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1 Introduction and motivation

Biological organisms monitor their movement by perceiving ego-motion using visual cues. The
ego-motion in computer vision, referring to the 3-D camera motion relative to a rigid scene, forms
the basis for visual odometry (VO) and simultaneous localization and mapping (SLAM) [1]. They
play pivotal roles for mobile robotic and augmented reality (AR) applications. Especially, for
self-driving vehicles or autonomous aerial robots, the ability to navigate in complex environments
is crucial yet challenging. Failures occur under uncontrolled environments, such as low-textured
scene or illumination changes, due to the limitations of current visual motion perception tech-
niques. Both the conventional digital cameras and vision processing algorithms differs from the
biological vision systems. In terms of sensors, conventional frame-based cameras measure light at
each pixel and output an entire image synchronously, while biological retina cells operate indepen-
dently and asynchronously. At the algorithm level, current development in artificial intelligence
has made remarkable achievements in computer vision tasks. Notably, inspired by the hierarchical
architecture of the neural network in our brain, deep analog neural network (ANN) has yielded
state-of-the-art performance for image classification benchmarks [2]. However, the success comes
at the cost of sacrificing huge human labor by annotating data and tremendous computational re-
sources. In contrast, our brain process data streams in a spike-based event-driven way. Neurons are
connected by synapses and communicate through discrete action potentials, which allow sparse
and efficient data transfer [3]. Such a gap between their computing principles makes the current
vision perception systems less robust and effective than the biological systems for ego-motion
estimation.

For animals and human beings, the visual cue is processed in the dorsal visual pathway from
the primary visual cortex V1 to the parietal lobe to gain spatial awareness and guidance of actions
(shown in Figure 1) [4]. In concrete, when the retina receives the light, the rod and cone cells
first change their membrane potentials. These changes further propagate to the ganglion cells with
temporal information. The ganglion cells fire according to the light intensity changes and generate
either transient burst action potentials or sustained discharge through the optic nerve to the visual
cortex. Visual motion is then processed in a hierarchical structure with interconnected regions [5].
Each region is sensitive to more complex motion patterns. Neurons in the primary visual cortex
(V1) are direction-selective as they only respond to oriented edges, which is commonly refer to
aperture problem, while neurons in higher area named the middle temporal (MT) fire in proportion
to the true direction. They receive the spikes from the V1 area and have a larger receptive field.
Neurons in medial superior temporal (MST) area receive major input from MT area and respond
to the entire optical flow pattern, which is defined as the pattern of apparent motion of 3-D world
objects on the retina caused by the relative motion between an observer and the visual scene
[6]. Researches have shown selectivity to different flow patterns such as expansion, contraction,
rotation or spirals in the MST area [7, 8]. Animals can adjust its posture and stabilize the heading
direction by perceiving the ego-motion from the retinal optic flow.
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Figure 1: The visual motion processing pathway in human brain

2



Mimicking the bio visual pathway up to the retinal ganglion cells, neuromorphic vision sys-
tem such as dynamic vision sensor (DVS) [9] or DAVIS [10], shows the advantage to overcome
common issues of frame-based cameras. They are commonly called ¨silicon retina¨ or event-
based camera. In the present dissertation, we use event-based camera to refer to such technology.
Event-based cameras detect independently the change of luminance in each pixel and produce an
asynchronous feed of pixel coordinates where changes occur. Since no frame or image is produced,
the event-based processing can detect fast motions with low latency down to 1µs time resolution.
Since each pixel is processed independently, they have high dynamic range up to 140dB, which
makes them robust to changes in illumination conditions. Further, their sparse output without re-
dundant information requires low power consumption to be adopted in mobile embedded systems.
All the advantages make them an ideal candidate for challenging mobile robotic tasks. However,
solving the visual perception problems for the case of event cameras requires novel algorithms to
cope with the unfamiliar event-driven data.

One promising solution to the challenges involves using brain-inspired spiking neural network
(SNN), which is considered to be the third generation of neural networks [11]. While ANNs make
use of the amplitude of the signals, SNNs process discrete spikes or binary events by using timing
information. Inspired by the working principles of the brain, neurons in SNNs fire when their
membrane potential reaches a threshold and further propagate the non-binary signal to other neu-
rons through synapses. They are event-driven as they are only active when spikes arrive. The
sparse and event-driven characters of SNN allows computational and energy efficiency, making
it an natural match to process the spatio-temporal data from event-based cameras. Further, they
enable unsupervised learning by spike-timing-dependent plasticity (STDP) rules. The biologically
plausible STDP rule is a local rule based on timing information and suits hardware implementa-
tion [12]. However, as exploiting the state-of-the-art training techniques in conventional ANNs
requires continuous and differentiable data, training an SNN is tricky. One approach to realize
learning in SNN is using ANN-to-SNN conversion manner, which refers to training an ANN and
converting the trained model to SNN. They have yield competitive performance on image clas-
sification benchmarks but need larger inference time. To apply supervised learning, approaches
using gradient descent based global backpropagation on SNNs usually require a differentiable ap-
proximate function [13, 14]. For local learning rules, it is difficult to train on multiple layers as
the spike propagation vanishes in deeper layers. Thus, a common approach is training them by
means of a local-global fashion: train a SNN layer by layer using local learning rules and add
global backpropagation layer for classification. Lacking appropriate training approaches has been
the major limitation for the application of SNNs. Nonetheless, the combination of event-based
camera and SNN has arouses increasing interests in different communities, from neurosience to
robotics. Recently, several works have been done using SNN on neuromorphic chips combined
with event camera for high-speed control tasks [15].

We believe that combining the spatio-temporal data from an event-based camera and the
temporal-processing capability from SNN can yield a bio-inspired computational-efficient solu-
tion for visual motion perception tasks. However, these bio-inspired SNNs have only been used
to tackle low-level tasks in the literature such as feature extraction [16], optical flow [17, 18],
object/gesture recognition [19, 20], trajectory prediction [21]. Limited work has been done using
pure SNN framework for higher-level or large-scale tasks such as camera motion estimation and
tracking. Our interests remain: How to fully exploit the temporal-processing scheme of SNNs
and the event camera? Which is the appropriate learning approaches to unlock the potential of
bio-inspired SNNs to perform continuous complex tasks such as 3-D ego-motion estimation?
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2 Objectives and expected contributions

The objective of this dissertation is to design and implement a biologically-inspired system for
ego-motion estimation from event camera data. We will explore SNN approaches that are naturally
adapted to event-camera. The software implementation is expected to yield reliable results to
estimate 3-D motion of the camera. Both simulated and real-scene event camera data will be
tested.

The first step lies in developing and implementing the mathematical model for ego-motion
estimation from optical flow. Initial study and implementation of event-based optical flow and
ego-motion estimation will be done using the state-of-the-art SNN frameworks. The next phase of
the PhD will involve developing our own learning methods for optical flow estimation. Different
learning algorithms will be explored such as unsupervised learning using Spike-Timing Dependent
Plasticity (STDP) rules, self-supervised learning and supervised learning using spike-based back
propagation. The results will be compared with other state-of-the-art approaches on event-based
optical flow benchmarks. In the third step, we will explore the ego-motion estimation method to
develop robust ego-motion estimation methods. Both optimization and learning-based methods
will be explored. The expected approaches will be able to estimate 3-D camera motion up to
a scale without prior knowledge of the rigid scene structure. In the end, we will aim at fully
exploiting the high-temporal resolution and asynchronous data from the event camera to perform
high speed ego-motion estimation in real time.

This PhD dissertation seeks to contribute to developing a bio-inspired event-camera system
for ego-motion estimation, which can be later employed in visual localization and mapping for
mobile robotic systems. Event cameras are naturally suitable for motion-relevant tasks such as
optical flow estimation or ego-motion estimation, which forms the basis of tracking, SLAM in
computer vision and robotics community. Spiking Neural Network (SNN) is the ideal candidate
for event-based camera. This dissertation aims to exploit the advantage of event-camera and bio-
inspired visual motion processing methods. All the algorithms will be implemented using open
source frameworks either in python or C++. The expected results may provide insights for efficient
computational vision motion perception systems.

3 State of the art

3.1 Event-based Optical flow estimation methods

Optical flow refers to the pattern of apparent motion of 3-D world objects on the image plane by
the relative motion between the camera and the visual scene. For conventional cameras, the op-
tical flow is usually computed using the spatial and temporal derivatives based on the brightness
constancy assumption and smoothness assumptions [22]. Conventional optical flow techniques
include differential methods, frequency-based methods, correlation-based methods. For more de-
tails readers can refer to [23]. We will focus on event-based optical flow estimation methods in this
section. For event cameras, given the asynchronous streams with timing information and naturally
detected edges, the computation of optical flow has gained growing interest. It is challenging as
well because there is no brightness value from the output data and it is not spatially continuous
due to its sparsity. Event-based optical flow techniques include model-based and learning-based
methods.

3.1.1 Model-based method

Based on gradient-based methods, early works have been bone to present an adaptive version of
the Lucas-Kanade algorithm for event-based vision [24, 25], but their performance is limited as
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it is difficult to estimate derivatives due to the sparse encoding of address-event representations
(AER). Recently, Almatrafi et al. [26] present the distance surface methods, which is an assigned
intensity value based on the proximity to the spatially closest detected event pixel. It is then serves
as input to the intensity-based optical flow methods.

Spatiotemporal plane fitting shows to be an alternative robust approach by considering the
local distribution of events in x-y-t space [27, 28, 29, 30]. Optical flow can be computed taking
the inverse gradients of a plane fitted to the surface based on the constant velocity assumption
within this surface. Benosman et al. [27] applied linear least-squares method to a spatio-temporal
neighborhood on each newly coming event. Mueggler et al. [31] improved the method using
active events surface, which only stores the last generated events. Based on plane-fitting meth-
ods, Pijnacker Hordijk et al. [28] improved method by reducing the number of parameters and
used a time-window with adaptive length. Since the plane-fitting method is sensitive to noises,
RANSAC-based technique is often used for outlier rejection [31, 32]. Implementation on FPGA
is also done in [29]. Recent work [33] uses a Principle Component Analysis (PCA) approach and
shows reduction in computation time. Though plane-fitting method is able to work with sparse
representations, it can only output normal flow and the performance depends on the good fitting
of the spatio-temporal window to the scene texture.

Energy-based methods use spatio-temporal filters, or Gabor filters for motion speed and direc-
tion selectivity. Biologically-inspired methods [34, 25, 35, 36, 37], which try to mimic the motion
estimation mechanism in dorsal stream of the biological visual system [38], fall into this category.
Orchard et al. [35] uses SNN to detect optical flow using self-designed spatio-temporal filters with
different speed and directions. Paredes-Valles et al. [36] learns these filter by a novel unsupervised
STDP method. The idea is to let the neural network recognize the spatio-temporal pattern through
coincidence detection, which can be traced back to the Hassentein-Reichardt Element Motion De-
tector (EMD) model [39]. The limitation of this method lies in that it requires a large number of
spatio-temporal filters and has higher computational and memory requirements since the spatial
and temporal frequency content of the scene is not known in advance. Especially, since the im-
plementation can only output a confidence value, it has accuracy problems when it comes to the
magnitude .

3.1.2 Learning-based method

Deep learning techniques using analog neural network (ANN) have been exploited for event-based
optical flow estimation in [40, 41, 42]. Zhu et al. [40] trained a CNN based on a self-supervised
learning method using photometric loss of the gray scale images. They later improved their
work to perform unsupervised learning of optical flow, ego-motion and depth based on motion-
compensation loss [41]. Ye et al. [42] presented the first ANN framework to estimate dense flow,
ego-motion and depth from event only using unsupervised learning. Recently, Stoffregen et al.
[43] trains synthetic event data with supervised learning based on the work from [40, 41] and yield
higher performance on benchmarks. In [44], the authors propose a light weight neural network
that is able to estimate optical flow in a self-supervised manner using the contrast maximization
proxy loss. In [45], a lightweight pyramid network is presented to learn event-based optical flow
in a self-supervised way. The proposed framework is simplified based on Laplacian pyramidal
decomposition and channel attention mechanism, which shows lower computation cost. Other
learning-based methods using SNNs or hybrid structures will be discussed in Section 3.2.1.
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3.2 Spiking Neural Network for event-based vision

3.2.1 SNN for optical flow estimation

Methods using SNN for optical flow estimation without learning [35, 37] usually fall in the bio-
inspired Gabor-filter method category that was described in 3.1.1.

SNN-based method for learning event-based optical flow has been exploited in [36, 46, 47, 48].
For unsupervised learning, Paredes-Valles et al. [36] presented a convolutional SNN framework for
local and global event-based optical flow estimation based on a novel unsupervised STDP method.
Barbier and Triesch [47] presents a SNN that learns orientation, motion and disparity similar to the
simple and complex cells in primary visual cortex. The network was trained by STDP from stereo
event-based inputs. However, all the methods mentioned above suffer the common problem of
spatio-temporal filter methods (refer to Section 3.1.1) and can only be deployed for those dataset
similar to that used for training. Lee et al. [46] proposed a hybrid architecture combining SNN in
the encoder and ANN in the decoder. The network is trained by self-supervised learning method
from EV-FlowNet [49]. They later proposed in [50] another framework which contains both SNN
and ANN-based encoders to extract features from the event streams and synchronized grayscale
images respectively. The fused output is then passed to the rest of the network. Recently, Paredes-
Vallés et al. [48] proposes another pure SNN approach for event-based optical flow estimation
using self-supervised learning based on the loss function from [41].

3.2.2 SNN for ego-motion estimation

While previous works do exist using ANN architecture to learn ego-motion from event camera
inputs [42, 41], for SNN, the only work related is found in [51]. The authors presented a SNN
framework to continuously perform 3-DoF (Degree of Freedom) angular velocity regression based
on supervised learning approach from [52]. However, using SNN to recover 6-DoF camera motion
has not been addressed in the literature so far.

3.3 Ego-motion estimation methods from optical flow

Given optical flow information, it is sufficient for observers to perceive translational direction of
self motion [53]. Neurophysiological and the psychophysical studies try to discover the optic flow
processing properties in the primate visual pathway. The response of MST neurons to different
flow field patterns caused by expansion, rotation or translation can be learned by unsupervised
learning [54, 55, 56] or back-propagation network [57]. Heading estimation (or translation direc-
tion) has been recovered by tuning neurons to individual optic flow patterns by template matching
models [58]. Lappe and Rauschecker [59] proposed a population-based neural network that is able
to encode motion speed and direction and shows selectivity for translational direction based on the
method of [60].

In the computer vision community, recovery of the camera motion often involves optimization
methods by minimizing the difference between the measured flow and the model flow. Visual
motion model can be constructed either in a discrete or a differential viewpoint. High speed cam-
eras like event cameras are not limited by frames, and can be valid to use the differential model.
Longuet-Higgins and Prazdny’s model [61] is the most used one to describe the relationship be-
tween visual motion fields and ego-motion in a rigid environment through a differential viewpoint.
Given the visual motion model, robustly ego-motion estimation methods are usually composed of
three components: optimization constraint (including squared distance constraint, bilinear con-
strains, motion parallax constraints), optimization technique and robust estimator [62].

While early works use combined methods to estimate translation and rotation in one step with
known depth value [63], most algorithms treat rotation and translation separately [64, 65, 60].
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Rieger and Lawton [65] tried to solve translation first based on motion parallax. It works when
there are large depth differences but is difficult to measure near occlusion boundaries. Heeger and
Jepson [60] derived the subspace constraint from the bilinear constraint to release the dependency
on rotational motion and proposed subspace method.

For optimization techniques, least squares (LSQ) method is used [60, 65] as linear optimiza-
tion. Nonlinear problems using numerical solvers include fix-point iteration (FP) [64, 66] and
Gauss-Newton iteration (GN) [67, 68]. Instantaneous inaccurate estimations often occur either
due to errors in the optic flow estimation or additional non-static objects contributing to the vi-
sual motion fields in real world scenarios. Robust estimators techniques such as random sample
consensus (RANSAC) [69] are often combined with optimization techniques .

4 Work Plan

4.1 Task 1: Literature Review

The literature review phase consists in a deep study and critical analysis of all the books, publica-
tions and experimental data related to specific topic. At the beginning of the research, literature
review should be done related to event camera optical flow estimation techniques, spiking neural
network and ego-motion estimation methods. Periodic literature review is fundamental throughout
the research cycle.

4.2 Task 2: Trained SNN model

The initial task will focus on studying and implementation of existing SNN architectures for event-
based optical flow and camera motion estimation. The goal is to explore the feasibility and per-
formance of state-of-art SNN frameworks for optical flow and ego-motion estimation tasks. This
task will involve:

Task 2.1: Inference test for optical flow estimation

In this task, we will focus on replicating event-based optical flow estimation by existing SNN
framework using unsupervised learning method. We will generate different simulated datasets to
evaluate the optical flow estimation method. Depending on the results, we will develop techniques
to refine the optical flow estimation performance.

Task 2.2: Ego-motion estimation methods

We will study the mathematical formulation of visual motion field and ego-motion estimation
methods based on optical flow.

Task 2.3: Integration and tests

The ego-motion estimation method will be implemented and integrated into the SNN framework.
Depending on the performance of the systems, only constrained motion (pure rotation, pure trans-
lation or planar scene) and simulated artificial scene will be used for tests.

4.3 Task 3: SNN for motion estimation

In this task we will explore and develop a SNN framework for optical flow estimation and ego-
motion.
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Task 3.1: SNN architecture and learning method

In this task we will develop our neural network architecture and learning method. Different learn-
ing methods will be explored including self-supervised learning, supervised learning and unsuper-
vised learning. Hybrid architecture that combines SNN and ANN will also considered.

Task 3.2: Optical flow learning

We will train our neural network and evaluate the results on event-based optical flow benchmarks
such as MVSEC dataset [40].

Task 3.3: Motion estimation integration

We will integrate our ego-motion estimation optimization method to the SNN framework. We aim
to recover 3-D camera motion for both artificial and natural scenes.

Task 3.4: Ego-motion learning

Finally, we aim to develop a neural network that can learn 3-D motion directly. Tests on sim-
ulated dataset and experiments using event-camera on real scenes will be done to evaluate the
performance of our method.

4.4 Task 4: Thesis writing

All the results will be integrated in the final doctoral thesis. At least two journal papers are planned.
Yearly conference papers will also be proposed.

2020 2021 2022 2023
Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

PhD research
Literature review - 1

Event based optical flow 1.1
Spiking Neural Networks 1.2

Ego-motion estimation methods 1.2
Trained SNN model - 2

Inference test for optical flow estimation 2.1
Ego-motion estimation methods 2.2

Integration and tests 2.3
SNN for motion estimation - 3

SNN architecture and learning method 3.1
Optical flow learning 3.2

Motion estimation integration 3.3
Ego-motion learning 3.4

Thesis writing - 4

Figure 2: Intended work plan of the proposed thesis
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5 Resources

This research is partially supported by the Spanish State Research Agency through projects EB-
SLAM (DPI2017-89564-P). The work is being developed at the Institut de Robotica i Informatica
Industrial (IRI), UPC-CSIC, in Barcelona, within the Mobile Robotics research group. Our labo-
ratory for this project is equipped with a standard desktop computer with Ubuntu 18.4 operative
system, ROS, Matlab among other applications.

Several online event camera datasets and simulators of natural and synthetic scenes that con-
tains events and the ground truth for optical flow and ego-motion can be exploited for testing,
such as ESIM simulator [70], DVSFFLOW16 [32] and MVSEC dataset [40]. For spiking neural
network, open-source simulators available include Nengo [71], Brian2 [72] or NEST. They all
provide python library and visualization functions. Other available resources include simulation
frameworks with PyTorch functionality such as BindsNet [73] or SpykeTorch [74].

In case of real-time experiments, we possess two event cameras DAVIS240C in conjunction
with ROS environment. Our Mobile Robotics laboratory is also equipped with other sensors and
an Optitrack system.

6 Preliminary work

The report of the current state of our research is presented as follows:

6.1 Overview

We propose to use spiking neural network (SNN) for ego-motion estimation from optical flow. As
an initial approach we start with a trained SNN model [36]. We integrate our pooling method in the
SNN framework and implement our ego-motion estimation algorithms combined with RANSAC
for robust results. Tests on the pure rotation and pure translation motion have been done.

6.1.1 Spiking Neural Network Architecture

We adopt the SNN framework from [36], which presents a hierarchical SNN architecture using
an adaptive neuron model and unsupervised spike-timing-dependent plasticity (STDP) learning.
The neural network performs feature extraction, shows selectivity to the local motion from these
features and integrates the local motion into global motion. We modified the neural network
structure according to Figure 3a. The descriptions for each layer are as follows:

• Input layer: The input layer is two dimension corresponding to the event polarities. For
each step, each neuron in the input layer is assigned with events in that temporal window
with no overlap. The input size is scaled by 4 to improve computational efficiency.

• Merge: Since polarity information is not useful in our current motion estimation method,
the merge layer decreases the complexity of the network by combining the two dimension
layers into one single layer using a single 1× 1 kernel.

• MS-Conv layer: MS layer is a convolution layer for local optical flow estimation. Neural
connections are multisynaptic with different constant transmission delays.

• Pooling layer: Pooling layer is a convolutional layer to solve the aperture problem. We
implemented a combined pooling method with sliding temporal window to integrate noisy
and sparse normal flows from the previous layer. The output full flows serve for motion
estimation.
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Figure 3: Spiking Neural Network model

6.1.2 Spiking Neuron Model

The spiking neuron model used is Leaky Integrate and Fire (LIF) model. It is one of the most
commonly adopted model in literature due to its simplicity for implementation and low computa-
tional cost. The membrane potential of the LIF neuron V (t) changes according to the presynaptic
spikes received. When V (t) reach the threshold Vth, the neuron fires, generating a spike or action
potential and resets to Vreset. If there are no presynaptic inputs, V (t) decays exponentially to Vrest
controlled by a time constant τm. The input for a current post-synaptic neuron is the sum of the
spike trains s(t) received from its multisynaptic connections m × n, where m and n indicate the
number of synaptic delays and number of neurons in the previous layers. W is the strength or
weight for each synaptic connection. The neural dynamics is defined as:

τm
dV (t)

dt
= −(V (t)− Vrest) +

n∑
j=1

m∑
d=1

(Wj,dsj(t− τd)) (1)

The neural model in the network from [36] is a adaptive version of LIF, which uses presynaptic
trace as an inhibitory item for the input as homeostasis mechanism. The contribution of the spike
train from the previous layer to the presynaptic trace is scaled by a parameter α. The presynaptic
trace decays exponentially according to a time constant τtrace. The dynamic of the presynaptic
trace Xj,d for each synapse is defined as:

τtrace
dXj,d(t)

dt
= −Xj,d(t) + αsj(t− τd) (2)

For simplification, we set resting membrane potential Vrest to zero and τtrace same as τm. The
dynamic equation of a neuron can be modified as Equation 3:

V (t+ ∆t) = V (t)e−
∆t
τm +

n∑
j=1

m∑
d=1

(Wj,dsj(t− τd)−Xj,d(t)e−
∆t
τm − αsj(t−∆t− τd)) (3)

where ∆t indicates the simulation step time. Figure 3b shows the membrane potential change of
a post-synaptic neuron due to the input received from one synaptic connection.

6.2 Optical flow computation

6.2.1 Normal optical flow

We used the 64 kernels trained from a rotating disk dataset for inference test. These kernels
are three-dimensional filters x, y and τ . Each identifies motion at different directions and speeds.
Since the kernels were trained in an unsupervised manner, proper readout mechanisms are required
to get the local velocities. We recalculate the local velocity vectors for each kernel based on sum of
absolute differences (SAD) block matching method [75]. Two synapses with the most information
are selected for computation. First, the histograms of the horizontal and vertical directions are
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computed. Secondly, we find the SAD for both horizontal and vertical pairs, which refers to the
displacement of the edge. To get a more accurate displacement value, we further apply a least
squares fitting to get the optimal solution. Figure 4a shows the computation results for one of
the 64 kernels. We assign a color coding scheme for optical flow field according to Figure 4b.
Direction is encoded in hue value and speed is represented in saturation. Brightness is set to zero.
Figure 4b shows the distribution of the 64 kernels with its corresponding color. Kernels have
been divided into 16 bins according to their direction. Note that we have more kernels in vertical
direction than in horizontal direction.
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Figure 4: Optical flow computation for trained kernels

6.2.2 Computation of full flow

In the MS layer, the detection of the local motion is feature-dependent and has aperture problem.
The component of the optical flow parallel to the edge is unknown. In biological systems, it is
believed that the aperture problem is solved in the MT layer by pooling the optic flow across a
larger receptive field [76]. Different pooling mechanisms may exist. Mathematically, veridical
solutions for aperture problems include geometric method [77] and Intersection of the Constraints
(IOC) method [78]. Geometric method searches for the best solution for a fitting circle among
the normal flow data. Intersection of Constraints solution estimates the true velocity from at least
two normal flow vectors. Since the true velocity always lies upon the constraint line, the unique
arithmetic solution can be calculated looking for the intersection of at least two constraint lines.
However, IOC may not yield correct solution for rotation flows [79]. In addition, for noisy and
high-temporal input from the event camera, the IOC approach solution may deviate significantly.
On the other hand, neuroscientific researches show that human visual systems may pool that 1D
and 2D motion differently using vector-average (VA) solutions [80] and intersection-of-constraints
(IOC) respectively [81]. Stimulus is classified into two types. Type I refers those flow vectors
whose directions lie to the same side of the true velocity. In this case, the VA solutions will gen-
erate veridical estimates similar to IOC solutions, while for Type II stimulus, the IOC solution
does not lie between the two vectors (See Figure 5). Here we propose a spatial-temporal pooling
method combining VA and IOC methods to solve the the aperture problem for noisy output from
the SNN. Note that pooling is based on the assumption that the motion is consistent within the re-
ceptive field. The receptive field for pooling layer should be small enough to meet the assumption
while at the same time be large enough to contain different edges. The details are described as
follows:
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Figure 5: Type I and Type II stimulus

Sliding temporal window integration: First, we implemented a sliding window which in-
tegrates the nearest steps of normal flow output from the MS-layer. Since at least two different
edges are needed for pooling, this implementation allows integration of more spikes in the pooling
process without further enlarging the receptive field or increasing the simulation step. The latter
will reduce the accuracy of the output in the MS layer.

Bin-based vector-average integration: The normal flow is determined both by the full flow
and the texture pattern. IOC method gives the veridical value of the true flow from any two separate
normal flows. However, given the poor speed selectivity and erroneous firings for the kernels of
similar directions, normal flow vectors of similar direction and different magnitude, named the
Type II stimulus in Figure5c, appear frequently in the same receptive fields. The IOC computation
of this case can deviate significantly and lead to errors. To alleviate this problem, we assign each
kernel to a direction-based bin such as Figure 4b. Pooling flow is calculated using the VA method
in the case that two kernels lie in the same bin.

Least square method for intersection-of-constraints solution: When neurons in the same
receptive field fire corresponding to at least two different direction-based bins, the full flow is
estimated by calculating the least square solution for IOC of the VA values for each bin. The
problem can be formulated as: given n normal flow vectors (ui, vi), find ~vpool as the intersection
of all constraint lines li, which is the orthogonal line to the flow vector. Each flow vector lies in a
line li passed through the original point and (ui, vi):

li : vix− uiy = 0 (4)

The constraint line lTi should meet:

lTi : −kuix− kviy + k(u2i + v2i ) = 0 (5)

where k is a constant factor. Given n constraint lines, the intersection of lines (x, y) can be
represented in a matrix form:
−u1 −v1 u21 + v21
−u2 −v2 u22 + v22

...
...

...
−un −vn u2n + v2n


xy

1

 = 0 where A =


−u1 −v1 u21 + v21
−u2 −v2 u22 + v22

...
...

...
−un −vn u2n + v2n

 X =

xy
1

 (6)

Given the linear homogeneous equation AX = 0, we can get the IOC solution by finding the X
that minimizes ‖AX‖2 subject to ‖X‖ = 1, which should be the eigen vector of ATA associated
with the smallest eigenvalue.

6.3 Ego-motion estimation using optical flow

6.3.1 Motion field model of rigid static scene

We would like to present the basic concepts and the formation of retina motion (motion field)
in response to camera instantaneous velocities here since it forms the basis for our ego-motion
estimation method. The motion field model of rigid scene was derived previously by [61]. Figure
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6 shows the projection of 3D world point P on the image plane p from the Longuet-Higgins
Prazdny model. In the camera reference frame, with the origin as the projection center and Z axis
as the optical axis, the image plane is perpendicular to the optical axis, which is the surface of the
projection of 3D world points. The intersection of the optical axis Z and the image plane is the
principal points O(0, 0, f)T in the camera frame. f is the focal length. We denote the image point
p(x, y) as the projection of scene point P (X,Y, Z)T in the 3D world. For an ideal pinhole camera
model, their relationship can be expressed as:

~p = f
~P

Z
(7)

Take the time derivative of both sides of Equation 7, we obtain the relation between the velocity
~V of world point P and the velocity of the image point, which is the motion field ~v = (u, v) :

~v = f
Z~V − Vz ~P

Z2
(8)

Suppose the camera is moving with a translation velocity ~T = (Tx, Ty, Tz) and angular veloc-
ity ~ω = (ωx, ωy, ωz). The relative motion ~V between world point P and camera can be described
as:

~V = −(~T +
~

ω × ~P ) (9)

The motion field model can be derived combining Equations 8 and 9. We write it in a matrix
representation, for each optical flow vector (ui, vi):[
ui
vi

]
=

[
− f

Zi
0 xi

Zi

0 − f
Zi

yi
Zi

]TxTy
Tz

+

[
xiyi
f −f2+x2

i
f yi

f2+y2
i

f −xiyi
f −xi

]ωx

ωy

ωz

 =
[
AT i Aωi

] [~T
~ω

]
(10)

where AT i =

[
− f

Zi
0 xi

Zi

0 − f
Zi

yi
Zi

]
, Aωi =

[
xiyi
f −f2+x2

i
f yi

f2+y2
i

f −xiyi
f −xi

]
.

The motion field in the image plane is the result of ego-motion of the observer moving in
a rigid static scene. The motion field vector is the sum to the translation-dependent component
and the rotational component. Notice that the translational component is depth-dependent and the
rotational part does not carry information of depth. Motion fields depend on the six parameters
of the 3D motion and also the surface of the 3-D points in the world. If depth Zi is known, 3-
D velocities can be solved by choosing at least three non-collinear points while using more data
points is useful for noisy input. Without the depth information, from the motion fields, the 3-D
ego-motion can be only determined up to a scaling factor.
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Figure 6: Longuet-Higgins Prazdny model
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6.3.2 Pure rotational motion

For the pure rotational motion above the Z axis, given at least two image points and their op-
tical flow, the rotational components can be optimized in one step by solving the least squares
optimization problem as follows:

~vp =



u1
v1
u2
v2
...
un
vn


= Aω~ω =


Aω1

Aω2
...

Aωn


ωx

ωy

ωz

 (11)

where ~vp is a 2n dimension vector, Aω is a 2n× 3 matrix.

6.3.3 Pure translational motion

For the pure translation case, the motion fields depend not only upon the camera motion but also
upon the depth value at each corresponding point. If the depth is known, translational velocity can
be estimated using the same method as pure rotation case. However, Without the depth informa-
tion, from the motion fields, only the translational direction can be determined. If Tz is not zero,
the translational component can be written as

u =
(x− x0)Tz

Z
v =

(x− y0)Tz
Z

(12)

The point (x0, y0) is called the vanishing point of the translational direction, which is the
location in the image plane independent of the depth information. The magnitude of the flow
vector is proportional to the distance between the point p and the vanishing point p0 and inversely
proportional to the depth. Specifically, if Tz < 0, p0 is the focus of expansion (FoE) as all the
motion field vectors point away from it, while if Tz > 0, p0 is the focus of contraction (FoC). The
vanishing point provides information about the direction of the flow, which does not depend upon
the depth. By coplanarity constraint we know that image point ~p(x, y, f), flow vector ~vp(u, v),
and linear velocity lie on the same plane (see Figure 6):

(~p× ~vp)
T ~T = 0 (13)

With n image points and their corresponding flow vectors we can get a homogeneous system:

AT̃ =


(~p1 × ~vp1)

T

(~p2 × ~vp2)
T

...
( ~pn × ~vpn)T

 T̃ = 0 (14)

In practice, we constrain the translational vector ~T to have unit magnitude, the translational di-
rection can be determined by choosing the eigenvector corresponding to the smallest eigenvalue
obtained by singular value decomposition (SVD) [64].

6.3.4 RANSAC for robust estimation

As the motion field output from the neural network is noisy, instead of using least squares method
[64], we implement a RANdom SAmple Consensus (RANSAC) algorithm for robust motion esti-
mation. We consider both average endpoint error (AEE) and average angle error (AAE) between
the input flow and the model flow. The outline of the algorithm is presented as follows:

14



Algorithm 1: RANSAC for motion estimation
Data: num pts = n
Input: Pooling layer points ~p ∈ R2×n, pooling flow ~vp ∈ R2×n

Output: Ego motion vector ~M = (~T , ~ω)
1 if (n > min pts) then
2 while (cnt iterations < k th) do
3 sample points ~psp ∈ R2×m collinearity check( ~psp) = false
4 sample model ~Msp = model parameters fitted to ~psp
5 for ~pi = 1 : n do
6 AEEi = ‖ ~vex − ~vpi‖ AAEi = arccos

~vex· ~vpi
‖ ~vex‖‖ ~vpi‖

7 if (AEEi < AEEth)&&(AAEi < AAEth) then
8 ~pi ∈ ~pinliers
9 cnt inliners+ +

10 if cnt inliners > inliner th then
11 cnt inliners = d

12 Inliner model ~Minliers = model parameters fitted to ~pinliers

13 err = 1
d

∑d
i=1(

AEEi
AEEth

+ AAEi
AAEth

)

14 if err < err best then
15 Fit model ~M = ~Minliers

16 err best = err

17 cnt iterations+ +

18 return ~M, err best

6.4 Results

6.4.1 Datasets and implementation details

The datasets for tests are generated by ESIM simulator [70]. We created several synthetic dataset
using planar scene render with two patterns: checkerboard and windmills (shown in Figure 7a).
The planar scene is placed at the depth of 1 meter in camera reference frame. The camera in-
trinsic parameter is (200, 200, 120, 90) with the focal length of 200 pixels. We defined several
trajectories to simulate different camera motion. To facilitate the evaluation of our algorithms, we
first tested our system with pure constant rotational motion and pure constant translational motion
(depth value is set to be 1 meter). For pure constant rotational motion, we generated the dataset
with the rotation speed of 0.57 rad/s above the z axis in the camera reference frame, which is
close to the original dataset used for training. Similarly, for pure translational motion tests, we
generated a dataset corresponding to the diagonal translational motion (0.18,−0.18 m/s) in the
camera reference frame. To estimate the translational direction with unknown depth, we use 3D
scene which involving depth variations (refer to Figure 11a).
The implementation is carried out with C++ using the cuSNN library. All the tests are run with
simulation step of 1 ms with a 500 ms data sequence. The parameters tuned for the SNN archi-
tecture and Ransac algorithms are shown in Table 1. Since α is an inhibition term in the neural
network and is related to the firing times. We set a smaller value for α to get enough spikes for
the estimation method. However, to compromise the decrease of accuracy, we increase the firing
threshold Vth and decay time τm. The optimal pooling receptive field depends on the texture of the
pattern and it should meet the assumption of consistent motion. Increasing the receptive field size
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can include different edges and give more accurate full flow results after pooling, while smaller
value allows more flow vectors in the pooling layer for ego-motion estimation. Depending on the
testing motion statistics and the test pattern used, we set the sliding integration window size to
10 ms and bin size to 8.

Layer Vth τm α rf bin W
mv ms − ms − ms

MS 0.8 40 0.1 5 − −
Pooling 0 5 1 7 8 10

(a) Parameters for SNN

Motion k inlierth AEEth AAEth

− − pixels degree

Trans 20 7 22 0.18
Rot 20 8 50 0.5

(b) Parameters for Ransac

Table 1: Parameters used for windmills pattern

(a) Windmills pattern (b) Input (c) Normal flow (d) Full flow

Figure 7: SNN simulation results: 7a shows the windmills pattern we use for event datasets generation.
7b shows the input events, ON and Off polarity is encoded in green and red color respectively. 7c and
7d present the normal flow output from the MS-layer and full flow from the pooling layer. All the flow
vectors have been normalized for plotting. Direction and speed are encoded with different colors according
to Figure 4b. Outliers rejected by Ransac algorithms are shown in write color.

6.4.2 Pooling flow evaluation

Figure 8 shows the responses of the MS-layer neurons and pooling layer neurons in orientation
space for the pure translational motion test. The ground truth flow direction for the simulation
dataset is 225 °. The checkerboard pattern contains only horizontal and vertical edges while the
windmills pattern contains edges of eight different orientations and presents more noisy normal
flow results. In both cases, the normal flows in the vertical direction are deviated from its ground-
truth value (270 °). That is the result of insufficient kernels that match the exact orientation and
magnitude. It also explains the greater deviation for Ty compared to Tx in the translational motion
test result (refer to Table 3). Despite the limitation of the kernels available, the pooling layer gives
acceptable full flow results from the integration of the normal flow in both cases.
Quantitative evaluation of the AEE and AAE between the pooling flows and the ground truth flows
are shown in Table 2. Note that in pure translational motion case, the flow vectors are same for
each pixel, while the rotational flow vectors include more variety and shows more errors in both
optical flow values and the motion estimation results.

16



0°

45°

90°

135°

180°

225°

270°

315°

0

1000

2000

F
ir
in

g
 t

im
e

s
/0

.5
s

0°

45°

90°

135°

180°

225°

270°

315°

0

1000

2000

F
ir
in

g
 t

im
e

s
/0

.5
s

(a) Pure translation motion for checkerboard pattern
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(b) Pure translation motion for windmills pattern

Figure 8: Histograms of neurons firing counts in orientation space: the left graph in blue of each figure
represents the histogram of firing counts for MS (normal flow) layer, while the right graph in red represents
the firing of the neurons in pooling layer. The red arrow shows the average flow direction.

6.4.3 Ransac ego-motion estimation evaluation

The simulation result for pure constant rotation case with windmills pattern is shown in Figure 7.
Figure 9 shows the qualitative results of the full flow in the pooling layer for both rotational and
translational motion cases. The Ransac algorithm is able to reject the outliers, which are the flows
that cannot match the model flow due to errors either in magnitude or direction.
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(c) Pooling rotation flow with Ransac
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(f) Pooling translation flow with Ransac
Figure 9: Qualitative results for pure rotational and pure translational flow: Figure 9a and Figure 9b shows
the ground truth for rotational flow and its corresponding pooling flow. Figure 9c shows one random step
of the pooling flow test result. Figure 9d and Figure 9e show the ground truth for translational flow and its
corresponding pooling flow. 9f shows one random step of the pooling flow test result. The ground truth
flows are plotted in blue color and model flows from Ransac are in yellow. Outputs of the SNN pooling
layer are indicated in green and red, where green indicates inliers and red means outliers.

Optical flow AEE AAE Optical flow AEE AAE
rotation rad/s ° translation pixel °

without ransac 30.585 19.086 without ransac 12.304 9.729
with ransac 21.240 14.892 with ransac 10.146 8.106

Table 2: Qualitative results for optical flow estimation

The quantitative results for ego motion of all the 300 ms steps with available motion update are
shown in Table 3 and plotted in Figure 10. Our method using Ransac shows robustness compared
to least squares solution.
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Figure 10: Motion estimation tests results: Figure 10a and figure 10b show the results for pure constant
rotational motion tests and pure constant translation motion tests, respectfully. The results obtained from
our methods are presented in red, green and blue, corresponding to the motion above x, y and z axis, while
the results using least square methods are also plotted in lighter colors for comparison. Ground truth values
are plotted with dot lines.

Rotation motion Translation motion

Rx Ry Rz Tx Ty Tz
rad/s rad/s rad/s m/s m/s m/s

GT 0 0 0.5712 0.18 - 0.18 0
Mean 0.01 0.0345 0.5625 0.172 - 0.218 0.0128

RMSD 0.0334 0.0161 0.0337 0.0131 0.0162 0.0294
RMSE 0.0357 0.0377 0.0342 0.0156 0.0413 0.0321

Table 3: Quantitative ego-motion test results

6.4.4 Pure translational direction estimation

We created a dataset with pure linear velocity of (0.18,−0.18,−0.5)m/s in the camera reference
frame for both planar scene with the windmills pattern, and 3D scene with simulated checkerboard
pattern boxes to introduce unknown depth. Without any knowledge of the depth information, our
method can estimate the translational velocity up to a scale. Figure 11c shows the simulated
optical flow for the 3D scene. The intersection of all the flow vectors where the flow velocity
is zero indicates the translational direction. We estimate the translation result without applying
Ransac. The outputs are normalized to a unit vector and compared to the ground-truth values in
Figure 12 and Table 4.

(a) 3D scene with various depth of
checkerboard pattern boxes

(b) Pure translation flow

x

y

pooling flow

FoC

Translation direction

(c) Pooling translation flow for 3D
scene

Figure 11: Pure translational flow for 3D scene: Figure 11a shows the 3D scene used for simulation. Figure
11b and 11c plot the simulated flow and pooling flow with the blue vectors. The red point represents the
FoC, which indicates the translational direction (shown in the red vector).
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(a) Planar scene with windmills pattern
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Figure 12: Translational direction estimation tests results: Figure 12a and Figure 12b show the results for
pure constant translational motion tests for planar scene and 3D scene, respectively. The results obtained
from our methods are presented in red, green and blue, corresponding to the motion above x, y and z axis.
Ground truth values are plotted with dot lines.

Translation motion-planar Translation motion-3D

Tx Ty Tz Tx Ty Tz
normalized direction normalized direction

GT 0.3208 -0.3208 -0.8912 0.3208 -0.3208 -0.8912
Mean 0.3027 -0.3530 -0.8821 0.2749 -0.2801 -0.9151
RMSD 0.0511 0.0473 0.0305 0.0571 0.0667 0.0304
RMSE 0.0541 0.0571 0.0318 0.0732 0.0780 0.0386

Table 4: Qualitative test results for translational direction estimation

6.5 Discussion

We explored the feasibility to use spiking neural network for ego-motion estimation. In this
initial step, we exploited a trained SNN framework to perform ego motion estimation. Tests on
different dataset have been carried out to verify and evaluate our method. The performance of our
implementation is limited by the statistics of the trained kernels, which is the main impediment in
realizing our tests with more complex motions since they rely on flow vectors with more variety
out of the range of the trained kernels available.

As the neural network is trained with a fully unsupervised fashion from one simple synthetic
dataset sequence, noises occur from the read-out mechanism for the trained model and during
erroneous firing of the neurons in the inference phase. Especially, the poor speed selectivity of
the MS-layer neurons challenges the IOC method to integrate the full flow as it is sensitive to
the magnitude of the normal optical flow with similar directions. In addition, due to the sparse
properties of the event camera, the flow vectors are texture and motion dependent. We tuned
the neural network considering trade-off among simulation speed, accuracy and sparsity. Given
the noisy and sparse normal flows input, we have implemented an optimization-based pooling
technique with robust motion estimation method. Our motion estimation method is based on rigid
static motion, and does not rely on any assumption of the input data. Despite the inherent limitation
of the filter-based optical flow estimation method, our method was able to output reliable results
on pure rotational and translational ego-motion tests.

In the future work, we would like to extend the work for 3-D ego motion estimation. We intend
to refine the normal optical flow estimation by exploring other SNN architectures and learning
methods. More complex motion dataset on real world scenes will be employed for validation.
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