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University: Universitat Politècnica de Catalunya (UPC)
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Abstract

A truly autonomous robot should be capable of building a consistent map of the outside world
while simultaneously determining its location within this map. However, to achieve this task
the robot requires to select the appropriate motion commands during navigation in order to
maximize its knowledge about the external world while at the same time reducing its own
localization uncertainty. The objective of this thesis is to contribute to the state of the art of the
SLAM problem with a novel approach to perform 6 degrees-of-freedom autonomous exploration
in large outdoor urban environments, taking into account the problem of data association,
the study of strategies to tackle scalability, the computational complexity of stochastic state
estimation with large state spaces, the use of entropy-based exploration strategies, and the
nonlinearities in perception and action models
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1 Introduction

An autonomous robot should be able of representing and reasoning about its outside world
and determining its location within this environment. Although very accurate sensors, the use
of fixtures, and calibration points may help, they are still error-prone and usually costly. An
alternative approach is to use multiple, overlapping, lower resolution sensors and to combine
the spatial information (including the uncertainty) from all sources to obtain the best possible
spatial estimate. The Simultaneous Localization and Mapping (SLAM) problem seeks to solve
this issue.

SLAM is the problem of building a map of an unknown environment by a robot while
at the same time being localized relative to this map. Thus the main advantage of SLAM
is that it eliminates the need for artificial infrastructure or a priori topological knowledge of
the environment. Autonomy however, also requires the robot to select the appropriate robot
commands during navigation so as to maximize its knowledge about the external world while at
the same time reducing its own localization uncertainty.

Solving the SLAM problem in conjunction with the selection of the appropriate motion
commands by the robot itself, in order to jointly optimize for map coverage and active local-
ization, can bring the following possibility closer: placing a robot at an unknown location in
an unknown environment and then have it build a map, using only relative observations of the
environment, and then to use this map simultaneously to navigate. In addition, a solution to
this problem would be of inestimable value in a range of applications where absolute position
or precise map information is unobtainable, including, amongst others, driving hundreds of
kilometers under dense forest, mapping a whole city, including underpasses and tunnels, some-
times without recourse to global positioning systems (GPS), autonomous planetary exploration,
subsea autonomous vehicles, and autonomous all-terrain vehicles in tasks such as mining and
construction.

The main research topic of this thesis is autonomous exploration for outdoor vision-based
6 degrees-of-freedom simultaneous localization and mapping, using mainly visual information,
taking into account the difficult problem of data association for large outdoor scenes, the study
of strategies based on information theory metrics to tackle scalability by marginalizing robot
poses from the map, the computational complexity of stochastic state estimation with large
state spaces, the use of entropy-based exploration strategies, and the inherent nonlinearities in
perception and action models.

This proposal is organized as follows. Section 2 presents the goal to be reached in the
thesis. Section 3 is devoted to a literature survey on the state of the art in SLAM, considering
the estimation process, Active SLAM solutions, and the environment representation. Section 4
states our approach to solve some of the identified open issues in the SLAM problem. In Section
5, we show a state-of-the-art implementation, which represent part of our previous work, and
serves as a backbone starting point for state estimation in a trajectory-oriented SLAM. In Section
6 we present a calendar of the necessary tasks to achieve the objective of this thesis.
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2 Objective

The main objective of this thesis is to contribute to the state of the art of the SLAM problem
with a novel method to perform autonomous exploration for outdoor vision-based 6 degrees-
of-freedom Simultaneous Localization and Mapping. Our approach will consist of a trajectory-
oriented SLAM, whose main observations will be vision-based relative pose constraints. The
proposed solution will take into account the following:

• Data association to close loops in large urban scenes by using information theory metrics.

• A robot pose marginalization strategy towards a long-term SLAM algorithm.

• Optimal exploration techniques for SLAM.

• The nonlinearities of perception and action models

The resulting algorithms will be evaluated both in simulations and experimentally with a
robotic platform from the Institut de Robòtica i Informàtica industrial (IRI).

This thesis is part of the URUS (Ubiquitous Robotics in Urban Settings) [108] project at
IRI, funded by the EU, and coordinated by Prof. Alberto Sanfeliu. Our contribution in URUS
will be in the form of new robust mapping algorithms for outdoor mobile robots in pedestrian
areas, using computer vision and stochastic state estimation tools.
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3 State of the Art: Literature Survey

The present section is organized as follows: in Subsection 2.1 we state the SLAM problem and
identify the challenges that it imposes. In Subsection 2.2 we overview the most popular existing
solutions for the SLAM problem, considering estimation, exploration issues, and environment
representation. Finally, in Subsection 2.3 we discuss the main conclussions of the literature
survey and point out open research problems.

3.1 Problem Definition

Simultaneous Localization and Mapping (SLAM) is the problem of building a map of an unknown
environment by a robot while at the same time being localized relative to this map. Although
this problem is commonly abbreviated as SLAM, it was initially, during the second half of the
90’s, also known as “Concurrent Mapping and Localization”, or CML. The SLAM problem arises
when the robot does not have access to a map of the environment, nor does it know its own
pose. Instead, all it is given are measurements and controls.

The SLAM problem is characterized by uncertainty and sensor noise, therefore, virtually
all state-of-the-art algorithms for SLAM are probabilistic. They employ probabilistic models
of the robot and its environment, and they rely on probabilistic inference for turning sensor
measurements into maps. Some authors make the probabilistic thinking very explicit, others
use techniques that on the surface do not look specifically probabilistic.

The dominant scheme used in SLAM is the Bayes filter. The Bayes filter extends Bayes
rule to temporal estimation problems. It is a recursive estimator for computing a sequence of
posterior probability distributions over quantities that cannot be observed directly, such as a
map.

Assuming a static world, the classical formulation for the SLAM problem requires that the
probability distribution

p(xk,m|Zk, Uk,x0), (1)

be computed for all times k. This probability distribution describes the joint posterior density
of vehicle position xk at time k and the landmark locations m (i.e. the map) given the history of
observations Zk until time k, the history of motion commands Uk up to time k, and the initial
pose x0.

To solve the SLAM problem, the robot needs to be endowed with models that describe
the effect of the control input and the observations, that is, a state transition model and an
observation model, respectively.

The observation model describes the probability of making an observation zk when the
vehicle location and landmark locations are known. It is assumed that, once the vehicle location
and map are defined, observations are conditionally independent given the map and the current
vehicle state. The observation model is generally described in the form

p(zk|xk,m). (2)

The motion model for the vehicle is described in terms of a state transition probability distri-
bution in the form

p(xk|xk−1,uk). (3)

That is, the state transition is assumed to be a Markov process in which the next state xk depends
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only on the immediately preceding state xk−1 and the applied control uk, and is independent of
both the observations and the map.

Following the Bayes Filter framework, Equation 1 is calculated recursively in two steps, as
follows:

Prediction

p(xk,m|Zk−1, Uk,x0) =
∫

p(xk|xk−1,uk) p(xk−1,m|Zk−1, Uk−1,x0) dxk−1. (4)

Measurement Update

p(xk,m|Zk, Uk,x0) =
p(zk|xk,m) p(xk,m|Zk−1, Uk,x0)

p(zk|Zk−1, Uk,x0)
. (5)

The first step calculates the prior probability distribution p(xk,m|Zk−1, Uk,x0) based on the
posterior probability p(xk−1,m|Zk−1, Uk−1,x0) computed one step-time before and the state
transition probability distribution, using the Chapman-Kolmogorov equation. This step is called
Prediction, Control Update, or Time-update.

The second step is called Measurement Update and it simply employs Bayes’ Theorem,
based on the observation model distribution and the prior distribution p(xk,m|Zk−1, Uk,x0),
to compute the joint posterior distribution p(xk,m|Zk, Uk,x0), considering the assumption of
Markovity for the state xk.

The above formulation is also known as the online SLAM problem. Other formulations of
the SLAM problem have been defined in the literature, such as full SLAM problem or trajectory-
oriented SLAM. In the full SLAM problem instead of estimating the present robot location, the
entire robot path, together with all landmaks locations, are estimated. The trajectory-oriented
SLAM is a delayed-state SLAM formulation, that is, we only estimate the entire robot path, and
use observations to landmarks only to refine the path estimates. This formulations is usually
employed when the size of features is much bigger than the number of robot poses. Further-
more, the former approaches are passive SLAM formulations, in that the robot is only externally
commanded. On the other hand, an active SLAM formulation would require for the robot itself
to select the control commands that reduce the uncertaintty about its environment and its own
pose. Other refinements to the SLAM problem may take into account a dynamic environment
or multi-robot mapping.

The SLAM problem is considered one of the hardest perceptual problems in robotics [121].
A key challenge in SLAM arises from the nature of the measurement noise. The noise in differ-
ent measurements is not statistically independent. If this were the case, a robot could simply
take more and more measurements to cancel out the effects of the noise. This problem occurs
because errors in control accumulate over time, and they affect the way future sensor measure-
ments are interpreted; therefore, whatever a robot infers about its environment is plagued by
correlated errors. Accommodating such systematic errors is key to building maps successfully,
and it is also a key complicating factor in robotic mapping.

The second complicating aspect of SLAM arises from the high dimensionality of the entities
that are being mapped. If a the map is built upon the description of major topological entities,
such as corridors, intersections, rooms and doors, a few dozen entities might suffice. A detailed
two-dimensional (2D) floor plan, which is an equally common representation of robotic maps,
often requires thousands of entities. But a detailed three-dimensional (3D) visual map of a
building may easily require millions of entities. From a statistical point of view, each such entity
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adds a few dimensions to the underlying estimation problem. Thus, the mapping problem can
be extremely high-dimensional.

Another challenge in SLAM is the correspondence problem, also known as the data associa-
tion problem. The correspondence problem is the problem of determining if sensor measurements
taken at different points in time correspond to the same physical object in the world. If a robot
robot attempts to map a large cyclic environment, when closing the loop, the robot has to find
out where it is relative to its previously built map. This problem is complicated by the fact that
at the time of cycle closing, the robot’s accumulated pose error might be very large. The corre-
spondence problem is difficult, since the number of possible hypotheses can grow exponentially
over time.

Changing environments is another challenge. Some changes may be relatively slow, such as
the change of appearance of a tree across different seasons, or the structural changes that most
office buildings are subjected to over time. Others are faster, such as the change of door status
or the location of furniture items, such as chairs. Even faster may be the change of location of
other agents in the environment, such as cars or people. The dynamism of robot environments
creates a big challenge, since it adds yet another way in which seemingly inconsistent sensor
measurements can be explained. The predominant SLAM paradigm relies on a static world
assumption, in which the robot is the only time-variant quantity (and everything else that
moves is just noise).

Another problem arises from the fact that robots must choose their way during mapping.
The task of generating robot motion in the pursuit of maximizing robot’s knowledge about
the external world is called robotic exploration. Exploration for SLAM is commonly referred
to as active SLAM or integrated exploration. Although optimal robot motion is relatively
well-understood in fully modeled environments, exploring robots have to cope with partial and
incomplete models. Hence, any viable exploration strategy has to be able to accommodate
contingencies and surprises that might arise during map acquisition. For this reason, active
SLAM is a challenging problem. When choosing where to move, various quantities have to be
traded off: the expected gain in map information, the time and energy it takes to gain this
information, the possible loss of pose information along the way, and so on.

3.2 Approaches to SLAM

Solutions to the SLAM problem can be distinguished along many different dimensions. Here
we present a literature survey of solutions taking into account the estimation process, where we
identify three main paradigms [124]: Kalman Filter, Particle Filters, and Graph-Based SLAM.
We also address solutions to Active SLAM and solutions classified by the way they represent
the environment.

3.2.1 Kalman Filter

A classic solution to the SLAM problem is based on Kalman Filters, which are Bayes Filters
whose distributions are Gaussians. This approach can be traced back to a series of works by
Smith et al. [115, 116] and Mourtalier and Chatila [93]. In the following years, a number of
researchers developed this approach further [16, 17, 32, 33, 35, 78, 96].

Kalman Filter relies on three basic assumptions to guarantee that every posterior proba-
bility is always a Gaussian. First, the motion model must be linear with added Gaussian noise,
and the same characteristics must also apply to the observation model. Second, the initial un-
certainty must be Gaussian (i.e. Gaussian assumption). Third, the current state is conditionally
independent of all earlier states given the immediately previous state (i.e. Markov assumption).

Usually, the robot pose is governed by a nonlinear trigonometric function that depends
on the previous pose and the control command. Similarly, sensor measurements in robotics are
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usually nonlinear, with non-Gaussian noise. To accommodate such nonlinearities, Kalman filters
approximate the robot motion and sensor models through a first degree Taylor series expansion.
The resulting Kalman Filter is known as Extended Kalman Filter and the solution to SLAM
using this filter is known as EKF-SLAM.

The EKF-SLAM method will yield the following distribution

p(yk|Zk, Uk,x0) = N (yk; ŷk,Pk), (6)

where the state vector yk contains the robot pose xk at time step k and a vector mk of map
features up to time k, that is,

yk =
[

xk

mk

]
. (7)

Thus, Equation 1 is represented as a Gaussian distribution with mean ŷk and covariance Pk.
The basis for the EKF-SLAM method is to describe the vehicle motion in the form

p(xk|xk−1,uk)←→ xk = f(xk−1,uk) + wk, (8)

where f models vehicle kinematics and where wk is zero mean white noise, with covariance Qk,
used to accomodate for higher order terms and modelling errors.

The observation model is described in the form

p(zk|xk,m)←→ zk = h(xk,m) + vk, (9)

where h describes the geometry of the observation and where vk are additive, zero mean uncor-
related Gaussian observation errors with covariance Rk.

With these definitions the EKF-SLAM algorithm is performed with Equations 4 and 5,
which gives the following:

Prediction

x̂k|k−1 = f(x̂k−1|k−1,uk), (10)

Pxx,k|k−1 = F Pxx,k−1|k−1 F> + Qk, (11)

where x̂k|k−1 is the predicted robot pose, Pxx,k|k−1 is the predicted robot pose covariance, and
F is the Jacobian of f evaluated at x̂k−1|k−1, i.e., the estimate up to step k − 1.

Measurement Update

ŷk =
[

x̂k|k−1

m̂k−1

]
+ Kk

(
zk − h(x̂k|k−1, m̂k−1)

)
, (12)

Pk = (I−KkH)Pk|k−1, (13)

where

Sk = H Pk|k−1 H> + Rk, (14)
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Kk = Pk|k−1 H> S−1
k , (15)

and where H is the Jacobian of h evaluated at x̂k|k−1 and the map estimate m̂k−1 up to step k−1.

This solution is very well known and inherits many of the same benefits and problems as the stan-
dard solutions to navigation or tracking problems. Some of the key issues are the non-linearity
of the observation and motion models, filter convergence, data association, and computational
effort.

The linearization of the perceptual models introduces optimistic estimations in every itera-
tion, which in the limit produce filter inconsistency. This is specially seen in the case of rotations
[6, 120]. Convergence and consistency can only be guaranteed in the linear case. An alternative
to the EKF is the use of the UKF (Unscented Kalman Filter) [69], which avoids linearizations
through mean and covariance parameterization by particles chosen in a deterministic and geo-
metrical way around the probability distributions. This filter has been also used to solve the
SLAM problem [4, 86].

In EKF-SLAM, convergence of the map is manifested in the monotonic convergence of the
determinant of the map covariance matrix toward zero. That is, we get full correlation in the
map, or said differently, absolute certainty about relations between landmarks. On the other
hand, the absolute landmark variances converge to a constant bounded by below by the initial
robot position uncertainty. So there is bounded uncertainty of the absolute positions [23]. This
is due to the fact that SLAM is a coupled estimation problem, and in consequence is partially
observable [3].

The “loop–closure ”problem, when a robot returns to re-observe landmarks after a large
traverse, is especially difficult. The data association problem is complicated in environments
where landmarks are not just points and indeed look different from different view-points, as well
as environment with aliasing, that is, regions that are very similar and difficult to distinguish
one from the other.

An important advance in the data association problem was the concept of batch gating,
where multiple associations are considered simultaneously. Mutual association compatibility
exploits the geometric relationship between landmarks. The two existing forms of batch gating
are the joint compatibility branch and bound (JCBB) [95] method, which is a tree-search method;
and combined constraint data association (CCDA) [6], which is a graph search technique. The
former (and also a randomized variant of JCBB [68]) is said to perform reliable association with
no knowledge of vehicle pose whatsoever.

Furthermore, the standard formulation of the EKF-SLAM solution is especially fragile to
incorrect association of observations to landmarks [18]. In order to validate the history of data
association, temporal landmark quality measures and a temporal landmark quality test were
proposed in [2]. These quality measures permit the maintenance of the map by the elimination
of inconsistent observations. This removal of weak landmarks from the state vector and state
covariance matrix did not violate the convergence properties of SLAM.

Other ways to perform reliable data association include other sensing modalities, such as
vision. Images provide rich information about shape, color, and texture, all of which may be
used to find a correspondence between two data sets. For SLAM, appearance signatures are
useful to predict a possible association, such as closing a loop, or for assisting conventional
gating by providing additional discrimination information. Historically, appearance signatures
and image similarity metrics have been developed for indexing image databases [107] and for
recognizing places in topological mapping [5, 126]. Moreover, appearance measures have been
applied to detecting loops in SLAM [24, 56, 97]. The work on visual appearance signatures for
loop detection by Newman et al. [24, 97] introduces two significant innovations. A similarity
metric over a sequence of images, rather than a single image, is computed, and an eigenvalue
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technique is employed to remove common-mode similarity. This approach considerably reduces
the occurrence of false positives by considering only matches that are interesting or uncommon.
Multihypothesis data association is essential for robust target tracking in cluttered environments
[8]. It resolves association ambiguities by generating a separate track estimate for each associ-
ation hypothesis, creating over time an ever-branching tree of tracks. The number of tracks is
typically limited by the available computational resources, and low-likelihood tracks are pruned
from the hypothesis tree.

Multihypothesis tracking (MHT) is also important for a robust SLAM implementation,
particularly in large complex environments. For example, in loop closure, a robot should ide-
ally maintain separate hypotheses for suspected loops and also a “no-loop”hypothesis for cases
where the perceived environment is structurally similar. While MHT has been applied to map-
ping problems [23], this has yet to be applied in the SLAM context.

Regarding the computational complexity of Kalman Filter methods, we can note that the largest
computational complexity of this approach is the measurement update step, which requires that
all landmarks and the joint covariance matrix be updated every time an observation is made.
The most costly operations in updating the Kalman filter are matrix multiplications which can
be implemented in O(N2) time, where N is the number of features in the map. When mapping
large environments, the computational complexity is a very important issue to solve. There has
been a great deal of work undertaken in developing efficient variants of the EKF-SLAM solution.

Techniques aimed at improving computational efficiency may be characterized as being opti-
mal or conservative. Optimal algorithms aim to reduce required computation while still resulting
in estimates and covariances that are equal to the full-form SLAM algorithm. Conservative al-
gorithms result in estimates that have larger uncertainty or covariance than the optimal result.
Usually, conservative algorithms, while less accurate, are computationally more efficient and,
therefore, of value in real implementations. Algorithms with uncertainties or covariances less
than those of the optimal solution are termed inconsistent and are considered invalid solutions
to the SLAM (or any estimation) problem.

One way to solve the scalability or computational complexity issue is to divide the Kalman
filter update step. A number of partitioned update methods have been devised to reduce this
computational effort. These confine sensor-rate updates to a small local region and update
the global map only at a much lower frequency. These partition methods all produce optimal
estimates. There are two basic types of partitioned updates. The first operates in a local region
of the global map and maintains globally referenced coordinates. This approach is taken by the
compressed EKF (CEKF) [54] and the postponement algorithm [74]. The second generates a
short-term submap with its own local coordinate frame. This is the approach of the constrained
local submap filter (CLSF) [133] and the local map sequencing algorithm [120].

Submap methods are other means of addressing the issue of computation scaling quadrati-
cally with the number of landmarks during measurement updates. Submap methods come in two
fundamental varieties: globally referenced and locally referenced. The common thread to both
types is that the submap defines a local coordinate frame and nearby landmarks are estimated
with respect to the local frame. The local submap estimates are obtained using the EKF-SLAM
algorithm using only the locally referenced landmarks. The resulting submap structures are
then arranged in a hierarchy leading to computational efficiency but also lack of optimality.
Global submap methods estimate the global locations of submap coordinate frames relative to
a common base frame. This is the approach adopted in the relative landmark representation
(RLR) [55] and hierarchical SLAM [40] methods. These approaches reduce computation from a
quadratic dependence on the number of landmarks to a linear or constant time dependence by
maintaining a conservative estimate of the global map. However, as submap frames are located
relative to a common base coordinate frame, global submaps do not alleviate linearization issues
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arising from large pose uncertainties.
Relative submap methods differ from global submaps in that there is no common coordinate

frame. The location of any given submap is recorded only by its neighboring submaps, and these
are connected in a graphical network. Global estimates can be obtained by vector summation
along a path in the network. By avoiding any form of global-level data fusion, relative submaps
address both computation and nonlinearity issues. The original notion of relative submaps
was introduced by Chong and Kleeman [20]. This was further developed by Williams [133] in
the form of the constrained relative submap filter (CRSF). However CRSF does not exhibit
global-level convergence without forfeiting the decoupled submap structure.

3.2.2 Particle Filters

Particle filters can be traced back to [88]. Particle filters represent a posterior through a set of
particles. The particle filter has been shown under mild conditions to approach the true posterior
as the particle set size goes to infinity. It is a nonparametric representation that represents
multimodal distributions with ease. The key problem with the particle filter in the context of
SLAM is that the space of maps and robot paths is huge. The approach to make particle filters
practical to the SLAM problem goes back to [10, 105]. This approach was introduced into the
SLAM literature in [94], followed by [89], who coined the name FastSLAM.

The FastSLAM algorithm solves the full SLAM problem, i.e., it computes estimates for
both the set of landmarks positions and the entire robot path. In this method the joint SLAM
state is factored into a vehicle component and a conditional map component

p(Xk,m|Zk, Uk,x0) = p(m|Xk, Zk) p(Xk|Zk, Uk,x0). (16)

Here the probability distribution is on the trajectory Xk rather than the single pose xk because,
when conditioned on the trajectory, the map landmarks become independent. This is a key
property of FastSLAM, and the reason for its speed; the map is represented as a set of inde-
pendent Gaussians, with linear complexity, rather than a joint map covariance with quadratic
complexity.

The essential structure of FastSLAM is a Rao-Blackwellised state, where the trajectory is
represented by samples Xk

(i), wich are weighted by wk
(i), and the map is computed analytically.

Thus, the joint distribution, at time k, is represented by the set

{wk
(i), X

k
(i), p(m|Xk, Zk)}Ni ,

where the map accompanying each particle is composed of independent Gaussian distributions

p(m|Xk
(i), Z

k) =
M∏

j

p(mj |Xk
(i), Z

k).

Recursive estimation is performed by particle filtering for the pose states, and the EKF for the
map states.

The general form of this method is as follows:

We assume that, at time k−1, the joint state is represented by {wk−1
(i) , Xk−1

(i) , p(m|Xk−1, Zk−1)}Ni .

I. For each particle, compute a proposal distribution, conditioned on the specific particle
history, and draw a sample from it

x(i)
k ∼ π(xk|Xk−1

(i) , Zk,uk). (17)
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This new sample is (implicitly) joined to the particle history Xk
(i)

∆= {Xk−1
(i) x(i)

k }.
II. Weight samples according to the importance function.

wk
(i) = wk−1

(i)

p(zk|Xk
(i), Z

k−1) p(x(i)
k |x(i)

k−1,uk)

π(x(i)
k |Xk−1

(i) , Zk,uk)
. (18)

The numerator terms of this equation are the observation model and the motion model,
respectively. In the observation model the map is marginalized out,

p(zk|Xk, Zk−1) =
∫

p(zk|xk,m) p(m|Xk−1, Zk−1) dm. (19)

III. If necessary, resampling is performed . Resampling is accomplished by selecting particles,
with replacement, from the set {Xk

(i)}Ni , including their associated maps, with probability
of selection proportional to wk

(i) . Selected particles are given uniform weight, wk
(i) = 1

N .

IV. For each particle, perform an EKF update on the observed landmarks as a simple mapping
operation with known vehicle pose.

The two versions of FastSLAM in the literature, FastSLAM 1.0 [89] and FastSLAM 2.0 [90],
differ only in terms of the form of their proposal distribution (step I) and, consequently in their
importance weight (step II). FastSLAM 2.0 is by far the more efficient solution.

Statistically, FastSLAM (1.0 and 2.0) suffer degeneration due to its inability to forget the
past. Marginalizing the map in Equation 19 introduces dependence on the pose and measure-
ment history, and so, when resampling depletes this history, statistical accuracy is lost [7].
Nevertheless, empirical results of FastSLAM 2.0 in real outdoor environments [90] show that the
algorithm is capable of generating an accurate map in practice.

FastSLAM has been extended in great many ways. One important variant is a grid-based
version of FastSLAM, in which the Gaussians are replaced by an occupancy grid map [57].
Other significant extensions of the FastSLAM method can be found in [38, 39], whose methods
DP-SLAM and ancestry trees provide efficient tree update methods for grid-based maps.

3.2.3 Graph-Based SLAM

A third family of algorithms consider the so-called “Graph-Based”, “Network-Based”, or “Belief
Net” approach in which the SLAM problem is represent as a Dynamic Bayes Network, where
landmarks and robot locations can be thought of as nodes in the graph. Every consecutive pair
of locations is tied together by an arc that represents the information conveyed by the odometry
reading. Other arcs exist between locations and landmarks to represent the observed landmarks
at the corresponding location. Arcs in this graph are soft constraints. Relaxing these constraints
yields the robot’s best estimate for the map and the full path.

The construction of the graph is illustrated in Figure 1. Suppose that at time k = 1 the
robot senses landmark m1 . This adds an arc in the (yet highly incomplete) graph between x1

and m1 . When representing the edges in a matrix format (which happens to correspond to a
quadratic equation defining the resulting constraints), a value is added to the elements between
x1 and m1, as shown in Figure 1a.

Now suppose the robot moves. The odometry reading u2 leads to an increment in the
matrix representation and an arc between nodes x1 and x2, as shown in Figure 1b. Consecutive
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Figure 1: Illustration of the graph construction. The upper part of the figure shows the graph
and the lower part corresponds to the matrix representation of the constraints

application of these two basic steps leads to a graph of increasing size, additionally the matrix
representation increases its size to include the new sensed landmarks and the new robot poses,
as illustrated in Figure 1c. Nevertheless this graph is sparse, in that each node is only connected
to a small number of other nodes.

Many of these algorithms can be seen as a spring-mass model, where computing the SLAM
solution is equivalent to computing the state of minimal energy of this model. To see this, we
can note that the graph corresponds to the log-posterior of the full SLAM problem [123]:

log p(Xk,m|Zk, Uk). (20)

This logarithm is of the form

log p(Xk,m|Zk, Uk) = c +
∑

k

log p(xk|xk−1,uk) +
∑

k

log p(zk|xk,m), (21)

where c is a constant.
Each constraint of the form log p(xk|xk−1,uk) is the result of exactly one robot mo-

tion event, and it corresponds to an arc in the graph. Likewise, each constraint of the form
log p(zk|xk,m) is the result of one sensor measurement, to which we can also find a correspond-
ing arc in the graph. In this case, the SLAM problem is to find the mode of this equation,

X̂k, m̂ = arg max
Xk,m

log p(Xk,m|Zk, Uk). (22)

Under the Gaussian assumption, this expression resolves to the following quadratic form

log p(Xk,m|Zk, Uk) = c +
∑

k[xk − f(xk−1,uk)] Q−1
k [xk − f(xk−1,uk)]>

+
∑

k[zk − h(xk,m)] R−1
k [zk − h(xk,m)]>. (23)

This is a sparse function, and to solve it, a number of efficient optimization techniques can be
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applied. Common choices include gradient descent, conjugate gradient, and others. Most SLAM
implementations rely on some sort of iterative linearizing the functions f and h, in which case
the objective in Equation 23 becomes quadratic in all of its variables.

Many of these techniques address the full SLAM problem and are inherently offline, that
is, they optimize for the entire robot path. If the robot path is long, the optimization may
become cumbersome. However, there are some that incrementally solve the full SLAM problem.
Aditionally, some solutions deal with the online SLAM or the trajectory-oriented SLAM.

Graph-Based SLAM methods have the advantage that they scale to much higher-dimensional
maps than EKF SLAM. As we already mentioned, the key limiting factor in EKF-SLAM is the
covariance matrix, which takes space (and update time) quadratic in the size of the map; how-
ever, in this paradigm no such constraint exists. Additionally, the Network-Based paradigm is
easily extended to handle the data association problems [59, 81].

Graph-Based techniques were first mentioned in [36, 116], but the seminal paper of Lu and
Milios [83] provided a first working solution. Their approach computes maximum likelihood
maps by least square error minimization. The idea is to compute a network of relations given
the sequence of sensor readings. These relations represent the spatial constraints between the
poses of the robot. Their approach seeks to optimize the whole network at once. They used
scan matching, that is, scans are localized relative to slightly older scans and, once localized,
are added to the map under the assumption that the estimated location is correct.

Gutmann and Konolige [56] proposed an effective way for constructing a network of con-
straints and for detecting loop closures while running an incremental estimation algorithm.
Howard et al. [64] apply relaxation to localize the robot and build a map. Duckett et al. [34]
described an implementation that uses Gauss-Seidel relaxation. In order to make the problem
linear, they assume knowledge about the orientation of the robot. Frese et al. [49] proposed a
variant of Gauss-Seidel relaxation called multi-level relaxation (MLR). It applies relaxation at
different resolutions. Multi-resolution methods are typically applied to problems more spatially
uniform than that of SLAM, but they report good results.

Other nonlinear approaches include GraphSLAM [123], and Graphical SLAM [45]. Addi-
tionally, Konolige proposed a method [76] for accelerating convergence by reducing the graph
to poses that have a loop constraint attached, solving for the other nodes separately. This can
save considerable CPU time, but requires the graph to have low connectivity.

Paskin’s Thin Junction Tree Filter [104] and Frese’s TreeMap [48] compute nonlinear map
estimates. They require factorization of the joint probability density, which they achieve by
ignoring small state correlations. Frese’s TreeMap works by hierarchically dividing a map into
local regions and subregions. It uses a binary-tree to perform integration and marginalization,
leading to an impressive algorithm that has the ability to deal with very large maps. On the other
hand, once variables are combined in a node, they cannot be separated again. In this way, several
different linearization points are propagated in different factors leading to inconsistency of the
final result. Aditionally, since multiple approximations are employed to reduce the complexity,
it results in noticeable map artifacts. Although this approach let us perform very fast inference,
we can not recover the cross correlations to recover the covariance matrices needed to do data
association.

A hybrid of linear and nonlinear solutions is Bosse’s Atlas [12], which uses linearized (EKF-
based) submaps but merges them together using nonlinear optimization. Nonlinear optimization
algorithms have a rich history outside the SLAM community. SLAM algorithms have typically
limited themselves to Gauss-Seidel or Gradient Descent approaches, but other approaches are
commonly used in other fields. In particular, Stochastic Gradient Descent is often used to
train artificial neural networks. To solve the SLAM problem, Olson et al. [103] presented a
fast non-linear optimization algorithm based on a variant of Stochastic Gradient Descent on
an alternative state-space representation. The proposed Stochastic Gradient Descent variant is
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robust against local minima and converges quickly. Moreover, the alternative state space repre-
sentation allows a single iteration to update many poses without incurring a large computational
cost. Some extensions of this approach were presented by Grissetti et al.[51, 52, 53]. Grissetti’s
approach uses a tree structure to define and efficiently update local regions in each iteration.
The poses of the individual nodes are represented in an incremental fashion which allows the
algorithm to automatically update successor nodes, which converges significantly faster than
Olson’s algorithm. Although these methods let us avoid linearization errors and recover the
robot trajectory efficiently, they do not consider the data association problem, therefore, they
need to be used together with other methods to obtain the necessary data associations.

The Graph-Based paradigm is very closely linked to Information Filter methods. In contrast
to Extended Kalman Filters, Information Filters employ the information form of the Gaussian
distribution. The information form is often called the canonical or natural representation of
the Gaussian distribution. This notion of a natural representation stems from expanding the
quadratic in the exponential of the Gaussian distribution as

p(xk) = N (xk; µk,Σk)

=
1√
|2πΣk|

exp
{
−1

2
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−1
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>
}
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= N−1(xk; ηk,Λk) (24)

where

Λk = Σ−1
k ,

and
ηk = Λkµk.

Therefore, the Information Filter rather than parameterizing the normal distribution in terms
of its mean µk and covariance Σk, N (xk; µk,Σk), they use instead a parametrized Gaussian in
terms of its information vector ηk and information matrix Λk, N−1(xk; ηk,Λk).

The covariance and information representations lead to very different computational char-
acteristics with respect to the fundamental probabilistic operations of marginalization and con-
ditioning. This is important, because these two operations appear at the core of any SLAM
algorithm (e.g. in Prediction and Measurement Update). The covariance and information
representations exhibit a dual relationship with respect to marginalization and conditioning.
Marginalization is easy in the covariance form, since it corresponds to extracting the appro-
priate subblock from the covariance matrix, while in the information form, it is hard, because
it involves calculating the Schur complement over the variables we wish to keep. The oppo-
site relation holds true for conditioning, which is easy in the information form and hard in the
covariance form.

One quality of the canonical form is its relationship with Gaussian Markov Random Fields
in which nodes in the graph represent individual state variables and edge structure describes
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their conditional independence relationships. The information matrix serves as an adjacency
matrix for the graph representation, with the strength of constraints between pairs of vari-
ables proportional to the corresponding elements of the matrix and zero components denote the
absence of links in the Bayes Network.

Thrun et al. [125] made the empirical observation that the normalized information ma-
trix obtained when the SLAM problem is formulated in the information form is approximately
sparse, i.e. entries of distant landmarks are very small and thus can be replaced by a sparse
approximation. In [125] they utilize this observation in their Sparse Extended Information Filter
(SEIF). Paskin’s Thin Junction Tree Filter [104] and Frese’s TreeMap [48] were also based on
this observation. Theoretical explanation for this observation was later presented by Frese [47].
Sparsification essentially removes the weak links in the information matrix by setting elements
that are smaller than a given threshold to zero, while strengthening other links to make up
for the effect of this change. With the information matrix now sparse, very efficient update
procedures for information estimates can be obtained.

On the other hand, Eustice et al. [43] showed that the SEIF method causes inconsistent
estimates. They showed that map inconsistency occurs within the global reference frame where
estimation is performed. In [43] they also proposed a slightly modified version of the Thrun’s
sparsification procedure, which is shown to preserve sparsity while also generating both local and
global map estimates comparable to those obtained by the non-sparsified SLAM filter. However
this modified approximation is no longer constant-time. Eventually, Eustice et al. [41] showed
that if only the robot trajectory is estimated, the associated information is exactly sparse. This
fact was used in the Exactly Sparse Delayed-State Filter (ESDF) that they proposed. In open
loop navigation, the information matrix becomes tri-block diagonal as consecutive robot poses
are added to the state. At loop closure, the matrix structure is only modified sparsely, setting
information links between non-consecutive robot poses. In the ESDF method predictions and
updates take constant time, assuming an efficient or approximate way for state recovery is
used to evaluate Jacobians. It has been noted in [131] that the ESDF method is suitable for
the scenarios where features are difficult to extract or the number of features is too large as
compared with robot poses.

A solution for the online SLAM problem which yields an exactly sparse information matrix
was proposed by Walter et al. [128, 129]. Their method was called Exactly Sparse Extended In-
formation Filter (ESEIF) and achieves sparsity by periodically marginalizing out and relocating
robot. Similar to SEIF, ESEIF exploits the fact that when the robot location is marginalized out
from the state vector, new links will only be built up among the features that were previously
linked with the robot in the information matrix. The set of features that are linked with the
robot is called “active features”. Thus the information matrix will be sparse if the number of
“active features” is bounded. In contrast to the sparsification process in SEIF, ESEIF controls
the number of “active features” by “kidnapping” the robot when the number of “active features”
is about to become larger than a predefined threshold. This is followed by “relocating” the robot
using a set of selected measurements. Thus, the information matrix is kept sparse without any
approximations that can lead to inconsistency. The extent of sparseness is controlled by the ac-
tive feature bound, the sensor range and the feature density. However, there is some information
loss in ESEIF due to “kidnapping” and “relocating” the robot.

A method similar to ESEIF is D-SLAM, proposed by Wang et al. [130], which has a
similar state vector and does not use any approximations to achieve sparseness. D-SLAM uses
a state vector that only contains the feature locations to generate maps of an environment.
The robot location estimate is obtained through a concurrent yet separate process. In D-SLAM
mapping, the original measurements relating the robot and features are first transformed into
relative distances and angles among features. Then these transformed measurements are fused
into the map using an Extended Information Filter (EIF). It is shown that only the features
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that are observed at the same time instant have links in the information matrix making it
exactly sparse. The extent of sparseness is governed by the sensor range and feature density.
Localization is performed by combining two estimates: one is obtained by solving a “kidnapped
robot problem”; the other is obtained by a local EKF SLAM where only the features currently
observed are retained in the state vector. The two correlated estimates are fused by Covariance
Intersection (CI). Exact state and covariance recovery is achieved by preconditioned Conjugated
Gradient (PCG). A good preconditioner produced by an iterative Cholesky factorization method
exploiting the similarity between the information matrices of successive steps is used to make the
PCG efficient. Data association is solved by a combination of the standard maximum likelihood
approach and a Chi-Square test. However, there is also some information loss in D-SLAM.

A drawback of the information filter techniques is that we no longer have access to the
mean vector when the posterior is represented in the canonical form. Inverting the information
matrix is cubic in the number of states, making it intractable, even for small maps. However,
recovering the mean can be achieved by solving a set of linear equation taking advantage of
the sparseness of the information matrix. There are a number of techniques that iteratively
solve such sparse, symmetric positive definite systems of equations including conjugate gradient
descent as well as relaxation-based algorithms such as Gauss-Seidel , or multilevel method [49,
76]. The optimizations can often be performed over the course of multiple time steps since, aside
from loop closures, the mean vector evolves slowly in SLAM. As a result, we can fix the number
of iterations per update [34, 125].

On the other hand, if we are only interested in a subset of the mean such as during the
time projection step we can then consider partial mean recovery as proposed by Eustice et
al. [41]. Recently, Huang et al. [65] proposed a submap based Exactly Sparse Extended
Information Filter SLAM algorithm, called “Sparse Local Submap Joining Filter” (SLSJF),
which achieves exact recovery instead of approximate recovery. The recovery algorithm is based
on an incremental Cholesky factorization approach and a natural reordering of the global state
vector.

Another approach that makes use of sparse information matrices is the “square root SAM”
proposed by Dellaert [30, 31], which is based on Square-Root Filtering [8]. This approach seeks
the “Maximum a Posteriori” estimate for the robot poses and the map (Equation 22). Given
that this method solves the full SLAM problem, the information matrix becomes naturally
sparse, since no robot pose marginalization is performed. The “square root SAM” factorizes the
information matrix or the measurement Jacobian into square root form, using sparse Cholesky
or QR factorization, respectively, yielding a square root information matrix that can be used
to obtain the optimal robot trajectory and map. On the other hand, since is smoothed the
entire trajectory, computational complexity grows without bound over time. In addition, this
method does not consider the data association problem and it has to relinearize the measurement
equations and re-factorize at every iteration. Nonetheless, this approach was developed further
by Dellaert’s research group.

Ni et al. [99] proposed a method called Tectonic SAM, which combines a submap-based
approach with“square root SAM”. It solves the computational burden of re-factoring and relin-
earizing at every iteration by introducing base nodes to capture the global positions of submaps.
The algorithm first solves each submap locally by updating the linearization using the new es-
timation in each iteration. Then a global alignment follows to compute the relative location of
the submaps. Given the fact that the submaps will only slightly change after incorporating all
local constraints, the linearization points of the submap variables can be fixed in this stage. As
a result, most linearization calculations need to be done only in local submaps while they can
be kept constant after that.

Kaess et al. [71] introduced an algorithm called “incremental Smoothing and Mapping”
(iSAM), which is an incremental smoothing approach that takes into account the data association
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problem. This combines the advantages of factorization-based “square-root SAM” with real-time
performance for adding new measurements and obtaining the trajectory and the map. This
method allows access to the exact marginal covariances, without having to calculate the full
covariance matrix. This approach relies on a QR factorization of the information matrix and
integrates the new measurements as they are available. Using the QR factorization, the poses
of the nodes in the network can be retrieved by back substitution. Moreover, they keep sparse
matrices by occassinal variable reordering.

3.2.4 Active SLAM

The solutions to the SLAM problem considered so far are passive, in the sense that they only
process incoming sensor data without explicitly generating controls. In this section, we consider
the problem of active SLAM, also referred as integrated exploration, or robot exploration for
SLAM. In this problem it is assumed that both the robot’s pose and the map are unknown;
therefore, the robot must need to find the appropriate motion commands in order to reduce the
uncertainty about its own pose and the map. These techniques jointly optimize for map coverage
and active localization. In Table 1 we show the different branchs of robotic exploration, as was
presented in [84]. The problem of active SLAM is shown in the region IV of Table 1.

I. Passive solutions for SLAM
II. Classic Exploration
III. Active Localization
IV. active SLAM

Table 1: The field of Robotic exploration. The overlapping areas represent combinations of the
mapping, localisation, and control problems.

The key insight for optimal exploration in SLAM is that the entropy of the SLAM posterior
can be decomposed into the entropy in the pose posterior and into the expected entropy of the
map [123]. In this way, a robot performing active SLAM trades off uncertainty in the robot
pose with uncertainty in the map. When closing a loop, a robot will mainly reduce its pose
uncertainty, however, when the robot moves into an unexplored region, it will mainly reduce its
map uncertainty. By considering both, whatever reduction is larger will win, and the robot may
sometimes move into unknown terrain or sometimes re-localize by moving into known terrain.

Considerable work has been done in the field of Partially Observable Markov Decision
Processes (POMDPs). However, one drawback to the use of traditional POMDPs to exploration
problems is that they can become computationally intractable. The Coastal Navigation method
proposed by Roy et al. [106] introduced the POMDPs formalism to the exploration problem
through simplifying assumptions in order to reduce the complexity. Moreover, this approach
reduces the entropy and includes the task goal into the planner’s objective function.

In the context of exploration for SLAM, early contributions can be traced back to the
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work of Feder, Leonard and Smith [44]. In their work, the vehicle creates a map and localizes
simultaneously and makes local decisions on where to move next in order to minimize the error
in estimates of the vehicle pose and the landmark locations. The authors discussed how the
robot dealt with the task of localization and mapping in an adaptive way, and gave the specific
expression to quantitatively explain the uncertainty of the robot and environment features. The
technique mentioned has been demonstrated via simulations, sonar experiments, and underwater
sonar experiments. This principle is applied to the problem of underwater exploration in the
work of Bennett et al. [9]. The motion command to minimize the vehicle pose and map error is
incorporated into a general behavior based architecture. In both cases the exploration approach
is spatially local and greedy, that is, they chose control by maximizing information is based on
a single-step look-ahead.

In [14] an also greedy adaptive SLAM approach based on EKF is proposed, which imple-
mented active planning by selecting the best control input that will get the highest accuracy
on the next step. This approach made the assumption that the robot would observe all the
landmarks any time for simplicity, which limited the approach to be applied in large environ-
ments. The same authors introduced in [84] a utility function which trades-off the cost of
reaching frontiers with the utility of selected positions with respect to a potential reduction of
pose uncertainty.

In [118], Stachniss et al. conducted frontier based exploration [134] with SLAM. Using two
maps, occupancy grid and topological, active loop-closing was performed. Their algorithm used
a grid-based version of the FastSLAM method and explicitly takes into account the uncertainty
about the pose of the robot during the exploration tasks. Additionally, it avoids overconfident
in robot pose when actively closing loops, a typical problem of particle filters in this context.
However, maximization of information gain along the path was not considered. Newman et al.
[98] proposed an exploration approach in the context of Bosse’s ATLAS [11]. Here the robot
builds a graph-structure to represent visited areas, and planned motion is motivated by the
geometric, spatial, and stochastic characteristics of the current map. Each feature within the
map is responsible for determining nearby unexplored areas. They assumed that the location
of the features is uncertain and represented by a set of probability functions, which are used in
conjunction with the robot path history to determine a robot trajectory suited for exploration.

Sim et al. [112] proposed to encourage coverage by randomly placing dummy features in
unexplored areas. A Voronoi graph was used for path planning, with assumptions of perfect
data association and unlimited sensor field of view. Yet, this strategy is not effective for systems
with short planning horizons and limited sensing as the dummy features will not influence the
robot’s decision if they are not visible within the planning horizon. In [114] Sim conducted
active SLAM with a grid based approach and showed that optimisation using the trace of the
covariance matrix from the EKF performs better than using the determinant. However it is
assumed that the robot is quasi-holonomic with unlimited sensing and robot motion constraints
are not considered in the planning process. In [111], Sim addresses the stability issue. Features
that are too close to the robot which may cause filter instability are blocked by using a virtual
minimum range sensor.

Davison et al. [27] proposed a SLAM solution using active vision. They controled a stereo-
head considering uncertainty-based measurement selection, automatic map-maintenance, and
goal-directed steering. However, they only control orientations of the stereo-head. Vidal et
al. [127] considered a single hand-held camera performing SLAM at video rate with generic 6
DOF. They optimized both the localization of the sensor and building of the feature map by
choosing a maximal mutually informative motion command. In [15], Bryson et al. presented
simulated results of the effect different vehicle actions have with respect to mutual information
gain. The analysis is performed for a 6 DOF aerial vehicle equipped with two cameras and an
inertial sensor, for which landmark range, azimuth, and elevation readings are simulated, and
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data association is known.
Recently, Leung et al. [79] considered the trajectory planning problem for line-feature based

SLAM in structured indoor environments. The robot poses and line features are estimated
using iSAM [71], given that it is found to provide more consistent estimates than the Extended
Kalman Filter. The trajectory planning seeks to minimize the uncertainty of the estimates and
to maximize coverage. Trajectory planning is performed using Model Predictive Control (MPC)
with an attractor incorporating long term goals. However, they are restricted to small indoor
planar environments.

3.2.5 Environment Representation

The firts works in SLAM modeled the world as a set of simple discrete landmarks described by
geometric primitives such as points, lines, or circles. In more complex and unstructured envi-
ronments –outdoor, underground, subsea– this assumption often does not hold. Implementing
SLAM in three dimensions is, in principle, a straightforward extension of the two-dimensional
case. However, it involves significant added complexity due to the more general vehicle motion
model and feature modeling complexity.

While EKF-SLAM was usually applied to geometric landmarks (often point landmarks),
attaching a coordinate frame to an arbitrary object allows the same methods to be applied to
much more general landmark descriptions. Castellanos et al. [16] proposed a framewok, called
“Symmetries and Perturbations Model” (SPmodel), for representing and processing erroneous
geometrical data. Within this framework, the location of a geometrical object is defined by
its position and orientation in 3D from the world coordinate frame into a local object coordi-
nate frame, where a locally defined perturbation vector represents the error with its associated
covariance matrix containing the uncertainty information.

Hähnel et al. [58], Thrun et al. [122], Liu et al. [80], Moravec et al. [92], and Surmann et al.
[119] have also proposed extension of SLAM to three dimensions. Horn et al. [63] corrected the
planar (2D) pose of a mobile robot by using vertical planes extracted from 3D data. Sequeira
et al. [110] used a single point laser mounted on a pan-tilt unit to create 3D models of indoor
scenes. Their work mainly focussed on next-view planning and 3D reconstruction. Nüchter et
al. [102] presented a scan alignment approach for 3D scans gathered by a rotating laser scanner
sensor. They use the iterative closest point (ICP) algorithm to minimize a global error measure
to generate consistent models. The approach presented by Weingarten et al. [132] uses planar
features extracted probabilistically from dense three-dimensional point clouds generated by a
rotating 2D laser scanner. These features are represented in compliance with the Symmetries
and Perturbation model (SPmodel) in a stochastic map. Kohlhepp et al. [75] also extracted
planes to track the robot pose along with an EKF-based approach but represented the map
in separate submaps. In this approach a single consistent stochastic map is used to represent
the robot pose and all features. Cole and Newman [22] proposed a 3D scan approach within a
delayed-state framework. They used a segmentation algorithm to separate the data stream into
distinct point clouds, each referenced to a vehicle position. The SLAM technique they adopted
inherits much from 2D delayed-state SLAM in that the state vector is an ever growing stack of
past vehicle positions and inter-scan registrations are used to form measurements between them.

Apart from scan data for mapping, it is possible to associate auxiliary information with
each pose, soil salinity, humidity, temperature, or terrain characteristics, for example. The
associated information may be used to assist mapping, to ease data association, or to aid path
planning (e.g. traversability maps). This concept of embedding auxiliary data is more difficult
to incorporate within the traditional SLAM framework. Therefore, trajectory-oriented SLAM
lends itself to representing this information spatially located. Nieto et al. [100] have devised
a method called DenseSLAM to permit such an embedding. As the robot moves through the
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environment, auxiliary data is stored in a suitable data structure, such as an occupancy grid,
and the region represented by each grid cell is determined by a set of local landmarks in the
SLAM map. As the map evolves, and the landmarks move, the locality of the grid region is
shifted and warped accordingly. The result is an ability to consistently maintain spatial locality
of dense auxiliary information using the SLAM landmark estimates.

Real-world environments contain moving objects, such as people, and temporary structures
that appear static for a while but are later moved, such as chairs and parked cars. In dynamic
environments, a SLAM algorithm must somehow manage moving objects. It can detect and
ignore them; it can track them as moving landmarks, but it must not add a moving object to
the map and assume it is stationary. The conventional SLAM solution is highly redundant. As
noted in [2] landmarks can be removed from the map without loss of consistency, and it is often
possible to remove large numbers of landmarks with little change in convergence rate. This
property has been exploited to maintain a contemporaneous map by removing landmarks that
have become obsolete due to changes in the environment. To explicitly manage moving objects,
Hähnel et al. [25] implement an auxiliary identification routine and then remove the dynamic
information from a data scan before sending it to their SLAM algorithm. Conversely, Wang
et al. [51] add moving objects to their estimated state and provide models for tracking both
stationary and dynamic targets. Simultaneous estimation of moving and stationary landmarks
is very costly due to the added predictive model. For this reason, the implemented solution first
involves a stationary SLAM update followed by separate tracking of moving targets.

Other environment representations rely mainly on visual information. This kind of solutions
are referred as Visual SLAM. Mapping with cameras has some advantages, they are low cost,
light, and power-saving. These sensors can perceive data in a volume, very far, and very precisely.
In addition, images carry a vast amount of information and a vast know-how exists in the
computer vision community. Recovering the geometry of a 3D scene has been studied for years
in computer vision and photogrammetry. Several approaches, such as Structure From Motion
(SFM) methods, attempt to extract the scene geometry from a sequence of two-dimensional
images. SFM problems are a subset of the more general vision shape recovery problem. SFM
seeks to take the 2D information and recover the original 3D information, inverting the effect
of the projection process. Bundle adjustment (BA) is frequently used to improve upon SFM
solutions [60]. BA is the problem of improving a visual reconstruction to produce both optimal
structure and optimal viewing parameter estimates. Assuming a Gaussian noise model, BA
can be equated with a maximum likelihood estimator. An error minimization is performed
numerically, typically using a non-linear least squares method. Moreover, Structure From Motion
in Computer Vision and Simultaneous Map Building and Localization for mobile robots are two
views of the same problem: estimation of the motion of a body which moves through a static
environment about which it has little or no prior knowledge, using measurements from its sensors
to provide information about its motion and the structure of the world. This body could be
a single camera, a robot with various sensors, or any other moving object able to sense its
surroundings [26].

In the context of SLAM, Davison and Murray [27, 25, 28] proposed a direct extension of
2D EKF-SLAM to three dimensions, with the extraction of discrete visual landmarks and joint
estimation of the map and vehicle pose. This work was the first visual SLAM system with
processing in real time able to build a 3D map of natural landmarks on the fly and control a
mobile robot. Davison and Kita [26] extended this method to the case of a robot able to localize
while traversing nonplanar ramps by combining stereo vision with an inclinometer. Davison’s
work on SLAM with a single camera (MonoSLAM) [29] showed that is possible to build a sparse
map of high quality features in real-time.

There has been significant extensions of Davison’s original EKF-SLAM based algorithm.
Davison’s feature initialization scheme using an auxiliary particle filter was improved on by
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Solà et al. [117] with a mixture of Gaussians method, and then by Eade and Drummond
[37] and Montiel et al. [91] with a new inverse depth parameterization which can seamlessly
cope with features at any depth, and is able to work without any known initial pattern in
the scene. Civera et al. [21] proposed the use of a hybrid estimation scheme, implementing a
fully Bayesian Interacting Multiple Models (IMM) framework which can switch automatically
between parameter sets in a dimensionless formulation of monocular SLAM. Holmes et al. [62]
showed how the Squared Root Unscented Kalman Filter (SRUKF) for the SLAM problem, using
a single camera, can be re-posed with O(N2) complexity, matching that of the EKF. Jung and
Lacroix [70] presented a stereo vision SLAM system using a downward-looking stereo rig to
localize a robotic airship and perform terrain mapping. Kim and Sukkarieh [73] used monocular
vision in combination with inertial sensing to map ground-based targets from a dynamically
maneuvering Unmanned Autonomous Vehicle (UAV).

Bosse et al. [11, 13] used omnidirectional vision in combination with other sensors in their
ATLAS submapping framework. Eustice et al. [42] used a single downward-looking camera and
inertial sensing to localize an underwater remote vehicle and produce detailed seabed recon-
structions from monocular camera sequences, using an information filter within a Delayed Sate
framework. Ila et al. [66, 67] used a similar approach, however they used SIFT features [82, 109]
matches over consecutive pairs of images for the computation of 6D relative pose constraints (3D
position and Euler angles) instead of the use of combined Harris and SIFT matches over monoc-
ular camera sequences for the computation of 5 degrees-of-freedom (DOF) relative orientation
constraints (azimuth, elevation and Euler angles). The commercial vSLAM system [72] also uses
SIFT features, though within a SLAM algorithm which relies significantly on odometry to build
a connected map of recognizable locations rather than fully continuous accurate localization.

Sim et al. [113] used an algorithm combining SIFT features and FastSLAM filtering to
achieve particularly large-scale vision-only SLAM mapping. Marks et al. [85] also used a particle
filter approach to stereo visual SLAM. They obtain a joint posterior over poses and maps using
a Rao-Blackwellized particle filter. The pose distribution is estimated using the particle filter,
and each particle has its own map that is obtained through exact filtering conditioned on the
particle’s pose.

McLauchlan and Murray [87] introduced the VSDF (Variable State-Dimension Filter) for
simultaneous structure and motion recovery from a moving camera using a sparse information
filter framework, but were not able to demonstrate long-term tracking or loop closing. The
approach of Chiuso et al. [19] used a single Extended Kalman Filter to propagate the map and
localization uncertainty, but only limited results of tracking small groups of objects with small
camera motions were presented. Their method used simple gradient descent feature tracking
and was therefore unable to match features during high acceleration or close loops after peri-
ods of neglect. Foxlin [46] used fiducial markers attached to the ceiling in combination with
high-performance inertial sensing. This system achieved very impressive and repeatable local-
ization results, but with the requirement for substantial extra infrastructure and cost. Burschka
and Hager [39] demonstrated a small-scale visual localization and mapping system, though by
separating the localization and mapping steps they neglect estimate correlations.

Nister et al. [101] presented a real-time Visual Odometry system based on the standard
structure from motion methodology of frame-to-frame matching of large numbers of point fea-
tures which was able to recover instantaneous motions impressively but again had no ability to
recognize features after periods of neglect and, therefore, would lead inevitably to rapid drift in
augmented reality or localization. Konolige et al. [77] proposed a Visual Odometry over long
courses in natural terrain, where wheel based odometry is less reliable. They proposed the used
of a new multiscale feature called CenSurE [1] which was reported to have stability over both
outdoor and indoor sequences, and to be inexpensive to compute.
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3.2.6 Conclusions

We presented a literature survey of solutions to the SLAM problem, considering the estimation
process, autonomous exploration, and the environment representation. Regarding the estimation
process, we noted that the literature has identified three main paradigms: EKF-SLAM, Particle
Filters, and Graph-Based approaches. EKF-SLAM comes with a computational hurdle that
poses serious scaling limitations. The most promising extensions of EKF-SLAM are based on
building local submaps; however, in many ways the resulting algorithms resemble the graph-
based approach.

Particle Filter methods sidestep some of the issues arising from the natural inter-feature
correlations in the map, which plagued the EKF. By sampling from robot poses, the individual
landmarks in the map become independent, and hence are decorrelated. As a result, FastSLAM
can represent the posterior by a sampled robot pose, and many local, independent Gaussians
for its landmarks. The particle representation of FastSLAM has a number of advantages. Com-
putationally, FastSLAM can be used as a filter, and its update requires linear-logarithmic time
where EKF needed quadratic time. Further, FastSLAM can sample over data association, which
makes it a prime method for SLAM with unknown data association. However, a scale problem
also afflicts Particle Filters approaches. The number of necessary particles can grow very large,
especially for robots seeking to map multiple nested loops and it is unclear how many particles
are necessary for a given environment. Another difficulty arising in Particle Filter alternatives
to the SLAM problem is that a theoretical proof of asymptotic convergence in estimation is yet
to be shown.

The Graph-Based methods draw their intuition from the observation that SLAM can be
modeled by a sparse graph of soft constraints, where each constraint either corresponds to a
motion or a measurement event. Due to the availability of highly efficient optimization methods
for sparse nonlinear optimization problems, Graph-Based SLAM has become the method of
choice for building large-scale maps offline. Data association search is quite easily incorporated
into the basic mathematical framework, and a number of search techniques exist for finding
suitable correspondences. Many Graph-Based methods address the full SLAM problem, and
hence are by nature not online. On the other hand, we showed that works such as the iSAM
method [71] iteratively solve the full SLAM problem. Moreover, we showed that there are
some works in this paradigm that consider other formulations, such as the online SLAM or the
trajectory-oriented SLAM. Some of them exploit sparse information matrices and can achieve
near constant time performance.

In passive SLAM algorithms, some other entity controls the robot, and the SLAM algorithm
is purely observing. In these methods the robot designer has the freedom to implement arbitrary
motion controllers, and pursue arbitrary motion objectives. As we noted, in active SLAM the
robot actively explores its environment in the pursuit of an accurate localization and mapping.
As opposed to classic robot exploration, in this problem the robot pose and the map is unknown,
hence active SLAM jointly optimizes for map coverage and active localization (as shown in Table
1). There exist hybrid techniques in which the SLAM algorithm controls only the pointing
direction of the robot sensors, but not the motion direction. The majority of the works use
an existing passive SLAM approach in conjunction with a method that greedely selects motion
commands based on an information gain measure. One popular measure of information gain of
probability distributions is relative entropy. Yet globally optimal exploration in SLAM is still
and open problem

In the literature review we also classified works by their environment representation. This
kind of classification is more related to implementation issues and sensor modalities; therefore,
the reviewed works show how the previous discussed approaches are applied. As we noted,
early works in SLAM modeled the environment as a set of simply discrete landmarks, however,
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given that many environments lack of structure, this kind of environment modeling may be
insufficient. Some representations include auxiliary information about the environment, other
include moving objects as well as arbitrary shaped landmarks. Other works implement SLAM in
three dimensions. As we mentioned, it may seem that 3D SLAM is a straightforward extension
of the two-dimensional case, however, it involves significant added complexity due to the vehicle
motion model, sensor modalities, and feature modeling.

In Table 2 we summarize the most illustrative works on SLAM mentioned in this literature
survey. The field labeled Formulation refers to the formulation used (online SLAM, full SLAM,
or trajectory-oriented SLAM). The item Data Association specifies whether an algorithm can
cope with unknown correspondence problems. The field Incremental tell us whether maps can be
built incrementally (and possibly in real-time), or whether multiple passes through the data are
necessary. The last item, Active, shows if the approach considers also the problem of exploration.

Work Formulation Estimation
Tool

Representation Data As-
sociation

Incremental Active

Standard
EKF-
SLAM

online SLAM Kalman Filter Landmark loca-
tions

Yes Yes No

Lu/Milios
[83]

full SLAM Maximum Like-
lihood

Point obstacles Yes No No

FastSLAM
[89]

full SLAM Particle Filter Landmark loca-
tions

Yes Yes No

SEIF [125] online SLAM Information Fil-
ter

Landmark loca-
tions

Yes Yes No

ESDF [41] trajectory-
oriented SLAM

Information Fil-
ter

Aligned sensed
data

Yes Yes No

ESEIF[129] online SLAM Information Fil-
ter

Landmark loca-
tions

Yes Yes No

SLSJF[65] online SLAM Information Fil-
ter

Landmark loca-
tions

Yes Yes No

SAM[31] full SLAM Maximum a
Posteriori

Landmark loca-
tions

No No No

Tecnonic
SAM[99]

full SLAM Maximum a
Posteriori

Landmark loca-
tions

No Yes No

iSAM[71] full SLAM Maximum a
Posteriori

Landmark loca-
tions

Yes Yes No

TreeMap
[48]

online SLAM Information Fil-
ter

Landmark loca-
tions

No Yes No

TJTF
[104]

online SLAM Information Fil-
ter

Landmark loca-
tions

No Yes No

Olson et
al. [103]

trajectory-
oriented SLAM

Maximum Like-
lihood

Robot Trajec-
tory

No Yes No

Grisetti et
al. [53]

trajectory-
oriented SLAM

Maximum Like-
lihood

Robot Trajec-
tory

No Yes No

Davison et
al. [27]

online SLAM Kalman Filter (Visual) Land-
mark locations

Yes Yes Yes

Sim et
al.[114]

online SLAM Kalman Filter Grid Based Yes Yes Yes

Feder et
al. [44]

online SLAM Kalman Filter Landmark loca-
tions

Yes Yes Yes

Leung et
al. [79]

full SLAM Maximum a
Posteriori

Lines Yes Yes Yes

Table 2: Illustrative reviewed works on SLAM

From the literature survey we can conclude that most of the proposed solutions to the
SLAM problem are related with the estimation process. However, there are many issues in
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SLAM beyond estimation, for instance: long-term SLAM solutions, data association, planning
and control (active SLAM), scalability, algorithmic complexity, or the use of multiple robots at
the same time.

Much work has to be done to achieve a long-term SLAM. While trajectory-oriented SLAM
has many positive characteristics, it has a big problem: its state-space grows unbounded with
time, as does the quantity of stored measured data. In addition, in the case where we have
collected enough measurements to sufficiently characterize an area, when we return to this
previously mapped area, rather than adding more states, we should instead be able to just
localize with respect to the finite collection we already have. For long-term SLAM it will
become necessary to merge or marginalize out data to bound storage costs and to restrict our
representation to environment size (fixed) and not time (unbounded).

Regarding the data association problem, there are issues that are still worth studying.
For example, when closing large loops, one needs to evaluate data association tests efficiently.
In Visual SLAM, robust place recognition for loop closing as well as robustness to outliers
(illumination changes, occlusions, etc.) are necessary.

Moreover, in contrast to the vast number of passive SLAM algorithms, active SLAM has
not been studied as extensively. Many works only consider structured environments as well as
two-dimensional maps. Although there are works that deal with full 6 DOF motion, they are
restricted to small areas. Furthermore, the proposed solutions for exploration in SLAM are
generally greedy. Therefore, globally optimal exploration is still and open issue.

Additionally, the information form of the SLAM problem has significant relevance in large-
scale mapping, in problems involving many vehicles, and potentially in mixed environments with
sensor networks and dynamic landmarks. On the other hand, when dealing with information
filters we rely on large linear filters, where linearization errors increase with the size of the
environment. An open issue is to keep the advantages of the information form while proposing
ways to reduce linearization errors.
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4 Approach

In the previous section we identified open issues in SLAM. In this section we discuss how we
expect to approach some of these open problems.

• Data association to close loops in large environments with delayed-state SLAM:

A straight forward solution to the loop closing problem is to rely on the pose estimates
from the filter and perform data association tests as much and as often as possible. By
testing for data association based on the likelihood of estimates, one can avoid some of
the problems associated with appearance-based SLAM, such as aliasing for homogeneous
or repetitive scenes. However, closing all loops consistent with the likelihood of estimates
might add information links that contribute with little information to reduce the estimation
error and links that are not consistent with the sensor uncertainties for which the system
was trained.

Our approach to this issue relies on the estimator for the generation of pose constraint
hypotheses. Since adding information links for all possible matches produces overconfident
estimates that in the long term lead to filter inconsistency, we propose instead a two step
loop closure test. First, we check whether two poses are candidates for loop closure with
respect to their mean estimates. This can be achieved by testing for the Mahalanobis
distance in the same way data association gating is commonly performed during a SLAM
update. But instead of adding all these information links, we can limit the candidates to
a second test to allow updating using only links with high informative load. In terms of
covariances, this happens when a pose with a large covariance can be linked with a pose
with a small uncertainty.

• A robot pose marginalization strategy towards a long-term SLAM algorithm:

We have pointed out that for long-term SLAM, in a trajectory-oriented SLAM approach,
it will become necessary to merge or marginalize out data to bound storage costs and to
restrict our representation of the environment to a fixed size. We will formalize a pose
marginalization strategy based on the information content of each pose. One possibility
is to decide which pose to marginalize out based on mutual information scores as well as
limiting the effect of the linear approximations added by the links.

On the other hand, like in feature-based SLAM, if we marginalize out our robot trajectory
the information matrix will densify. This suggests that some sort of approximation is
required (similar to the pruning strategies employed by feature-based SLAM information
filters). As noted in [129], a possibility to control the information matrix sparsification
would be to prevent link formation rather than pruning them.

Our approach to pose marginalization will take into account information theory metrics,
such as mutual information, in order to decide when and which poses to marginalize, while
taking also into account the computational complexity of performing such strategy.

• Optimal exploration techniques for SLAM as Partially Observable Markov Decision Pro-
cesses.

As we have noted, in contrast to the vast number of passive SLAM algorithms, Active
SLAM has not been studied as extensively. In this thesis, we seek to propose an exploration
estrategy for a delayed-state SLAM based on entropy reduction. While developing the
strategy we need to consider that the entropy of the SLAM posterior can be decomposed
into the entropy in the pose posterior and into the expected entropy of the map, thus we
need to trade off uncertainty in the robot pose (localize the robot) with uncertainty in the
map (visit new regions).
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• The nonlinearities of perception and action models

Although the information form of the SLAM problem has significant potential in large-
scale mapping, we rely on large linear filters, where linearization errors increase with the
size of the environment. A tentative approach to this issue is to reduce the effect of the
nonlinearities of motion and perception models either by using an iterative optimization
technique or employing an alternative state-space representations.
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5 Achievements

Here we show the achievements that we have accomplished so far. We present an implementation
that employs an Extended Information Filter (EIF), within a delayed-state framework, and a
quaternion-based representation, which allows us to avoid gimbal lock singularities. Additionally,
we describe the work we have done about informative loop closure detection presented in [67].

The approach presented here constitutes the SLAM estimation backbone for the maps
being built for the URUS project [108]. We note that in the scope of this project, relative pose
measurements may come in the form of image feature matches or as registration of 3D laser
range scans for any of the robot platforms used.

5.1 ESDF Implementation with Quaternions

In the delayed-state information-form SLAM we estimate the state vector x, which contains the
history of poses from time 0 to k, given the history of proprioceptive observations Z and the set
of motion commands U . Using the canonical parameterization,

p(x|Z,U) = N (x; µ,Σ) = N−1(x; η,Λ), (25)

Λ = Σ−1, and η = Σ−1µ. (26)

Where µ is the mean state vector and Σ its covariance matrix. Λ and η are the information
matrix and information vector, respectively.

In our implementation one robot pose (the k-th component of the state vector x) is defined
as follows

xk =
[

p
q

]
, (27)

where p = (x, y, z)> indicates the position of the robot, and q is a unit norm quaternion
representation of the robot orientation in global coordinates

q =
[

v
w

]
, (28)

with v = (qx, qy, qz)> the imaginary part and w the scalar part of the quaternion.
The noise-free motion model is defined using the compounding operation as defined by

Smith et al., [115], and defines the state transition model, relating state components xk+1 and
xk,

xk+1 = f(xk,uk),
xk+1 = xk ⊕ uk,[

pk+1

qk+1

]
=

[
pk + qk ⊗4p⊗ q−1

k

qk ⊗4q

]
, (29)

where ⊗ is used to indicate quaternion multiplication, ut represents the relative motion given
by the odometry data, which is given by the relative travelled distance 4p and the relative
rotation change 4q.

A first order Taylor series approximation of this model is given by

xk+1 ≈ f(µk,uk) + F(xk − µk) + wk, (30)

where

F =
∂f

∂x

∣∣∣∣
µk,uk

, (31)
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and zero mean white noise wk with covariance Q, used to accomodate for higher order terms
and modelling errors.

We form our proprioceptive observation model also using the compounding operations. The
noise-free measurement model is given by Equation 32, which tells us how much the robot has
moved between any robot pose xi and the current pose xk,

zk = h(xi,xk) = ªxi ⊕ xk,[
zp

zq

]
=

[
q−1

i ⊗ (pk − pi)⊗ qi

q−1
i ⊗ qk

]
. (32)

The linearized measurement model is given by

zk ≈ h(µi, µk) + H(xi,k − µi,k) + vk, (33)

where xi,k = [x>i ,x>k ]> , vk is zero mean white measurement noise with covariance R, and

H =
[

∂h
∂xi

∣∣∣∣
µi

∂h
∂xk

∣∣∣∣
µk

]
. (34)

In the delayed-state framework we do not maginalize out past robot poses as in other clas-
sical SLAM approaches such as the EKF and the EIF. Instead, we append the time-propagated
robot pose xt+1 to the state vector, obtaining the prior probability distribution

p(x0:k,xk+1|Zk, Uk+1) = p(x0:k|Zk, Uk) p(xk+1|xk,uk+1), (35)

where x0:k represent the robot trajectory before time k + 1, Zk and Uk are the history of obser-
vations and odometry increments up to time k, respectively. This probability is factored into the
product of the state posterior at time k and the transition probability multiplied by the prior
probability —i.e. the posterior distribution computed at time k. For Gaussian distributions,
the parameters η and Λ of Equation 35 in the form of 25 are given by

ηk,k+1 = η̄k,k+1 + F>augQ
+(f(µk,uk)− Fµk) (36)

and
Λk:k+1,k:k+1 = Λ̄k:k+1,k:k+1 + F>augQ

+Faug, (37)

in which
Faug =

[ −F I
]
, (38)

and η̄k+1 and Λ̄k+1 represent the posterior information vector and information matrix at time
k, with zero entries for time k + 1, representing infinite uncertainty for that robot pose.

The augmentation process introduces information only between the new robot pose xk+1

and the previous one xk. Moreover, the shared information between the new pose xk+1 and the
rest of the robot trajectory x0:k−1 is always zero when we have not closed any loop. This matrix
results in a naturally sparse information matrix with a tridiagonal block structure.

In this implementation, we model rotation noise in terms of Euler angles, and use a linear
propagation of the white noise we ∼ N (0,Qe) that expresses rotation error in Euler angles, to
compute the noise wq, expressed in quaternions. For that purpose we define the function

g : Xe → Xq, (39)

which transforms robot orientations in Euler angles Xe ⊆ SO(3) to robot orientations in quater-
nions Xq. Linearizing g about the mean robot orientation expressed in Euler angles µe

g(xe) ≈ g(µe) + G(xe − µe), (40)
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where

G =
∂g

∂xe

∣∣∣∣
µe

. (41)

Q+ is the pseudoinverse of the motion noise covariance expressed in quaternions. To obtain
it, we first transform uncertainty in Euler angles to quaternionrs with

Qq = GQeG>, (42)

which is rank deficient by one because of the normalized quaternion representation. Its pseu-
doinverse is computed with

Q+
q = G(G>GQeG>G)−1G>, (43)

and finally,

Q+ =
[

Qp 0
0 Q+

q

]
, (44)

where Qp represents the translational components of the noise covariance Q.
After augmenting the state we add observations with the EIF update equations,

ηi,k+1 = η̄i,k+1 + H>R+
(
zk+1 − h(µi, µ̄k+1) + Hµ̄i,k+1

)
, (45)

Λi:k+1,i:k+1 = Λ̄i:k+1,i:k+1 + H>R+H, (46)

where zk+1 is the observation at time k+1. Here again R+ is the pseudoinverse of the covariance
noise, in this case, from the observation model, which is given by

R+ =
[

Rp 0
0 G(G>GReG>G)−1G>

]
. (47)

Figure 2: Simulated robot trajectory on a sphere. The left figure shows the estimated trajectory
before loop closure, whereas the right image shows the estimated trajectory after the loop is
closed.

In the same way as with the prediction step, given the two-block size of the measurement
Jacobian H (Equation 34) [125], only the four blocks relating poses i and k+1 in the information
matrix will be updated.
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Note also that at each iteration, quaternion normalization must be enforced, i.e.,

gn(q) =
q
‖ q ‖ , (48)

Gn =
∂gn

∂q

∣∣∣∣
µq

, (49)

substituting the state mean and covariance with

µ̂q = gn(µq), (50)

and
Σ̂q = GnΣqG>n. (51)

The filter has been implemented and simulated for a robot moving about a sphere following a
“Hawaiin necklace” manoeuvre with a unicycle motion model [61]. Figure 2 shows the simulated
trajectory before and after loop closure. These simulations verified that our quaternion-based
SLAM implementation works well for full 3D motion.

5.2 Informative Loop Closure Detection

Two phases can be distinguished during the loop-closing process. First, we need to detect the
possibility of a loop closure event and then, we must certify the presence of such loop closure from
visual data. The likelihood of pose estimates are valuable in detecting possible loop closures.
A comparison of the current pose estimate with the history of poses can tell whether the robot
is in the vicinity of a previously visited place, in terms of both the global position and the
orientation. This is achieved by measuring the Mahalanobis distance from the prior estimate to
all previously visited locations, i.e., for all 0 < i < k,

d2
M = (µk+1 − µi)

>
(

Σk+1 + Σi

2

)−1

(µk+1 − µi). (52)

An exact computation of Σk+1 and Σi requires the inverse of Λ̄, which can be computed
in linear time using conjugate gradient techniques [41]. Motivated by [125], these covariances
can be efficiently approximated in constant time from their Markov blankets. Note also that
Equation 52 does not take into account the cross correlation between poses in the Mahalanobis
metric, but this can be done with no substantial extra effort. The only difference is that instead
of computing individual Markov blankets for each pose, the combined Markov blanket is used.

The average covariance is used to accommodate for the varying levels of estimation uncer-
tainty both on the pose prior being evaluated, and on the past pose being compared. In case
of a normal distribution, the Mahalanobis distance follows the χ2-square distribution with n-1
degrees of freedom.

Many nearby poses will satisfy this condition, as shown in Figure 3b. At the start of
a SLAM run, when covariances are small, only links connecting very close poses will satisfy
the test. But, as error accumulates, pose covariances grow covering larger and larger areas of
matching candidates.

For long straight trajectories having corresponding visual features, information links could
even be established. Some aid in reducing the effect of large pose constraints, because orientation
variance is usually larger than position variance, and pose covariance ellipsoids usually align
orthogonal with respect to the direction of motion.

Due to linearization effects, adding information links for all possible matches produces
overconfident estimates that in the long run lead to filter inconsistency. Thus, our update
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Figure 3: A mobile robot has performed a loop trajectory. a) Prior to adding the information
relevant to the loop, a match hypothesis test must be confirmed. If asserted, we could change the
overall uncertainty in the trajectory from the red hyperellipsoids to the ones in blue. b) If the
test is made using conventional statistical tools, such as the Mahalanobis test, all the possible
data association links indicated in blue should be verified. With a test based in information
content just the links indicated in red should be verified. c) Sparse information matrix using a
“delayed-state” SLAM representation. A loop closure event adds only a few non-zero off-diagonal
elements to the matrix (see zoomed region).

procedure must pass a second test. The aim of this second test is to allow updating using only
links with high informative load. In terms of covariances, this happens when a pose with a large
covariance can be linked with a pose with a small uncertainty.

dB =
1
2
ln

∣∣∣∣
Σk+1 + Σi

2

∣∣∣∣
√
| Σk+1 || Σi |

(53)

The above expression refers to the second term of the Bhattacharyya distance, and gives a
measure of separability in terms of covariance difference [50]. This test is typically used to discern
between to distinct classes with close means but varying covariances. We can see however that
it also can be used to fuse two observations of the same event with varying covariance estimates.
Given that, the value of dB increases as the two covariances Σk+1 and Σi are more different.
The Bhattacharyya covariance separability measure is symmetric, and we need to test whether
the current pose covariance is larger than the i-th pose it is being compared with. This is done
by analyzing the area of uncertainty of each estimate by comparing the determinants of | Σk+1 |
and | Σi |. The reason is that we only want to update the overall estimate with information
links to states that had smaller uncertainty than the current state. Figure 3b shows in red the
remaining links after the second test.

In a second phase we still must certify the presence of a loop closure event to update the
entire pose estimate and to reduce overall uncertainty. When an image correspondence can be
established, the computed pose constraint is used in a one-step update of the information filter,
as shown in Equations 46 and 45. A one-step update in information form changes the entire
history of poses adding a linear number of non-zero off-diagonal elements in the information
matrix as shown in the Figure 3c. The sparsity can be controlled by reducing the confidence on
image registration when testing for loop-closure event.
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6 Work Plan and Calendar

In this section we present the tasks required to develop this Thesis. Part of our previous work
is also contained in these tasks.

• Task 1 (T1): Courses
Term: 9 months
Courses of the PhD in Vision, Control and Robotics and complementary courses (summer
schools)

• Task 2 (T2): State-of-the-Art review
Term: 18 months
In-depth study of SLAM approaches, mainly focusing on the works dealing with scala-
bility issues, computational complexity, data association, Visual SLAM, nonlinearities in
perception and action models, and Active SLAM. This task includes the thesis proposal
preparation.

• Task 3 (T3): Analysis and implementation of loop closure techniques
Term: 12 months
Study of different metrics for data association hypothesis testing in a delayed-state SLAM
framework and experiments to acquire an image data base with the SEGWAY RMP plat-
form. Report the proposed solution and results.

• Task 4 (T4): 6 DOF SLAM implementation with reduced linearization errors
Term: 10 months
Implementation of a trajectory-oriented SLAM approach in 6 DOF, selecting an appropri-
ate rotation representation to avoid singularities. Reduce the effect of the nonlinearities
of motion and perception models. Report the proposed solution and results.

• Task 5 (T5):Pose Marginalization
Term: 10 months
Formalization of a pose marginalization strategy to achieve scalability and reduced storage
costs in a trajectory-oriented SLAM approach. Validation of the proposed approach by
simulations and real data. Report the proposed solution and results.

• Task 6 (T6): Propose exploration strategies
Term: 12 months
Formalization of exploration strategies. Evaluation by means of simulations. Report the
proposed solution and results.

• Task 7 (T7): Propose a unification approach of SLAM and exploration techniques.
Term: 8 months
Combine all the previously developed methods to achieve SLAM exploration. Validation
of the proposed approach by simulations and experiments with a robotic platform. Report
the proposed solution and results.

• Task 8 (T8): Thesis report and thesis defense
Term: 6 months
In this task all the reports will be integrated to complete the Thesis report writing. This
task also includes the preparation of the Thesis defense and preparations of international
journal papers.



32 Thesis Project

• Task 9 (T9): URUS experiments
Term: 4 months
Since this Thesis is part of the URUS project [108], besides the necessary experiments to
evaluate the proposed techniques we need to perform additional experiments in order to
incorporate the results of this Thesis into the project.

• Task 10 (T10): Research Stay
Term: 6 months
It is expected to do one or two short stays in another University to work in the Thesis
research topic. They are yet to be defined. Candidate collaborations include ACFR
(Australia), LAAS (France), UniZar (Spain), and Georgia Tech (USA).

Figure 4 shows an orientative planning of the thesis work, following the tasks mentioned above.

6.1 Previous Work and Contributions

• Courses of the PhD in Vision, Control and Robotics (September 2006 - June 2007) (T1)

Control y Programación de Robots, Robotización Avanzada, Control de Robots, Planifi-
cación de Trayectorias y Detección de Colisiones en Robotica, Visión por Ordenador (I):
Segmentación, Modelado y Reconocimiento, and Visión por Ordenador (II): Procesamiento
y Segmentación de la Imagen.

• Summer schools (T1)

Player Summer School on Cognitive Robotics (PSSCR07) . Study of topics on Cogni-
tive Robotics and applications of the Player/Stage middleware. Technische Universität
München (TUM, Technical University of Munich). Munich, August 13th - 27th, 2007.

Summer School on Image and Robotics (SSIR08). Study of Computer Vision and Robotics
topics. Université Blaise-Pascal (Blaise Pascal University). Clermont-Ferrand, June 22nd
- July 4th, 2008.

• State-of-the-Art review (T2)

Study of the different techniques applied in the literature to achieve our objective and
development of the thesis proposal.

• Loop closure techniques (T3)

During the first year of my doctoral studies I have contributed with a novel test for
data association hypothesis testing within a Delayed-State SLAM framework [67]. This
research was directed by Dr. V. Ila, Dr. J. Andrade-Cetto, and Prof. A. Sanfeliu. This
work was presented in the 2007 IEEE/RSJ International Conference on Intelligent Robots
and Systems, in San Diego, CA, USA.

• Implementation of a 6 DOF SLAM (T4)

Implementation of an Extended Information Filter (EIF), within a delayed-state frame-
work, and a quaternion-based representation. The implemented method constitutes the
SLAM estimation backbone for the maps being built for the URUS project [108].
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Figure 4: Work Plan
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