of Mechanical Design, 128:199 – 206, 2006.



128 REFERENCES

[79] J. P. Merlet. Parallel Robots. Dordrecht, The Netherlands: Springer, 2nd edition, 128,
2006.

[80] R. M. Murray. Control of Nonholonomic Systems using Chained Forms. Fields Institute
Communications, 1:219 – 245, 1993.

[81] R. M. Murray. Nilpotent Bases for a Class of Nonintegrable Distributions with
Applications to Trajectory Generation for Nonholonomic Systems. Mathematics of Control,
Signals, and Systems, 7:58 – 75, 1994.

[82] R. M. Murray, Z. Li, and S. S. Sastry. A Mathematical Introduction to Robotic
Manipulation. CRC Press, 1994.

[83] R. M. Murray and S. S. Sastry. Nonholonomic Motion Planning: Steering Using Sinusoids.
IEEE Transactions on Automatic Control, 38:700 – 716, 1993.

[84] Y. Nakamura, W. Chung, and O. J. Sørdalen. Design and Control of the Nonholonomic
Manipulator. IEEE Transactions on Robotics and Automation, 17:48 – 59, 2001.

[85] P. E. Nikravesh, O. K. Kwon, and R. A. Wehage. Euler Parameters in Computational
Kinematics and Dynamics, Part 1. ASME Journal of Mechanisms Transmissions and
Automation in Design, 107:358 – 365, 1985.

[86] P. E. Nikravesh, O. K. Kwon, and R. A. Wehage. Euler Parameters in Computational
Kinematics and Dynamics, Part 2. ASME Journal of Mechanisms Transmissions and
Automation in Design, 107:366 – 369, 1985.

[87] K. Ning and F. Worgotter. A Novel Concept for Building a Hyper-Redundant Chain Robot.
IEEE International Conference on Robotics and Automation ICRA, 25:1237 – 1248, 2009.

[88] O. M. O’Reilly. Intermediate Dynamics for Engineers. Cambridge University Press, New
York, NY., 2008.

[89] V. Parenti-Castelli and R. Di Gregorio. Closed-Form Solution of the Direct Kinematics of
the 6-3 type Stewart Platform using one extra Sensor. Meccanica, 31:705 – 711, 1996.

[90] M. Peshkin, J. E. Colgate, and C. Moore. Passive Robots and Haptic Displays Based
on Nonholonomic Elements. IEEE International Conference on Robotics and Automation,
pages 551 – 556, 1996.

[91] F. Pierrot, P. Dauchez, and A. Fournier. HEXA: a Fast Six-DoF Fully-Parallel Robot. Proc.
Fifth International Conference on Advanced Robotics ICARŠ91, 2:1158 – 1163, 1991.

[92] G. Pritschow, C. Eppler, and W. D. Lehner. Highly Dynamic Drives for Parallel Kinematic
Machines with Constant Arm Length. In Proc. 1st Int. Colloq., Collaborative Research
Centre, 562:199 – 211, 2002.

[93] N. M. Rao and K. M. Rao. Dimensional Synthesis of a Spatial 3-RPS Parallel Manipulator
for a Prescribed Range of Motion of Spherical Joints. Mechanism and Machine Theory,
44:477 – 486, 2009.



REFERENCES 129

[94] E. A. Shammas, H. Choset, and A. A. Rizzi. Towards a Unified Approach to
Motion Planning for Dynamic Underactuated Mechanical Systems with Non-holonomic
Constraints. The International Journal of Robotics Research, 26:1075 – 1124, 2007.

[95] A. Sokolov and P. Xirouchakis. Kinematics of a 3-DoF Parallel Manipulator with an R-P-S
Joint Structure. Robotica, 23:207 – 217, 2005.

[96] A. Sokolov and P. Xirouchakis. Dynamics Analysis of a 3-DoF Parallel Manipulator with
R-P-S Joint Structure. Mechanism and Machine Theory, 42:541 – 557, 2007.

[97] B. M. St-Onge and C. M. Gosselin. Singularity Analysis and Representation of the General
Gough-Stewart Platform. The International Journal of Robotics Research, 19:271 – 288,
2000.

[98] C. W. Stammers, P. H. Prest, and C. G. Mobley. A Friction Drive Robot Wrist: Electronic
and Control Requirements. Mechatronics, 2:391 – 401, 1992.

[99] D. Stewart. A Platform with Six Degrees of Freedom. Proceedings of the Institution of
Mechanical Engineers, 180:371 – 378, 1965.
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