Objective	Motivation	Expected contributions	State of the art	Research plan

An Integrated Solution to the Synthesis of Multifinger Grasps

Thesis proposed by: Carlos J. Rosales Gallegos Advisors: Raúl Suárez and Lluís Ros

November 19, 2009

Carlos J. Rosales Gallegos

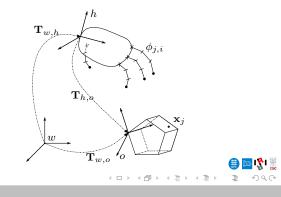
Objective	Motivation	Expected contributions	State of the art	Research plan

Objective

Solving the grasp synthesis problem for multifingered hands

Given a hand and an object to be grasped, the problem entails finding feasible configurations of the hand-object system that simultaneously yield a *stable* and *manipulable* grasp.

Objective	Motivation	Expected contributions	State of the art	Research plan
Motivat	tion			


Hands as versatile and efficient tools for manipulation

Carlos J. Rosales Gallegos An Integrated Solution to the Synthesis of Multifinger Grasps

Objective	Motivation	Expected contributions	State of the art	Research plan
Motivat	ion			

- Hands as versatile and efficient tools for manipulation
 The grash synthesis within devtorous manipulation
- The grasp synthesis within dexterous manipualtion

Carlos J. Rosales Gallegos

Objective	Motivation	Expected contributions	State of the art	Research plan
Motivat	ion			

- Hands as versatile and efficient tools for manipulation
- The grasp synthesis within dexterous manipualtion
- Partially related problems in the literature

Problem 1 Contact Point Synthesis

- Problem 2 Fingertip Force Computation
- Problem 3 Inverse Kinematics
- Problem 4 Dexterous Manipulation

Objective	Motivation	Expected contributions	State of the art	Research plan
Motivatio	าท			

- Hands as versatile and efficient tools for manipulation
- The grasp synthesis within dexterous manipualtion
- Partially related problems in the literature

Problem 1 Contact Point Synthesis Problem 2 Fingertip Force Computation Problem 3 Inverse Kinematics Problem 4 Dexterous Manipulation

Further applications

Autonomous manipulation, assisted teleoperation, dexterous prosthetic hands, and in general to any setting involving the control of multifingered manipulation devices.

(Objective	Motivation	Expected contributions	State of the art	Research plan
	Expected o	contribution	S		

An integrated and generic formulation of the problem

 A general and complete solution method for multifinger grasp synthesis

Expected contributions

An integrated and generic formulation of the problem

- Integrated, unify the proposed constraints
- General, applicable to any hand
- Adequate, use of low-degree terms (i.e. $x_i, x_i^2, x_i y_i$)
- A general and complete solution method for multifinger grasp synthesis

Expected contributions

- An integrated and generic formulation of the problem
 - Integrated, unify the proposed constraints
 - General, applicable to any hand
 - Adequate, use of low-degree terms (i.e. $x_i, x_i^2, x_i y_i$)
- A general and complete solution method for multifinger grasp synthesis
 - General, able to solve any formulated equation system
 - *Complete*, find solutions if they exist and conlude usolvable otherwise

《曰》 《卽》 《臣》 《臣》

On the solution method

Factors affecting the dimensionality:

- Number of fingers
- Contact model

On the solution method

Factors affecting the dimensionality:

- Number of fingers
- Contact model
- Approaches:
 - Lower-dimensional cases: algebraic-geometric and branch-and-prune methods
 - Higher-dimensional cases: probabilistic methods combined with branch-and-prune methods

Objective	Motivation	Expected contributions	State of the art	Research plan

State of the art

- Human hand models
- Solutions to the grasp synthesis problem
- Solutions to algebraic equations

Human hand models

robot hands

Suarez and Grosch 2005

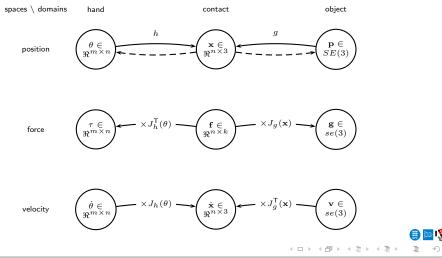
🧾 IŞI 🔤 🌐

Carlos J. Rosales Gallegos

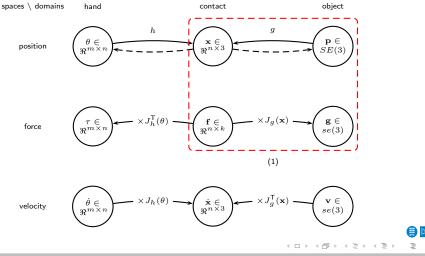
Human hand models

prosthetic hands

Touch Bionics 2004



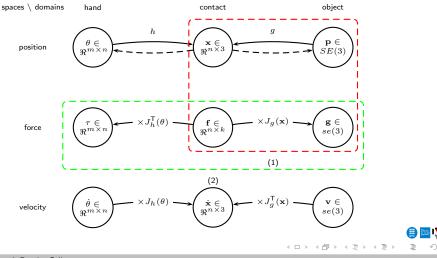
Peña et al. 2005


Carlos J. Rosales Gallegos An Integrated Solution to the Synthesis of Multifinger Grasps

Solutions to the grasp synthesis problem

Carlos J. Rosales Gallegos

Problem 1 Contact Point Synthesis


Carlos J. Rosales Gallegos

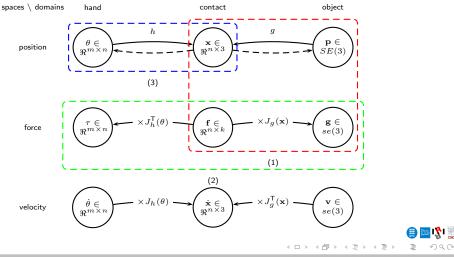
Problem 1 Contact Point Synthesis

- **1876,** Reuleaux introduces force and form closure, conludes 4 as minimum number fingers for 2D objects
- 1900, Somov states that 7 is the required fingers for 3D objects
- 1983, Salisbury and Roth introduce the wrench space for analysis
- **1987,** Mishra *et al.* set upper bounds for required fingers:12 and 6 for piecewise smooth objects in 3D and 2D, respectively
- **1988,** Nguyen introduces independent contact regions in 2D in the construction of grasps
- 1992, Ferrari and Canny introduce a quantative measure in wrench space
- 1998, Liu provides an approach for n-finger grasps synthesis in 2D objects
- **2003,** Li *et al.* provide a general method for 3-finger grasps synthesis in 2D and 3D objects
- **2007,** Roa and Suárez provide a geometric approach for *n*-finger grasps synthesis in 3D objects

Carlos J. Rosales Gallegos

Problem 2 Fingertip Force Computation

Carlos J. Rosales Gallegos

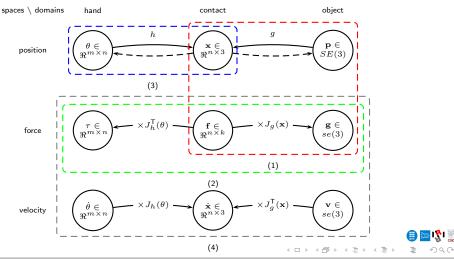

イロト イポト イヨト イヨト

200

Problem 2 Fingertip Force Computation

- **1986,** Kerr and Roth linearize the friction cone with planar faces to include torque constraints
- **1989,** Kumar and Waldron provide suboptimal algorithms, and introduces the finger force decomposition
- 1991, Cheng and Orin provide optimal solutions using linearized model
- 1991, Yoshikawa and Nagai reformulate the finger force decomposition into
- **1996,** Buss *et al.* formulate the non-linear friction constraints as positive-definiteness of a matrix
- 2000, Zuo and Quian solve the problem using dynamic programming techniques
- **2006,** Carloni formulates the problem using the dual theorem of non-linear programming
- 2007, Al-Gallaf gives a neuro-kinematic based approach for this problem

Problem 3 Inverse Kinematics

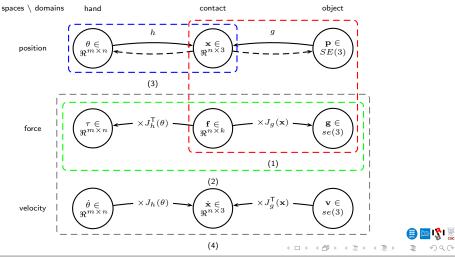

Carlos J. Rosales Gallegos

Problem 3 Inverse Kinematics

- **1991,** Hunt *et al.* present a kinematic study of multifinger grippers defining special configurations
- 1995, Bicchi defines force-closure grasps considering the hand
- **1997.** Pollard synthesizes whole-hand grasps based on the geometry of the contacting bodies
- **2002,** Borst *et al.* formulate the kinematic constraints as an unconstrained optimization problem
- **2005,** Gorce and Rezzoug rely on neural network and reinforcement learning to obtaing hand configurations
- **2005,** Rosell *et al.* use optimization to compute joint values using fingertip distance to contact point
- **2007,** Ciocarlie *et al.* introduce eigengrasps and use random sampling to preconfigure the hand
- 2008, Rosales *et al.* provide a general and complete method for finding hand configurations

Carlos J. Rosales Gallegos An Integrated Solution to the Synthesis of Multifinger Grasps

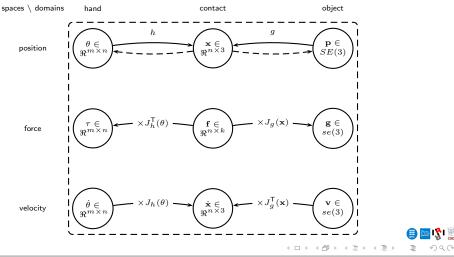
Problem 4 Dexterous Manipulation



Carlos J. Rosales Gallegos

Problem 4 Dexterous Manipulation

- **1989,** Li *et al.* propose a control algorithm considering the dynamics of the object and the hand, for position trajectory and desired internal force
- **1990,** Murray *et al.* present a mathematical framework for the formulation of the kinematics, dynamics and control of robot hands
- **1996,** Shimoga resumes grasp synthesis methods in generalized algorithms within a control scheme
- **2000,** Okamura *et al.* propose three control level framworks for dexterous manipulation
- **2007,** Arimoto provides control algorithms considering rolling constraints and introduces the concept of blind grasping (no need of object surface information)
- 2007, Saut *et al.* use probablisitc techniques for dexterous manipulation and re-grasping sequences


Current state

Carlos J. Rosales Gallegos

Objective	Motivation	Expected contributions	State of the art	Research plan

Proposal

Carlos J. Rosales Gallegos

Solutions to algebraic equations

Algebraic-geometric methods

- Reduce the initial system to an univariate polynomial
- Used for inverse kinematics of general 6R manipulators (Manocha and Canny 1994; Raghavan and Roth 1993), and the forward analysis of general Stewart-Gough platforms (T.-Y. Lee and J.-K. Shim 2001).
- Recent progress on sparse resultant theory qualifies them as promising techniques (Dickenstein and Emiris 2005)

Solutions to algebraic equations

Continuation methods

- Gradually transform a system with known solutions to a system whose solutions are sought, tracking the solution path along the way
- It was first showed that the inverse kinematics of the general 6R manipulator has up to sixteen solutions (L. -W. Tsai and Morgan 1985), and the direct kinematics of the general Stewart-Gough platform can have at most forty solutions (Raghavan 1993)
- Currently, it is well studied and developed (Sommese and Wampler 2005; H.-J. Su et al. 2006)

Carlos J. Rosales Gallegos

Solutions to algebraic equations

Branch-and-prune methods

- Use approximate bounds of the solution set in order to rule out portions of the search space that contain no solution
- It has been used for under and over constrained systems, position analysis of complex kinematic closed loops such as molecular structures and multifinger grasps.
- Current state include two families: bounding via Taylor expansions (J.-P. Merlet 2001b, Gavriliu 2005) and via polytopes (Lebbah et al. 2005, Porta 2008).

SOR

Tasks

Task 6 Identification of problem classes.

Task 7

Development of a solution method for lower-dimensional problems.

Task 8

Development of a solution method for higher-dimensional problems.

Task 9

Proposition of a set of objects to test the procedures.

イロト イポト イヨト イヨト

Task 10 Thesis writing

SOR

Tasks

Task 0

Literature review.

Task 1

Definition of a generic hand model.

Task 2

Study and formulation of contact models.

Task 3 Formulation of the kinematic constraints.

Task 4

Formulation of the stability constraints.

Task 5 Formulation of the manipulability constraints.

Task 7 Development of a solution method for lower-dimensional problems. Task 8 Development of a solution method for higher-dimensional problems.

Task 9

Proposition of a set of objects to test the procedures.

イロト イポト イヨト イヨト

Task 10 Thesis writing

Carlos J. Rosales Gallegos

SOR

Tasks

Task 0

Literature review.

Task 1

Definition of a generic hand model.

Task 2

Study and formulation of contact models.

Task 3

Formulation of the kinematic constraints.

Task 4

Formulation of the stability constraints.

Task 5

Formulation of the manipulability constraints.

Identification of problem ca Task 7 Development of a solution lower-dimensional problems models. Task 8 Development of a solution higher-dimensional problem Task 9 Proposition of a set of objective the procedures.

> Task 10 Thesis writing

> > イロト イポト イヨト イヨト

SOR

Tasks

Task 0

Literature review.

Task 1

Definition of a generic hand model.

Task 2

Study and formulation of contact models.

Task 3

Formulation of the kinematic constraints.

Task 4

Formulation of the stability constraints.

Task 5

Formulation of the manipulability constraints.

Task 6

Identification of problem classes.

Task 7

Development of a solution method for lower-dimensional problems.

Task 8

Development of a solution method for higher-dimensional problems.

Task 9

Proposition of a set of objects to test the procedures.

イロト イポト イヨト イヨト

Task 10 Thesis writing

Carlos J. Rosales Gallegos

Tasks

Task 0

Literature review.

Task 1

Definition of a generic hand model.

Task 2

Study and formulation of contact models.

Task 3

Formulation of the kinematic constraints.

Task 4

Formulation of the stability constraints.

Task 5

Formulation of the manipulability constraints.

Task 6

Identification of problem classes.

Task 7

Development of a solution method for lower-dimensional problems.

Task 8

Development of a solution method for higher-dimensional problems.

Task 9

Proposition of a set of objects to test the procedures.

イロト イポト イヨト イヨト

Task 10 Thesis writing

Carlos J. Rosales Gallegos

Tasks

Task 0

Literature review.

Task 1

Definition of a generic hand model.

Task 2

Study and formulation of contact models.

Task 3

Formulation of the kinematic constraints.

Task 4

Formulation of the stability constraints.

Task 5

Formulation of the manipulability constraints.

Task 6

Identification of problem classes.

Task 7

Development of a solution method for lower-dimensional problems.

Task 8

Development of a solution method for higher-dimensional problems.

Task 9

Proposition of a set of objects to test the procedures.

イロト イポト イヨト イヨト

Task 10 Thesis writing.

Carlos J. Rosales Gallegos

0					

Gantt chart (I)

time		20	07			20	08	
tasks	T1	T2	T3	T4	T1	T2	T3	T4
literature review	•	•	•	•	•			
hand model			•	•				
contact models			•	•				
kinematic constraints				•	•			
stability constraints					•			
manipulability constraints								
problem classes								
lower-dimensional problems								
higher-dimensional problems								
object set and testing			•					
thesis writing								

Carlos J. Rosales Gallegos

0			

Gantt chart (II)

time	2009		2010					
tasks	T1	T2	T3	T4	T1	T2	T3	T4
literature review								
hand model								
contact models								
kinematic constraints								
stability constraints								
manipulability constraints								
problem classes								
lower-dimensional problems								
higher-dimensional problems								
object set and testing								
thesis writing								

Carlos J. Rosales Gallegos

Objective	Motivation	Expected contributions	State of the art	Research plan

Resources

Resource	Status	Purpose
Multi-processor computer	64-processor grid at IRI	To increase the computational capacity to carry out the experiments
Mechanical robot hand	SAHand and MA-I at IOC	To demonstrate the approach using a real robotic hand
Robot arm	Stäubli at IOC	To move the real robotic hand
Programming software	C++ tools, Matlab, Maple.	To implement and test of the algorithms
Access to bibliography	UPC and others	To determine the state of the art
		·····································

Carlos J. Rosales Gallegos

Objective	Motivation	Expected contributions	State of the art	Research plan

Thanks for your attention

Feel free to ask questions, I will do my best to answer them!

Carlos J. Rosales Gallegos An Integrated Solution to the Synthesis of Multifinger Grasps