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1 Introduction

In Computer Vision, pose estimation consists in estimating the relative position and orientation
of an object with respect to the viewing sensor. It is one of the most elemental problems in
computer vision with applications in video-games, mobile phones and robotics. Pose estimation
has been a research subject for a long time, from opticians in the late 19th century to the actual
computer science researchers that apply a variety of approaches.

Although pose estimation is already a reality that can be seen in numerous everyday applica-
tions it still suffers from limitations. This limitations usually appear in non-controlled environ-
ments. For this reason, we seek to improve the state of the art algorithms for pose estimation to
perform better in real life conditions. Some of the issues we want to tackle are: dependence on
camera calibration and feature point extraction.

In this work we will focus on the use of perspective cameras. Camera calibration is an essen-
tial ingredient in pose estimation. It basically consists on obtaining the geometric parameters
that define the perspective camera that we are using. Without knowing this parameters one
cannot solve for the rotation and translation of the object that we seek to find. Usually, camera
calibration has to be solved with user-assisted methods like [56]. There are pose estimation meth-
ods in the literature that solve the camera calibration problem [2, 21, 45, 51] but still camera
calibration is rarely done without human intervention, for this reason we seek to further improve
the case of uncalibrated pose estimation methods.

The other crucial factor in modern pose estimation algorithms is the extraction and matching
of feature points. A feature point is composed of two parts, the point of interest and a feature
descriptor. The point of interest provides the coordinates of a very recognizable point in an
image and the feature descriptor is the way in which we represent such point. A good point of
interest extractor is able of finding the same part of an object (points in our case) in different
images of the same object. A good feature descriptor should be discriminant enough for the
correct matching of points of interest between two different images of the same object with high
repeatability.

Feature points are often subject to viewpoint changes, lighting changes and occlusions. In
this work we intend to cope with increasing difficulty in obtaining such feature points. As our
focus is to improve the performance in real case scenarios we will center our efforts in rigid
objects. The additional variability of non rigid objects or deformable objects is out of the scope
of this thesis proposal. We have defined three main objectives to achieve in this thesis, and are
as follows.

1 Uncalibrated pose estimation from known correspondences.

2 Uncalibrated pose estimation from unknown correspondences.

3 Pose estimation without points of interest.

We will first attempt to improve uncalibrated solutions to the pose estimation problem using
feature points. That is, supposing that we know the correct matching between points in an image
and their spatial representation on the surface of an object, in this case a 3D model. Once we
achieve results on this matter we will assume that feature descriptors are not reliable, this will
leave us with only the coordinates of the points of interest, but without knowing the one-to-one
matching between them. And finally, we will attempt to solve the pose estimation problem in
situations where feature points cannot be detected, such as in motion blurred images. When
solving for the pose without either points of interest or feature descriptors, we need to be very
cautious. The quality of the images in which feature points cannot be used could be of such low
quality that it might not be possible to distinguish the subtle differences produced by changes in
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Figure 1: Problem Formulation: Given a set of correspondences between 3D points pi ex-
pressed in a world reference frame, and their 2D projections ui onto the image, we seek to retrieve
the pose (R and t) of the camera w.r.t. the world and the focal length f .

the camera geometry. We will try to cope with uncalibrated cameras in this case, but achieving
a correct camera pose in such conditions with a calibrated camera is by itself a huge feat.

We find this order of tasks the most appropriate to handle the goals of our work. The
progression in difficulty will help the student understand the actual problems of pose estimation
in order to identify the requirements for the next step. This approach also helps the assimilation
of the state-of-the-art and the acquisition of the know-how necessary to handle the task at hand.
We will now explain each of the three tasks separately dedicating a separate section for each
one of them. We will define the state of the art for all three tasks, we will define the proposed
methodologies to improve the state of the art and we will mark the expected objectives to
accomplish.

2 Uncalibrated pose estimation from known point corre-
spondences

2.1 Outline

Estimating the camera pose from n 3D-to-2D point correspondences is a fundamental and well-
understood problem in computer vision. Its solution is relevant to almost every application of
computer vision in the era of smart phones. The most general version of the problem requires
estimating the six degrees of freedom of the pose and five calibration parameters: focal length,
principal point, aspect ratio and skew (see Fig. 1). This can be established with a minimum of
6 correspondences, using the well known Direct Linear Transform (DLT) algorithm [18].

There are, though, several simplifications to the problem which turn into an extensive list of
different algorithms that improve the accuracy of the DLT. The most common simplification is
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Figure 2: Results on synthetic data for non-planar distributions of points, our approach is dubbed
UPnP. Mean rotation, translation and focal length errors for: increasing levels of image noise on
10 2D-3D correspondences, and two different focal lengths. Each tick in the plot represents the
average over 100 experiments with random points.

to assume known calibration parameters. This is the so-called Perspective-n-Point problem, for
which three point correspondences suffice in its minimal version [15]. There exist also iterative
solutions to the over-constrained problem with n > 3 point correspondences [10, 19, 29] and
non-iterative solutions that vary in computational complexity and accuracy from O(n8) [1] to
O(n2) [13] down to O(n) [26].

For the uncalibrated case, given that modern digital cameras come with square pixel size and
principal point close to the image center [3, 18], the problem simplifies to the estimation of only
the focal length. Solutions exist for the minimal problem with unknown focal length [2, 24, 45, 51],
and for the case with unknown focal length plus unknown radial distortion [3, 4, 21, 51].

Unfortunately, in the presence of noise and mismatches, these solutions to the minimal prob-
lem become unstable and may produce unreliable pose estimates. This is commonly addressed
including an extra RANSAC [14] iterative step for outlier removal, either taking minimal or non-
minimal subsets [47], but at the expense of high computational load. Recent approaches have
reformulated the problem as a quasi-convex optimization problem, allowing for the estimation
of global minima [7, 22, 23]. Yet, while this is a very attractive idea, the iterative nature of
these approaches makes them unpractical for real-time applications, unless a very small number
of correspondences is considered.

We would want to advocate for an efficient solution that can handle an arbitrarily large point
sample, thus increasing its robustness to noise. Using a large point set may be especially useful
for current applications such as 3D camera tracking [25] or structure-from-motion [55], which
require dealing with hundreds of noisy correspondences in real time.

The approach we proposed fulfilled these requirements: it allows estimating pose and focal
length in bounded time, and since it is a non-minimal solution, it is robust to situations with
large amounts of noise in the input data. Drawing inspiration on the EPnP algorithm [26, 31],
showed that the solution of our problem belongs to the kernel of a matrix derived from the 3D-to-
2D correspondences, and thus can be expressed as a linear combination of its eigenvectors. The
weights of this linear combination become the unknowns of the problem, which can be solved
applying additional distance constraints.

However, solving also for the focal length has the effect that the linearization and relineariza-
tion techniques used in [26, 31] to estimate these weights no longer were valid. Several factors
contribute to this: (1) the new polynomials that needed to be considered are of degree four, in
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Figure 3: Example of validation on a real set of images obtained from Flickr with a 3D model
obtained from GoogleEarth. 3D model reprojected onto the reference and testing images.

contrast to those in the EPnP that were of degree two; (2) the variables being computed differ
in several orders of magnitude and small inaccuracies in the input data may propagate to large
errors in the estimation; and (3) the number of possible combinations in the solution subspace
explodes combinatorially for large kernel sizes. All these issues make that a näıve selection of
equations for back substitution after linearization produces unreliable results. Moreover, a least
squares solution of the kernel weights was not viable since it equally ponders constraints that
involve variables with different orders of magnitude. We needed to develop new techniques to
solve the limitations of linearization and relinearization, and thus, solving the uncalibrated PnP
problem robustly.

The proposed approach, compares favorably in terms of accuracy to the DLT algorithm, the
only closed-form solution we are aware that is applicable for an arbitrary number of correspon-
dences. This was the case because the least squares solution of the DLT algorithm chooses an
optimal solution only in the direction along the vector associated with the smallest singular
value of the linear system of equations built from the 3D-to-2D correspondences. In contrast,
our proposed approach considered all directions of the kernel of the system, which for the ideal
case is of size one [41], but for noisy overconstrained systems grows in size [26]. We compared our
approach against global optimal methods like [22] and [23], which are algorithms that guarantee
maximum error tolerance, but which are computationally expensive. Also, in real experiments,
robustness to outliers is only possible inside an extra RANSAC loop at additional computational
cost, we provided experiments that showed the performance of our approach against all compared
methods in this environment.

2.2 State of the art

Both algebraic and geometric solutions exist for the minimal solution of the calibrated case.
A representative case is Gao’s solution [15], in which a triangular decomposition of the P3P
equation system is given. Many iterative methods to solve the calibrated case for large values of
n exist [10, 19, 29]. Of these, the most representative method is Lu’s method [29], which is one
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of the fastest and most accurate methods producing slightly better results than the non-iterative
EPnP algorithm [26]. Accuracies become similar when Gauss-Newton optimization is applied to
the EPnP solution at negligible cost.

Whilst iterative methods might get trapped in local minima, efforts are also aimed at finding
globally optimal solutions, for instance, casting it as a positive semidefinite quadratic optimiza-
tion problem [42]. This method resorts to a parameterization of rotations using quaternions, and
it is unclear whether quaternion unit norm constraints might hinder convexity of the solution
search space.

For the uncalibrated case, our problem of interest, minimal solutions exist for the computation
of the 5- and 6-point relative pose problems with unknown focal length that use Groebner bases
to solve large systems of polynomial equations [24, 45]. In both cases, the problems are casted as
polynomial eigenvalue computations, but differ from ours in that they compute only the relative
pose between two views instead of the absolute camera referential.

Bujnak et al [2] give a general solution to the minimal problem that is closest to ours –P4P for
a camera with unknown focal length–. Their system reduces to finding the solution to a system of
5 equations with 4 unknowns and 20 monomials, for which they compare two methods, a hidden
variable solver, and also the use of Groebner bases to solve large systems of 154 polynomial
equations with 180 monomials and 4 unknowns. Our method would need to compare favorably
to both with respect to computational load, and robustness to pixel noise. Bujnak solves only
the minimal problem (n = 4). More recently, other solutions have been proposed for the mininal
P4P problem with unknown focal length and radial distortion [3, 4, 21] that also need an extra
robust optimization loop.

2.3 Contributions and results

We extended the EPnP algorithm [26] to give an equivalent solution to the uncalibrated case,
by defining a system of equations using the intrinsic calibration parameters as further un-
knowns and using different equation solving techniques. We needed to develop alternative
solutions to linearization and relinearization in order to circumvent their limitations by sys-
tematically exploring the solution subspace, for this purpose we created two techniques, dubbed
exhaustivelinearization and exhaustiverelinearization. The proposed approach is also a fast
solution to the problem of recovering the pose and focal length of a camera, given n 3D-to-2D
correspondences. We proved that the uncalibrated PnP can be expressed as the solution of
a fixed-size linear set of equations independent of the number of points, similar to the EPnP
algorithm for the fully calibrated case.

Validation of the proposed resulting approach was done over synthetic data and real images.
For validation on synthetic data we simply created random sets of points and calculated a new
pose that then we needed to find with our approach. The advantage of synthetic validation is
that ground truth is obtained easily so intense testing can be performed without cost. Results
on synthetic data can be observed in Fig. 2, we show that we perform better than state of the
art uncalibrated methods and we also obtain comparable results again calibrated methods. An
example of validation on real data can be seen in Fig. 3. Here we show how we took a 3D
registered image as reference and used our PnP algorithm to find the rotation, translation and
focal length of the camera.
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Figure 4: Uncertain 3D model. Left: 3D model acquired with a Kinect camera. Regions in
which the 3D data is most uncertain are depth discontinuities. Center: We detect the uncertain
regions –shown in red– computing depth covariances within local neighborhoods. Right: A 3D
covariance can be assigned to each 3D model point and propagated to the image plane. This will
be used to limit the area where to search for potential match candidates.

3 Uncalibrated pose estimation from unknown point cor-
respondences

3.1 Outline

In the above-mentioned case, we assumed that the image to 3D model point correspondences
were given. When these correspondences are not known in advance, we need robust methods
to establish them. There are cases however in which the feature descriptors are not reliable
enough to establish robustly such pairing, or even cases in which feature detection is possible but
appearance information is very poor. In such cases, we need to establish feature correspondences
with the aid of geometry as well.

We can resort to choosing small sets of points as putative candidate matches, and fit them
robustly to a geometrical model (using fo instance RANSAC) [8, 14].

Matching methods based on RANSAC rely on having a small percentage of outliers, this
way the probability of obtaining a correct minimal set of points is high enough to be achieved
in fixed time. If the percentage of outliers increases, the number of RANSAC loops needed to
obtain a correct set of minimal points grows exponentially. Also, as shown in [38], using the
minimal set of points might not yield the best pose if there is noisy data in the system. The
percentage of outliers depends on several factors: the precision recall of the point descriptor,
changes in appearance, changes in points of view, repeated patterns, self occlusions, etc. We
want to develop a matching algorithm that aims to perform robust matching under the presence
of a high percentage of outliers. Our approach would be a generalization of the work in [32] to
deal with uncalibrated cameras and noisy 3D information. The noisy 3D data will be obtained
with a Kinect camera [30]. In Fig. 4 we can see how the Kinect sensor produces noisy data that
makes pose estimation hard. In Fig. 5 we show the difference we expect to make between a
SIFT [28] robust matching using RANSAC and our proposed approach.

To tackle all these issues we propose to split the initial prior distribution of the combined
pose and focal length estimate into an arbitrary large number of Gaussian priors. These priors
are spread within very rough bounds of where the pose and focal length are expected to be. At
runtime, each of these priors is used to guide the search for the 3D-to-2D correspondences, while
progressively pruning the number of potential candidate matches and refining the pose and focal
length values. Repeating this process for each of the priors guarantees an exhaustive exploration
of the solution space at a limited computational cost. An example of how we plan to reduce the
number of candidates in the proposed approach can be seen in Fig. 6.

Experiments in both synthetic and real data must show that the proposed approach is robust
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Matching using appearance (SIFT) Matching using geometry (Our approach)

Figure 5: Inlier correspondences of a matching algorithm that uses appearance information (left)
and a purely geometric matching approach (right) that uses the 3D and 2D location of the
points to search for the correspondences. Matching was made between the intensity component
of a Kinect camera and a Canon EOS 60D camera. Together with the viewpoint changes and
the self-occlusions, differences in terms of image noise and resolution jeopardize appearance
matching producing a very small set of correct matches. In contrast, our method based purely
on geometric information would be able to retrieve a much larger number of correspondences,
accurately computing the relative pose and focal length under such conditions.

to large levels of 2D and 3D noise and clutter, yielding reasonable results for high outlier rates.
Validation will be performed by testing against RANSAC based approaches [6, 8], global meth-
ods [23] and other purely geometrical calibrated methods [32]. Comparisson against calibrated
methods will give us a baseline to show the real impact of selecting a non calibrated camera.

3.2 State of the art

Pose estimation techniques that maximize image similarity, such as [5], are not applicable in our
context due to their limited ability to deal with significant differences in appearance and reduced
capture range, as that of Fig. 5. We shall therefore consider only techniques that explicitly
perform matching using the geometric structure of the 2D and 3D point sets.

The robust estimation of correspondences between two sets of points has been historically
solved by hypothesize and test algorithms such as RANSAC [14] and Least Median Squares [40].
They rely on a random sampling of minimal subsets to generate model hypotheses, and favor the
one that best explains most of the data points. Unfortunately, in these methods, computational
complexity scales exponentially with the number of model parameters and the size of the point
set. Among the several variations of the original RANSAC algorithm, Guided-MLESAC [49] and
PROSAC [8] avoid sampling unlikely correspondences by using appearance based scores and thus
are not applicable to our problem. Similarly, GroupSAC [33] uses image segmentation to sample
more efficiently the data. Other techniques of the same family such as Preemptive RANSAC [34]
or ARRSAC [39] work within a limited time scenario thus increasing the probability of not
reaching the best estimate. Finally, MultiGS [6] accelerates the search strategy by guiding the
sampling with information from residual sorting and is able to account for multiple structures
appearing in the scene.

In the absence of robust appearance information graph matching can be used, as proposed by
[11]. Yet, due to its high computational cost, this methods are only applicable to small graphs.
While this approaches allow global optimization, they cannot be used with large intra-image
distances due to very different points of view of the scene or when the number of outliers is
excessive, which are the cases we consider in this paper.

The L∞ technique proposed in [23], uses second-order cone programming, and guarantees
optimality under the L∞ norm, for different geometric structure and motion problems, including
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Figure 6: Limiting the number of potential candidates by refinement of the search space, after
establishing correspondences.

the camera pose estimation considered in this work. However, this particular metric is highly
sensitive to outliers, as pointed out in [17]. Even when it is possible to address in part the
outlier removal problem as proposed in [44], the L∞ solution for the camera pose estimation
only performs as well as the standard L2 norm.

Other approaches simultaneously solve for pose and correspondences purely from geometric
point matching. Of these, SoftPOSIT [9] uses an iterative technique to generate correspondence
candidates, but the global minimum can not be guaranteed. Our approach is inspired in the
Blind PnP algorithm [32], where local optimality is alleviated introducing the scene geometry as
pose priors, modeled as a Gaussian mixture model, and progressively refined by hypothesizing
correspondences. Incorporating each new candidate in a Kalman filter rapidly reduces the num-
ber of potential 2D matches for each 3D point and makes it possible to search the pose space
sufficiently fast for the method to be practical. More recent techniques [43] use robust estimation
in a final stage to refine the pose. Unfortunately, the approach cannot be applied straightforward
to the uncalibrated case due to the ambiguities between focal length and the pose translation
vector.

3.3 Expected contributions and partial results

Simultaneously estimating the camera position, orientation, focal length and establishing 3D-to-
2D correspondences between model and image points, poses a challenging optimization problem
which can hardly be solved without prior information. Most current approaches rely on appear-
ance information to first solve the correspondences and then retrieve the pose and focal length
while rejecting missmatches. Yet, there are many situations in which the appearance is either
not available or not a reliable cue.

In the absence of appearance, we propose to use only geometric priors, which are just rough
approximations of the pose and focal length solution space. By progressively exploring these
priors we are able to efficiently prune the potential number of 3D-to-2D matches, while reducing
the uncertainty of the pose and focal length estimates. The method is shown to be highly resilient
to clutter and noise, on the image features and in the 3D model. The latter is especially suited
for dealing with 3D models obtained from noisy range sensors, such as the Kinect or Time of
Flight cameras.

We expect to obtain a new method to perform uncalibrated pose estimation that can handle
high values of outliers using only geometric information. To validate this approach we will com-
pare against RANSAC based approaches [6, 8], global methods [23] and other purely geometrical
calibrated methods [32], in both real case scenarios and synthetic data. For real case scenarios we
will use a Kinect sensor to obtain the 3D model, we will also assess that we are able of handling
the noise inherent in the system.

The fact that we are using uncalibrated cameras and textureless features, opens new research
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Figure 7: Real experiments. Top Left: Reference image registered to the 3D model. Others:
Reprojection of the 3D model onto the input images after estimating pose, focal length and
3D-to-2D matches with our approach.

areas for the future. This kind of techniques could be used within an active exploration setting,
to estimate focal length for cases where the camera zoom is actuated to enforce good feature
tracking. It also could be integrated in a setting in which generic appearance models can be
aggregated for the same keypoint as observed from multiple vantage points. These generative
appearance models could be used in turn as additional priors within our or competing frameworks
to speed up match search. In Fig. 5 and in Fig. 7 we show the partial results we have already
obtained, as it can be seen our approach shows to perform robustly on noisy sensors.

4 Pose estimation without points of interest

4.1 Outline of the proposed work

The problem of pose estimation has been addressed from either purely geometric or machine
learning perspectives. Geometric methods initially use training data to build a 3D model, and
then search for the 2D-to-3D correspondences that best align interest points in the test image with
the 3D model [31]. Machine learning approaches on the other hand, annotate training imagery
with discrete locations in the pose manifold, and then search globally for this pose-annotated
matching of appearance, without resorting to full 3D reconstruction of the object [16, 36, 54].
The advantage of the global methods is that they are less sensitive to precise localization of
individual features, which makes them more robust to image degradations than local geometric
methods. But in contrast, global methods are not generally robust to occlusions. In addition,
they often require splitting the pose space into several classes, and training specific classifiers
for each of them, limiting the precision of the estimated pose to that of the granularity between
classes and losing the correlation between neighboring poses.

We intend on building a solution that trains in high quality images and tests on any kind
of image despite its low quality. We want to combine the strengths of both the geometric and
machine learning methods for estimating object pose. We propose using high-definition training
images to create a 3D model of the object, and from it, devise a pose-indexed feature extraction
scheme that binds image quantities to the object pose. A single classifier, common to all the
poses, will be trained from these pose-indexed feature vectors.
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Learning from High Quality Images

Test on Low Quality Images

Resolution loss Blurring Occlusions

Boosting

3D model

Positive sample Negative sample Negative sample

Figure 8: Our approach intends on using high-quality images to train a classifier that is tested
on low quality data. The top box shows the built 3D model, and one positive and two negative
training image-pose pairs. The fact that features are indexed with pose is indicated by the same
location on the three training images of the projection of point pairs, and by the object contour
projected in green. Observe that detecting the F1 car in the test images at the bottom box
is even difficult for the human eye due to different artifacts. The green contour indicates the
correct pose of the F1 car in that image.

We propose to use a new novel procedure, dubbed AbstainBoost, able to cope with incomplete
feature vectors, a situation that occurs during self occlusion. During test, given a low quality
input image and a hypothetical pose to assess, the pose-indexed feature vector is computed
similarly, without the need for detecting and matching points of interest, and fed to the classifier.
The object’s pose is estimated by measuring the classifier response for all the poses seen in the
training images, and then refined by resampling around those poses with maximal classifier
response. We insist on the fact that since this optimization is done by visiting multiple poses
systematically, we do not need to match points of interest, or perform any type of fragile matching
prior to using our predictor.

As shown in Fig. 8, our method intends to estimate the pose even in the presence of severe
image artifacts such as motion blur and occlusion. We will need to demonstrate that this ap-
proach compares favorably against geometric approaches based on SIFT and DBRIEF features,
and also against global approaches based on Bag of Features descriptors [53], GIST [35] and
PCA cross-correlation [50]. As the task at hand is highly complex and has not been attempted
as so, we will approach it in three stages.
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1 Discrete calibrated pose estimation: First we need to prove that we can retrieve the closest
pose of a test image from the training set. This is quite important because it will prove
that AbstainBoost converges correctly. We will test to see if using bad quality images
we can find the correct training image, the precision of this approach will depend on the
granularity of the training set. We will also explore the conditions needed to perform the
best training possible, and how big is the testing space in which we obtain correct results.

2 Global calibrated pose estimation: Once we prove that our single classifier can obtain
correct results in the proximity of the training images we will extend our approach to
perform a global search. This will give more precision than only using the training poses
as candidates. We expect to do a refinement of the pose by performing gradient descent
on the response of the classifier.

3 Extension to uncalibrated pose estimation: If global pose can be achieved with high pre-
cision we will evaluate the classifier searching in another additional dimension. Calibrated
pose estimation gradient descent would be performed on a 6 dimensional space, adding
the focal length would involve adding an additional dimension to the search. The key
factor will be if the classifier is able to detect the subtle differences introduced by different
geometries of the camera, and even if those changes remain when an image is degraded.

This part of the work is being performed under collaboration with François Fleuret at IDIAP
research institute in Martigny, Switzerland.

4.2 State of the art

3D pose estimation methods may be roughly split in those techniques relying on local image
features that purely use geometric relations to compute the pose; and methods that compute
global descriptors of the image and resort to machine learning tools to estimate the pose.

Local approaches use feature point descriptors to estimate 2D-to-3D correspondences between
one input image and one or several reference images registered to a 3D model of the object. PnP
algorithms such as the EPnP [31] are then used to enforce geometric constraints and explicitly
solve for the pose parameters. On top of that, robust RANSAC-based strategies [8, 32] can be
used both to speed up the matching process and to filter outlier correspondences. Yet, while
these methods provide very accurate results, they require both the reference and input images
to be of high quality, such that local features can be reliably and repetitively extracted. As we
will show in the results section, these methods are not applicable for the level of image artifacts
we consider in this paper.

By contrast, approaches relying on global descriptions of the object are less sensitive to a
precise localization of individual features. These methods typically use a set of training images
acquired from different viewpoints to statistically model the spatial relationship of the local
features, either using one single detector for all poses [20, 27, 46] or a combination of various
pose-specific detectors [36, 37, 48, 54]. Another alternative is to bind image features with poses
during training and have them vote in the pose space [16]. These approaches, though, focus on
recognizing instances of generic classes and are not designed to deal with image content different
from that in the training set.

We will exploit the strengths of both the local and global methods for estimating the 3D pose
of a single object. We will use high quality training images to build a 3D model of the object and
precisely locate the most discriminant local features. These features will be then combined into
strong priors for each training pose. Note that since we focus on one single object, the priors we
build can accurately capture the variability of the appearance and generalize to test images with
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Figure 9: Pose estimation error of our approach and other approaches in experiments with severe
degradations of image size and motion blur. We show results over the Sagrada Familia dataset

severe artifacts. In fact, this philosophy is very similar to that of [12, 25]. These approaches,
though, again rely in the fact that similar local features appear in both training and test images.
We intend of getting rid of this requirement by building specific priors for each training pose, in
which we exactly know where the features should appear in the test image. We will therefore
evaluate the classifier (which is unique and common to all poses) even when some features have
been wiped out or corrupted by image artifacts such as loss of resolution, motion blur or partial
occlusions.

Among the methods that compute a global descriptor of the image, we find some holistic
representations that do not require extracting points of interest. For instance, the GIST [35]
descriptor encodes sustained overall orientation of straight edges on images, rather than localized
features. This descriptor is conceived more as a class descriptor than as a unique sample identifier,
and is not generally robust for discriminating between poses, mainly because it is built using only
2D intensity data, disregarding visibility information of the 3D model. The same applies to the
PCA cross-correlation, used in [50] as a similarity measure between tiny images. In our approach,
considering visibility constraints in our pose-indexed feature vectors should bring a remarkable
advantage of our approach against such global descriptors, especially under occlusions. This is
because, to account for occlusions, we will devote a special treatment to missing data in our
feature vector, and design a boosting mechanism able to cope with abstaining weak learners
(AbstainBoost).

4.3 Expected contributions and partial results

We will propose a new machine learning paradigm: Learning with high-quality data to be able
to test with low quality data. The rationale behind this idea is that inference is possible only
from clean data, or using a strong model, and that the latter can be inferred from the former.
This by itself will be a big contribution because it will provide the first machine learning pose
estimator that uses only one classifier; the learning scheme can also be used for any context in
which weak learners can respond neutrally.

We would validate our approach against different state of the art methods, both global
and local. Such methods will be: Bag of Features descriptors [53], GIST [35] and PCA cross-
correlation [50] as global methods; and DBRIEF [52] as local methods. We expect to compare
favorably against them, specially when motion blur, occlusions and low resolution images are
tested.

From this general principle, and extending the concept of pose-indexed features to be able to
learn them, we expect to derive a novel and very efficient algorithm for the specific problem of
pose estimation. With sufficiently good training data, we expect to obtain a good estimate of
the object pose, in very low resolution images, and with high levels of noise and occlusion. This
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procedure should be ideal as a near-perfect solution to be used in controlled environments such
as a factory. Partial results can be observed in Fig. 9 on the Sagrada Familia dataset, we can
see that our approach performs really well under both small resolutions and motion blur.

5 Resources and work plan

The proposed research is partially funded by the Spanish Ministry of Economy and Competi-
tiveness under projects PAU+ DPI2011-27510 and MIPRCV Consolider Ingenio 2010 CSD2007-
00018, and by the EU projects GARNICS FP7-247947 and ARCAS FP7-287617. A. Penate-
Sanchez is the recipient of a JAE-Predoc scholarship funded by the European Social Fund.
The work will be developed at the Institut de Robòtica i Informàtica Industrial, UPC-CSIC, in
Barcelona.

The algorithms to be developed in this research, and the intense testing derived from them, are
computationally intensive and require the availability of a computer able to perform computations
in parallel. The facilities of the Institut de Robòtica i Informàtica Industrial include a grid
computer that can be used to this end, with eight PC units of two Intel Quadcore Xeon E5310
processors and 4 Gb of RAM each one.

The work plan for the proposed research is divided into 5 main tasks, three of which are
subdivided into several subtasks, as described below. The schedule of this plan spans over four
years and is presented in Fig. 10 as a Gantt chart. In this chart, Q1, ..., Q4 stand for the four
quarters of a year. The work already completed is shown in orange.

Task 1: Initial literature review and initial training

This task initially entails acquiring a general overview on the state of the art in Computer Vision
and the tools applied to the field. The study of selected publications, as well as undertaking the
required courses as mandated by the doctoral program direction, will establish a solid ground
from which to start the proposed research.

In a second stage, the literature review will have to concentrate on methods for Pose Estima-
tion, focusing on previous solutions to the PnP problem, point matching and machine learning,
and on the underlying mathematical tools of Projective Geometry and Linear Algebra.

Task 2: Uncalibrated pose estimation from point correspondences

Task 2.1: PnP literature review

We will identify the most representative works on the perspective PnP problem and those which
are more widely used. From these works we will identify which are the main weaknesses on which
we can make a strong contribution.

Task 2.2: Development of the pose algorithm

This task entails the development of a general algorithm for the PnP problem computation. It
will take into consideration the identified weaknesses of previous work and will aim at giving a
solution to these issues.

Task 2.3: Assessment of the contribution of the algorithm

We will compare against state of the art pose estimation algorithms and identify the size of the
projected contributions.
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Task 2.4: Publication of the results

We also plan the estimated time that the preparation of the publication will take. This aspect
is commonly overlooked when in fact it takes a great part of the researcher’s time.

Task 3: Uncalibrated pose estimation with only points of interest

Task 3.1: Matching literature review

Once the pose estimation literature has been reviewed, we will need to focus on feature points
and feature matching literature at this stage.

Task 3.2: Development of the simultaneous pose and matching algorithm

This task entails the development of the proposed approach to solve the simultaneous matching
and pose estimation problem. It will take into consideration the identified weaknesses of the
previous work and will aim at giving a solution to these issues.

Task 3.3: Assessment of the contribution of the algorithm

We will compare against the state of the art on robust feature point matching algorithms and
identify the size of the projected contributions.

Task 3.4: Publication of the results

We also plan the estimated time that the preparation of the publication will take. This aspect
is commonly overlooked when in fact it takes a great part of the researcher’s time.

Task 4: Pose estimation without points of interest

Task 4.1: Applied machine learning literature review

This literature review will take us away from geometrical pose estimation, we will need to identify
the most relevant work on machine learning and see how it is put to use to solve the pose
estimation problem. As this are not two fields that have been put together too much in the past
it will prove difficult to identify the baseline to which to compare our proposed approach.

Task 4.2: Development of the algorithms

Task 4.2.1: Development of discrete calibrated pose estimation algorithm

We will develop the previously proposed pose classifier to first solve the discrete calibrated pose
estimation. Results will be assessed against state of the art algorithms.

Task 4.2.2: Development of global calibrated pose estimation algorithm

We will develop the previously proposed pose classifier to solve the global calibrated pose esti-
mation. Results will be assessed against the same algorithms as in the discrete approach, we will
also compare against the discrete approach to see the incremental in the results.
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Task 4.2.3: Feasibility test of the global uncalibrated pose estimation algorithm

In this task we will asses the feasibility of extending the approach into an uncalibrated setting.
This will strongly depend on previous results.

Task 4.2.3: Development of the global uncalibrated pose estimation algorithm

If in the previous stage we obtain positive results, we will develop the approach to solve for
uncalibrated pose. If results cannot be achieved we would finish our research at this point, we
think the amount of research presented is more than sufficient to establish a solid contribution
to the field.

Task 4.3: Assessment of the contribution of the algorithm and publication of results

We will compare against state of the art classification algorithms and identify the size of the
projected contributions. We think that the size of the contributions which can be made in this
area are potentially big, for this reason we expect at least two publications to be produced in
this task.

Task 5: Elaboration of the dissertation

The last task of the research is dedicated to the elaboration of the dissertation and the preparation
of its public defense. By taking into account the average time taken by colleagues and the time
necessary for bureaucratic administration we consider the time needed of that of a at least two
to three quarters.

6 Publications

The following is a list of accepted, submitted, or in-preparation publications resulting from the
proposed research. The results of Task 2 are collected in [J1]. Partial results obtained so far in
Task 3 are detailed in [C1], and those of Tasks 4.2.1 are reported in [C2]. We expect at least
another publication to come from Task 3.2.2., we also expect a Journal version of paper [C1].

Conferences

C1. Penate-Sanchez A., Andrade-Cetto J., Moreno-Noguer F. Simultaneous Pose,
Focal Length and 2D-to-3D Correspondences from Noisy Observations. (Submitted) In
2013 British Machine Vision Conference.

C2. Penate-Sanchez A., Moreno-Noguer F., Andrade-Cetto J., Fleuret F. LETHA:
Learning from High Quality Images for Pose Estimation in Low Quality Images. (Submit-
ted) In 2013 International Conference on Computer Vision.

Journals

J1. Penate-Sanchez A., Andrade-Cetto J., Moreno-Noguer F. Exhaustive Lineariza-
tion for Robust Camera Pose and Focal Length Estimation. In 2013 Pattern Analysis and
Machine Intelligence, IEEE Transactions on.
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2010 2011 2012 2013 2014

Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3

INITIAL LITERATURE REVIEW 1

U. POSE FROM POINT CORRESPONDENCES 2

PnP literature review 2.1

Development of the pose algorithm 2.2

Contribution assessment of algorithm 2.3

Publication of the results 2.4

U. POSE FROM UNK. CORRESPONDENCES 3

Matching literature review 3.1

Development of the pose and matching algorithm 3.2

Assessment of the contribution of the algorithm 3.3

Publication of the results 3.4

POSE WITHOUT POINTS OF INTEREST 4

Applied machine learning literature review 4.1

Development of the discrete calibrated pose 4.2.1

Development of the global calibrated pose 4.2.2

Feasibility test of the global uncalibrated pose 4.2.3

Development of the global uncalibrated pose 4.2.4

Contribution assessment and publication of results 4.3

ELABORATION OF THE DISSERTATION 5

Figure 10: Work plan of the proposed work
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