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1 Introduction

The registration problem consists in finding correspondences between two point sets
and recovering the underlying transformation that maps one point set to the other.
Registration of point sets is an important issue for many computer vision applications
such as robot navigation, image guided surgery, motion tracking, camera pose estimation
and face recognition. In fact, it is the key component in tasks such as object or image
alignment, stereo matching, image segmentation and shape/pattern matching.

Shape matching is typically formulated as a point matching problem since points may
be used as a global representation and are easy to extract. The ‘points’ are features,
most often the locations of interest points extracted from an image (2D) or a volume
(3D). Registration techniques may be rigid or nonrigid depending on the underlying
transformation model. The key characteristic of a rigid mapping is that all distances
are preserved. While some models are well defined by a homography or an affine trans-
formation, the need for more general nonrigid registration occurs in many tasks, where
complex nonlinear transformation models are required.

There are various factors that make the point matching problem difficult. One such
factor is the existence of outliers: many point features that exist in one point set may
not have a corresponding point in the other. Another factor is the presence of occlusions:
part of the initial structure is not present in the target set. In addition, the presence of
repetitive patterns in the point cloud may cause most of the existing algorithms to get
stuck in local minima. And of course, the point positions are generally affected by noise.
While things are a bit easier when the models are rigid, nonrigid registration remains
a challenge in computer vision, especially if one wants the aforementioned issues to be
addressed.

As said above, there are two unknowns in a point matching problem: the correspon-
dence and the mapping between point sets. Since solving for either of them without
information regarding to the other is quite difficult, most applications try to simulta-
neously solve for correspondence and mapping. Moreover, as in many cases finding
the solution involves dealing with a non-convex problem, most approaches to rigid or
nonrigid point matching use an iterated estimation framework.

When possible, additional cues have been taken into account to make the problems
affordable. For this purpose, geometric relationships between point clouds such as graphs
or spectral techniques have been explored. Alternatively, the correspondence of features
can be estimated using their description (appearance), thus reducing the potential set
of matches to a scored list.

Concerning the dimensionality of the transformation, in this project of research we
will deal with two different kinds of problems. In the first one, the two point sets are
defined by an in-space mapping such as R2 ⇔ R2 or R3 ⇔ R3. In the second, points are
related by a projective transformation R2 ⇔ R3. In both cases, the mapping between
the point clouds may be rigid or nonrigid. Some examples are given in Fig. 1.
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(a) (b) (c)

Figure 1: Different kinds of mappings: a) A homography is a rigid 2D-2D transforma-
tion. Any two images of the same planar surface in space are related by a homography.
b) A nonrigid mapping between two point sets. c) In a projection, the 2D image points
and 3D scene points are related by a nonlinear transformation.

Image/volume registration. One of the fundamental problems in computer vision
is to register the structures appearing in images or volumes. Dealing with 2D-to-2D or
3D-to-3D transformations has also been object of research of many and extense studies.
Iterative Closest Point (ICP) [6] is a very popular algorithm which iteratively assigns
correspondences and finds the least squares transformation (usually rigid) relating these
point sets. The algorithm then redetermines the closest point set and continues until
it reaches the local minimum. Many variants of ICP have been proposed and we will
come back to them later when detailing the state-of-art methods. Another family of
algorithms which is able to work in either this framework or the camera pose recovery
are the RANSAC-like algorithms [16]. When appearance is available, it can be used to
speed up the search for consistent matches as proposed by PROSAC [11]. However, none
of them solves entirely the problem as ICP needs a good initial estimate to reach a good
solution and RANSAC methods, though avoiding local minima, are usually limited to
a few number of point matches and do not scale-up very well to transformations with a
large number of parameters.

Estimation of the camera pose. A particular problem which appears in many com-
puter vision applications is estimating the pose of a camera from 3D-to-2D point corre-
spondences between a 3D model and an image.

When the matches are given and the model is considered rigid, this is known as the
Perspective-n-Point (PnP) problem and many effective methods have been proposed.
However, when the correspondences are unknown one must simultaneously compute
them along with the pose. An interesting algorithm is the SoftPOSIT [13], that looks for
the solution as the minimum of a suitable objective function. Although its computational
load is lower than other approaches, it is not able to guarantee the global minimum.
An algorithm that performs a thorough search on the pose space is the Blind PnP
algorithm [33]. It also solves the PnP problem without being given the correspondences
and relies on the fact that prior information on the camera pose is often available. Such
a prior is modeled as a Gaussian Mixture Model (GMM) and each component of the
GMM is used to initialize a Kalman filter [25]. Then it explores the space of possible
correspondences within a subset of potential matches and keeps the hypothesis that
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Figure 2: Blind PnP. The dots represent the projected 3D points and the ellipses the
corresponding uncertainty regions given the pose prior. The crosses represent the 2D
points. Even before hypothesizing any correspondence, the prior considerably reduces
the set of potential matches. After some correspondence hypothesis, the uncertainty
regions become so small that finding additional matches becomes easy.

(a) (b)

Figure 3: (a) Deformable surfaces. Given an image or a sequence of images, the
goal is to recover the 3D nonrigid shape. The problem is ill posed as many potential
representations can project correctly on the image. Thus, additional cues such as shape
priors or illumination constraints shall be used. (b) Articulated structures. Given
an input X-ray image (left), and a reference shape (shown in red at the right image)
the goal is to retrieve the 3D configuration of the coronary tree that corresponds to the
input image (yellow).

yields the smallest reprojection error. As illustrated by Fig. 2, the Kalman filter guides
and speeds up the matching process, while preventing gross errors.

Yet, if the 3D model is assumed to be elastic becomes a challenging problem that still
remains unsolved. The computer vision community has approached this problem using
different strategies depending on the particularities of the context. The camera pose
may be known or unknown, calibrated or not, and the model can be rigid or nonrigid.
In the case of monocular pose and deformable 3D model recovery, two fields have been
explored extensively but are still object of research: deformable surface and articulated
body. Some examples are shown in Fig. 3.
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Figure 4: Iterative Registration using Gaussian Processes. The approach consists
in simultaneously solve for point correspondences and to recover the nonrigid transfor-
mation by updating a Gaussian Process model. A GP is adjusted to the model structure
(blue fish). Then, a simple matching is assigned using the Hungarian algorithm[34] on
the Euclidean Distance Matrix and the process iteratively updates the hyperparameters
until the uncertainty is less than a certain threshold. This particular experiment works
as a nonlinear ICP because of the way the matches are assigned but it is easily extensible
to a nonlinear robust point matching behavior.

Modeling the uncertainty. While the Kalman Filter approach is useful to introduce
a probabilistic model for the point sets, to propagate the uncertainty and thus to reduce
the number of potential matches, it can only be applied to rigid models with reduced
number of parameters. We are exploiting new forms to propagate uncertainties in the
context of our research. One that presents a strong mathematical background and an
elegant formulation is the Gaussian Processes [40], which consists on a non-parametric
Bayesian formulation of the probabilistic distribution of the model. Although the method
is not new, only recently this approach has been applied to the field of computer vision. It
is in the scope of the current research to find a way to represent the geometric constraints
of the model point set by means of a Gaussian Processes and to use the uncertainty
regions to reduce the search space while finding new correspondences. This kind of
formulation would be of large interest for the computer vision community as it can be
applied to both camera pose estimation and deformable shape matching. Preliminary
results are shown in Fig. 4.
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(a) (b)

Figure 5: Computing homographies. The three pairs of images are related by a
planar pattern. The homography recovery is difficult because of the highly textured
images (Top), oblique angle (Middle) and repetitive patterns (Bottom). Using only
appearance (a) is not enough to recover the correct transform and PROSAC fails due to
the high number of outliers. Better results are shown in (b) using the Blind Homography
algorithm [49], which is a result of this research. Here, geometric and appearance cues
are combined to reassign correspondences.

We next introduce three of the cases of study of the proposed thesis and their re-
spective contributions. They are particular problems of the general formulation we have
just introduced and will help to get a detailed focus on the kind of issues we are dealing
with.

1.1 Combining geometrical and appearance priors for robust homog-
raphy estimation

Computing homographies from point correspondences has received much attention be-
cause it has many applications, such as stitching multiple images into panoramas [57] or
detecting planar objects for Augmented Reality purposes [48, 62]. All existing methods
assume that the correspondences are given a priori and usually rely on an estimation
scheme that is robust both to noise and to outright mismatches. As a result, the best
ones tolerate significant error rates among the correspondences but break down when
the rate becomes too large. Therefore, in cases when the correspondences cannot be
established reliably enough such as in the presence of repetitive patterns, they can easily
fail.

The so-called Blind PnP approach [33] was designed to simultaneously establish 2D
to 3D correspondences and estimate camera pose. To this end, it exploits the fact that,
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in general, some prior on the camera pose is often available. This prior is modeled as a
Gaussian Mixture Model that is progressively refined by hypothesizing new correspon-
dences. Incorporating each new one in a Kalman filter rapidly reduces the number of
potential 2D matches for each 3D point and makes it possible to search the pose space
sufficiently fast for the method to be practical.

Unfortunately, when going from exploring the 6-dimensional camera-pose space to
the 8-dimensional space of homographies, the size of the search space increases to a point
where a naive extension of the Blind PnP approach fails to converge. In general, any
given model image point can be associated to several potentially matching target image
points with progressively decreasing levels of confidence. To exploit this fact without
having to depend on a priori correspondences, similarity of image appearance could be
used to remove both low confidence potential correspondences and pose prior modes that
do not result in promising match candidates.

Expected contributions. Although homography estimation has been largely studied,
difficult situations as in highly oblique views of planar scenes containing repetitive pat-
terns are still complex problems to solve. In such scenes, interest point detectors exhibit
very poor repeatability and, as a result, even such a reliable algorithm as PROSAC [11]
fails because a priori correspondences are too undependable. We expect to address these
kind of problems in our research. Actually, we have already been working on methods
such the one that generates the results shown in Fig. 5, which outperforms PROSAC in
situations where appearance is not fully reliable.

1.2 Nonrigid 3D model recovery from single images

Another kind of problem that remains unsolved is that of recovering a 3D nonrigid
model from single images. This is a highly ambiguous problem since many different
3D configurations can virtually have the same projection. Thus, solving this problem
requires prior knowledge about the type of deformations the structure can undergo.

Standard approaches within medical imaging assume a reference 3D scan of the
model is known and that deformations in the input image are negligible. This reduces
the shape recovering task to a rigid 3D-to-2D registration [22, 32, 42]. There exist a
recent attempt of addressing the nonrigidity nature of the problem, although it has only
been shown effective for relatively small deformations [20].

We may find other related areas in computer vision that essentially solve the same
problem but in a different context, for instance, the techniques for 3D nonrigid surface
reconstruction [15, 37, 46] and articulated human pose estimation from monocular im-
ages [1, 44, 50, 61]. In these approaches, though, it is often easy to obtain large amounts
of training data and build detailed parametric models for specific deformations or 2D-to-
3D mappings that directly link 2D observations with 3D configurations. Unfortunately,
in some applications, producing these detailed models and mappings is simply not fea-
sible and therefore, besides a weak 3D model of the reference shape, no further prior
knowledge can be used.
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(a) (b) (c) (d) (e)

Figure 6: Elastic graph matching. Two X-ray images (a) and (b) have been ex-
tracted at different times from a heart beat sequence. If we want to register the blood
vessels, applying a simple rigid transformation is not enough as shown in (c). Even
state-of-art methods able to correct nonrigid transformations like Coherent Point Drift
(CPD) [35] fail to recover the highly deformed coronary trees (d). We are currently ex-
ploring new graph matching methods to relate the extracted vessel trees which achieve
better registration results (e).

Expected contributions. In this research, we intend to propose a novel approach
that, given solely one single image and a reference 3D configuration, simultaneously
recovers the 3D structure described in the input image and establishes correspondences
with the reference shape. In addition we intend to deal with large amounts of noise and
occlusions. The results shown on Fig. 3 e) are part of our current research work.

1.3 Elastic graph matching of 2D-to-2D or 3D-to-3D point sets

Graph-like structures are pervasive in biomedical 2D and 3D images. They may be blood
vessels, pulmonary bronchi, nerve fibers, or dendritic arbors, which can be acquired at
different times and scales, or using different modalities. This may result in vastly diverse
image appearances.

Such drastic appearance changes make it impractical to use registration techniques
that rely either on maximizing image similarity or finding image-based correspondences
[67]. Since the graph structure may be the only thing that is shared across modalities,
matching graphs, or subgraphs when the images have been acquired at different reso-
lutions, therefore becomes the only effective registration means. Unfortunately, most
existing techniques that attempt to do this rely on matching Euclidean or Geodesic dis-
tance between graph junction points [14, 18, 53]. This assumes that they are preserved
and cannot handle true nonrigid motion or graphs whose topology might be different.

Expected contribution. In this work we intend to research methods to, using solely
graph information, solve image registration of rigid and nonrigid transformations. In
Fig. 6 are shown the benefits of these new methods.

The rest of the document is organized as follows. In Section 2, we perform a thorough
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study of the state-of-art which relates to our problem. In Section 3, we introduce the
objectives and the scope of the research. Section 4 presents the expected contributions of
the on-going research to the scientific community. In Section 5, we present a work plan
for the remaining of the thesis. Section 6 is to account for the resources which permit the
development of the research. And finally, in Section 7, we list the publications related
to this research.

2 State of the art

Point set matching intends to establish a consistent correspondence between two point
sets and recover the mapping function with the best alignment. Being a fundamental
problem in the field of computer vision, a large amount of literature already exists. Next,
the most relevant topics related to the robust point matching for both rigid and nonrigid
transforms estimation in the context of computer image are reviewed, paying attention
to the applications in which a contribution is expected to be done. Likewise, model
recovery from single images and the reported approaches for its solution are discussed.

2.1 Rigid Point Matching

Correspondence-based approaches to computing homographies between images tend to
rely on a RANSAC-style strategy [16] to reject mismatches that point matchers in-
evitably produce in complex situations. In practice, this means selecting and validat-
ing small sets of correspondences until an acceptable solution is found. The original
RANSAC algorithm remains a valid solution, as long as the proportion of mismatches
remains low enough. Early approaches [4, 19] to increasing the acceptable mismatch rate,
introduced a number of heuristic criteria to stop the search, which were only satisfied
in very specific and unrealistic situations. Other methods, before selecting candidate
matches, consider all possible ones and organize them in data structures that can be
efficiently accessed. Indexing methods, such as Hash tables [8, 26] and Kd-trees [5], or
clusters in the pose space [36, 56] have been used for this purpose. Nevertheless, even
within fast access data structures, these methods become computationally intractable
when there are too many points.

Several more sophisticated versions of the RANSAC algorithm, such as Guided Sam-
pling [59], PROSAC [11] and ARRSAC [39], have been proposed and they address the
problem by using image-appearance to speed up the search for consistent matches. When
the images contain repetitive structures resulting in unreliable keypoints and truly poor
matches even they can fail. In these conditions, simple outlier rejection techniques [55]
also fail.

In the context of the so-called PnP problem, which involves recovering camera pose
from 3D to 2D correspondences, the SoftPOSIT algorithm [13] addresses this problem by
iteratively solving for pose and correspondences, achieving an efficient solution for sets of
about 100 feature points. Yet, this solution is prone to failure when different viewpoints
may yield similar projections of the 3D points. This is addressed in the Blind PnP [33]
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by introducing weak pose priors, that constrain where the camera can look at, and guide
the search for correspondences. Although achieving good results, both these solutions
are limited to about a hundred feature points, and are therefore impractical in presence
of the number of feature points that a standard keypoint detector would find in a high
resolution textured image.

One objective of this research is to show that the response of local image descriptors,
even when they are ambiguous and unreliable, may still be used in conjunction with
geometric priors to simultaneously solve for homographies and correspondences. This
lets us tackle very complex situations with many feature points and repetitive patterns,
where current state-of-the-art algorithms fail.

2.2 Nonrigid Point Matching

Many registration techniques rely on finding a rigid or nonrigid transformation that max-
imizes image-similarity, often expressed in terms of correlation or mutual-information [67].
However, when dealing with hard datasets, the dissimilarity is such, that these methods
do not do well.

One of the earliest algorithms, Iterative Closest Point (ICP) [6], iteratively assigns
correspondences based on a closest distance criterion and optimizes a transformation
(which can be nonrigid [21, 28]) relating the two point sets. The algorithm then redeter-
mines the correspondences and continues until it reaches the local minimum. Another
class are the probabilistic methods. In Robust Point Matching [17], a soft assignment of
correspondences is introduced and a global optimum of the transformation is found by
deterministic annealing. This was proved equivalent [9] to what could be achieved by
an Expectation Maximization (EM) algorithm for GMM, where one of the point sets is
treated as GMM centroids and the other as data points and the problem is formulated
as a maximum likelihood (ML) estimation [23, 29, 30]. Recently, in [10] the authors pro-
posed an optimization based approach, the TPS-RPM algorithm, in which two unknown
variables (transformation and correspondence) are combined into an objective function.
The soft assignment technique and deterministic annealing algorithm are used to search
for an optimal solution. All those methods can cope, at different levels, with a small
percentage of outliers, occlusions and noise and some of them even perform nonlinear
registration. In Coherent Point Drift [35], the displacement field of the feature points is
constrained, adquiring motion coherence and a better robustness to outliers. However,
these approaches only perform well when the estimate for the initial position of the two
point sets is good enough.

Another class of algorithms rely on that a graph structure can be obtained to link
the features and guide the search for correct matches. Finding feature correspondence
via Graph Matching is a challenging optimization problem which received considerable
attention in the literature. A current assumption is that graphs can be related by a
low-dimensional geometric transformation, such as a rigid one. In this case, using either
RANSAC [16] or an improved version of it that takes appearance into account [11] is an
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attractive option. Unfortunately RANSAC-style approaches do not scale-up very well
to transformations with higher number of parameters.

One therefore has to explicitly match the graph structures. Proposed techniques
include: spectral methods [12, 27] and graph edit distance techniques [31, 41]. Among
these papers, no practical solution is reported to obtain optimal solutions in reasonable
computational time costs.

Applied to particular fields in medicine imaging, like retinal fundus, lung or liver
vessels, techniques benefit from a combination of cues. A good example is the work pre-
sented in [53] where the euclidean distance matrix and the geodesic distance matrix are
used to define a soft assignment between correspondences linked by a rigid tree and the
final matching is done using spectral techniques. In [2] the features are structured using
a proximity graph which aids in the correspondence search but the achieved complexity
is similar to RANSAC. More adapted is [14], where the graph is particularly suited to
express the vascular structure and used to recover the correspondences of the slightly
nonlinear field of the retinal fundus. A final nonlinear ICP [43] is used to refine the
transformation, yet achieving good results only to small nonrigid deformations.

The objective of the present research is to recover a high-dimensional elastic deforma-
tion to match graph structures, which not require an initial estimate of this deformation,
and performs well even if the local appearances of the graph nodes are very different.

2.3 Monocular Nonrigid Reconstruction

Recovering the 3D structure from single images involves dealing with many different
issues. Besides the inherent ambiguity of the monocular nonrigid reconstruction, the
problem is further accentuated due to the presence of noise in the images and partial
occlusions between different parts of the object. In the medical imaging literature this
complexity has been traditionally alleviated by considering the system as a rigid structure
[22, 32, 42] and using multiple views [60, 63]. To the best of our knowledge, [20] is the only
approach that considers the nonrigid nature of the problem. They introduce 3D priors
and inextensibility constraints into a steepest descent scheme to solve for the shape. Yet,
their optimization procedure is only effective under relatively simple deformations.

When the model is considered nonrigid, various regularization methods have been
proposed, such as Thin-Plate Spline [58], data embedding methods, and Finite Element
Models (FEM) [24, 38, 64]. Thin-Plate Spline is a well-known interpolation method
widely used in point set registration, which mainly penalizes the second order deriva-
tives [58]. Besides, the data embedding techniques, such as Principal Component Anal-
ysis (PCA) [7, 45, 65], are also engaged as the regularization technique, although PCA
requires a large number of training samples to obtain sufficient generalization capabil-
ity. Finally, the FEM based regularization approach has also been extensively stud-
ied [24, 38]. However, for the techniques using the FEM models, the nonrigid surface
must be explicitly represented by a triangulated mesh. Since those approaches have
limitations, there is a need for developing new techniques to resolve these challenges.
Gaussian processes [40] enjoy a solid foundation in statistics and machine learning,
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which provide a promising non-parametric Bayesian approach to regression problems
and offer probability predictions. They have been recently applied to computer vision
problems [44, 66] achieving a certain level of success and opening a path which is worth
to explore.

Nonrigid surfaces. Some approaches are focused to reconstruct nonrigid 3D surfaces
from monocular images. It has been shown that 3D shape can be retrieved by imposing
local inextensibility and constraints introduced by a set of 3D-to-2D correspondences
between the input image and a reference shape [15, 37, 46, 47]. If the 3D-to-2D corre-
spondences are unknown the same kind of assumptions can be used, although additional
constraints may be needed since in some contexts the matching has to be resolved simul-
taneously with the shape. In addition, many of these approaches impose strong shape
priors based on previously acquired training data [46, 47] while in some contexts training
data is hard to obtain and a feasible approach would have to rely on very weak shape
priors.

Articulated structures. Since some models may be regarded as an articulated struc-
ture, one might think in applying the techniques of articulated pose estimation to the
problem [1, 50, 61]. These approaches rely on large amounts of data for learning a map-
ping from 2D image observations to 3D poses, and have the advantage of not requiring
to solve the 2D-to-3D correspondence problem. Yet, as said above, while obtaining suf-
ficient training data is feasible for applications such as human pose estimation [3, 51], it
becomes unfeasible in some frameworks, particularly in medical imaging. Moreover, local
distance constraints are much less restrictive when dealing with points linked through a
tree-like structure than when dealing with neighboring points on a surface. Recent works
suggest introducing similar constraints as those used for nonrigid shape recovery into
the formulation of articulated pose estimation problems [44, 52, 54]. This allows fitting
more detailed parametric 3D models [52] and reducing the dependency of articulated
pose estimation techniques on the training data [44]. However, reducing the dependency
on training data has the drawback of increasing the sensitivity to artifacts into the input
data.

Drawing particular inspiration on these approaches, our research is oriented to com-
bine tools from the techniques for articulated pose estimation and shape recovery. How-
ever, in order to tackle problems with much larger amounts of image noise and occlu-
sions, we propose using a generative 3D model that progressively increases its complexity
and adaptability while establishing correspondences and detecting and rejecting outlier
points.
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3 Objectives and scope

3.1 Objectives

The main goal of the proposed thesis is to develop methods for the robust matching of
point sets under the effect of rigid and nonrigid deformations and develop applications
adapted to the particularities of different kinds of set-ups and transformations. To this
end, we pretend to take into account various types of information such as geometric
constrains or appearance information. In any case, the proposed research is intended to
obtain methods to work under the following circunstances:

a. Rigid Transformations. Two images of the same planar surface of a scene are
related by a homography, which represents a rigid transformation of the feature
points from the model image. An objective of the proposed research work is to
obtain robust methods to simultaneously estimate the point correspondences and
homography.

b. Nonrigid Transformations. An aim of this thesis proposal is to develop methods
that not only deal with translation, rotation and scale changes between two point
sets but correct elastic deformations. The objective is to consider image or vol-
ume matching (2D-to-2D and 3D-to-3D) but also model reconstruction from single
images (3D-to-2D).

c. Priors integration. To study the transformations proposed above, we pretend to
use different kinds of knowledge. Both geometrical and appearance information can
be combined to improve state-of-art methods. The underlying graphical structure
of the models shall be taken into account to build realistic algorithms.

d. Nonlinear probabilistic approaches to robust matching. Kalman Filter meth-
ods or RANSAC-like algorithms can only be applied to rigid models with reduced
number of parameters. Using Gaussian Processes a nonrigid probability distri-
bution can be inferred from the data. This fact can be exploited to guide the
matching process through propagating the uncertainty regions using the transfor-
mation estimations. This would represent a great improvement to the existing
methods in robust point matching and the culmination of this thesis research.

3.2 Scope

The thesis scope includes point set transformations, starting by understanding the na-
ture of simpler rigid transformations and progressively increasing the level of difficulty
introducing deformable priors on the models and finally dealing with large deformations
between both point sets. As in many applications, correspondences are generally un-
known, we will focus on methods which simultaneously recover the matching between
feature points and robustly estimate the underlying transformations. We pretend to
work with real datasets, and therefore some extra effort will be performed on image
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processing to extract information from images and volumes such as feature detection,
image segmentation or graph extraction. We will consider the following steps:

1. Simultaneous matching and robust homography estimation combining ge-
ometric and appearance information. Any two images of the same planar
surface in space are related by a homography. Recovering this transformation is
a well studied problem and has many applications in the field of computer vision.
The objective of the proposed thesis is to derive a method that recovers simulta-
neously correspondences and homography estimation. We pretend to use Kalman
Filtering, in a similar manner of [33], to propagate the uncertainty modelled by
geometric and appearance priors in the original image and progressively reduce the
search regions in the target image.

2. Simultaneous matching and robust transform estimation combining geo-
metric and appearance information. We pretend to extend the work above to
deal with different kinds of models including pose, homography and fundamental
matrix estimation. We will use the same Kalman Filtering approach and exploit
geometrical and appearance information.

3. Simultaneous correspondence and nonrigid 3D model reconstruction from
single images. Recovering the 3D structure of a nonrigid articulated pose from
single images is a highly ambiguous problem since many different 3D configurations
can virtually have the same projection. The plan of the research is to model
a deformable prior of the 3D object and progressively adapt the shape of the
structure related by the actual image. To reduce the complexity and make the
problem affordable, the camera pose will be considered known except by small
translation changes. We will extract tree structures from the 3D data and use the
orientation of the feature points to guide the matching.

4. Robust elastic geometric graph matching. An objective of the proposed thesis
is to parameterize the nature of transformations undergone by a structured point
cloud. If this structure happens to be graph-like we could implement methods
that, working upon both 2D or 3D, use the information of the extracted graph to
simultaneously estimate correspondences and nonrigid transformations. In medical
imaging, it is usual to come across structured data such as neurons, coronary
vessels, retinal fundus, etc. Many applications would benefit from an improved
matching.

5. Simultaneously solve for point correspondences and recover the transfor-
mation by updating a Gaussian Process model. A Gaussian Process may
be learnt from the model structure modeling a nonlinear probability distribution.
Then it can be progressively updated while hypothesizing point correspondences
and iteratively adjusting the model hyperparameters until a good solution is found.
This method is intended to outperform existing nonrigid point set matching and
shape recovering algorithms.
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4 Expected contributions

The achievement of the objectives presented in Section 3 would allow to:

1. Extend the methods available in the literature for both the rigid and nonrigid point
set transformations. The resulting procedures would be of large interest for the
scientific community as many applications would benefit from a robust solution to
this kind of problem.

2. Contribute to the development of the techniques which exploit geometric informa-
tion such as graph structures or uncertainty regions. In particular, contribute to
the implementation of a new probabilistic formulation to relate nonlinear defor-
mations between point sets.

3. Define methods to deal with the complex problem of simultaneous matching and
transformation recovery in both rigid and nonrigid transformations, combining
informations of different kinds and sources.

4. Find a global solution to point registration. This new method based on a non-
parametric Bayesian approach would apply to both 2D-to-2D / 3D-to-3D and
2D-to-3D mappings, taking into account rigid and nonrigid transformations.

5 Work planning

The following is a description of the foreseen tasks in the development of the proposed
research:

5.1 Task 0: Background

The author of this thesis proposal studied Telecommunication Engineering in the Univer-
sitat Politècnica de Catalunya from 1998 to 2005. The final thesis ‘Méthodes statistiques
de traitement d’image pour la détection d’exoplanètes’ was performed under an Euro-
pean Erasmus grant at Université de Nice under the supervision of professor Andrea
Ferrari. Of interest for the development of the proposed research work, the theoretical
background resulted from these studies include.

• Classical methods in computer vision.

• Probabilistic background.

After a break of some years working on private enterprises, in September 2008,
the author enrolled in the master program Automàtica i Robòtica of the Universitat
Politècnica de Catalunya. The required ECTS credits were divided into 6 academic
courses and a Master thesis. He took the academic courses in the fields of computer
vision and robotics,

• Computer Vision
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• Advanced Computer Vision

• Mobile Robots and Navigation

• Artificial Intelligence

• Planning in Robotics

• Pattern Recognition

The Master thesis ‘Combining Geometric and Appearance Priors for Pose Recovery’,
performed under the supervision of Professor Francesc Moreno-Noguer, was defended in
September 2009.

In September 2009, the author enrolled in the doctorate program Automàtica, Robòtica
i Visió of the Universitat Politècnica de Catalunya, Barcelona, Spain. He joined to
the Mobile Robotics research group of the Institut de Robòtica i Informàtica Indus-
trial (IRI) to develop his doctoral research under the supervision of Professor Francesc
Moreno-Noguer and being co-advised by Professor Alberto Sanfeliu Cortés.

5.2 Task 1: Simultaneous correspondence and robust estimation

The first step of the proposed thesis is to explore the possibilities of combining geo-
metrical and appearance information when estimating different image transformations.
Inspired by the work [33], the methods will propose to simultaneously recover matching
and rigid transforms by the means of a Kalman filter approach. The Kalman filter is used
to propagate the uncertainty from a geometric prior, formulated upon the model struc-
ture, to the target images where a search region for potential matches is defined. The
appearance information is used to make the method computationally affordable. The
proposed method consists of an extensive search of the point correspondences where
both the uncertainty regions and the transformation estimation is updated iteratively.
The efforts will be concentrated mainly on the following problems:

Task 1.1 Combine geometric and appearance priors to simultaneously recover corre-
spondences and robust homography estimation.
This work has been already published in ECCV 2010 and corresponds to publica-
tion 1 in Section 7.

Task 1.2 Explore the possibilities of the proposed method to simultaneously solve point
set matchings and robustly recover pose, homography and fundamental matrix.
This work is currently object of research and corresponds to work in progress 3 in
Section 7.

Simultaneously to this study, the author will analyze the approaches reported in the
literature including for instance the review of methods for robust point-set estimation
and the analysis of different feature descriptors.
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5.3 Task 2: Nonrigid model reconstruction from single images

Once explored the rigid transformation problem, the next natural step is to extend the
research to nonrigid transformations. A deformable prior is introduced to model the
original structures while a similar iterative method solves simultaneously for correspon-
dence and global transformation. A 3D model reconstruction from single images is an
ill posed problem. We will explore the use of tree-like structures to constrain the defor-
mations. A complementary study will be performed on processing volumes and images
to segment the datasets and extract the tree structures.

Task 2.1 Simultaneous correspondence and nonrigid 3D reconstruction of the coronary
tree from single X-ray images. This work has been accepted for publication in
ICCV 2011 and corresponds to publication 2 in Section 7.

Task 2.2 Simultaneous correspondence and nonrigid 3D-2D reconstruction of tree-like
structures.
This work is currently object of research and corresponds to work in progress 2 in
Section 7.

Task 2.3 Probabilistic segmentation of images.
A side task which consist on improving segmentation techniques in order to obtain
better results in the recognition process.

5.4 Task 3: Elastic graph matching

The core research of this task is focused on the use of graph structures to guide point
set matching embedded in both R2 or R3. To this end, we will explore the combination
of global and local methods to solve first an affine transformation and then refine the
estimation using a nonrigid approach. In a similar orientation we will study the possi-
bilities of a probabilistic technique called Gaussian Processes to solve the same kind of
problems.

Task 3.1 Robust nonrigid geometric graph matching.
This work is currently object of research and corresponds to submitted paper 1 in
Section 7.

Task 3.2 Online search using Gaussian Processes for nonrigid graph matching.
This work is currently object of research and corresponds to work in progress 1 in
Section 7.

The use of Gaussian Processes will provide a novel and elegant method to solve for
nonrigid transformations in a similar manner than Kalman Filter for rigid and affine
transformations.
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Figure 7: Work planning of the proposed thesis
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5.5 Task 4: Compilation of results

The last task of this thesis proposal is assigned to the elaboration of the dissertation
and the preparation of its public defense.

Figure 7 presents the schedule for the tasks described through the Sections 5.1 to 5.5
in a Gantt chart that spans over four years. In this, T stands for a three months period,
so that T1 represents the first three months of a year. The tasks already attained are
shown with crosshatch points.

6 Resources

The proposed research work will be developed mainly at the Institut de Robòtica i In-
formàtica Industrial-IRI (UPC-CSIC) from Barcelona, working in the framework of the
Mobile Robotics research group. Part of this research has also been done in collabora-
tion with the Computer Vision Lab (CVLAB) at the ’Ecole Polytechnique Fédérale de
Lausanne’ (EPFL) in three alternative interships corresponding to the last period (T4)
of 2009, 2010 and 2011. The author is being financed by the Spanish Ministry of Science
and Innovation through a FPI grant under the UbRob project.

7 Publications

The following is the list of the international publications resulting from the current state
of research: 1

Published

1. E. Serradell, M. Özuysal, V. Lepetit, P. Fua and F. Moreno-Noguer, Combining
Geometric and Appearance Priors for Robust Homography Estimation, 11th Euro-
pean Conference on Computer Vision, 2010, Crete, in Computer Vision - ECCV
2010, Vol 6313 of Lecture Notes in Computer Science, pp. 58-72, 2010, Springer,
Berlin. Acceptance rate: 24.5%.

2. E. Serradell, A. Romero, R. Leta, C. Gatta and F. Moreno-Noguer, Simultane-
ous Correspondence and Non-Rigid 3D Reconstruction of the Coronary Tree from
Single X-ray Images, accepted for publication in International Conference on Com-
puter Vision, ICCV 2011. Acceptance rate: ??.??%.

1 Please note that the top three computer vision conferences (ICCV, ECCV, CVPR) are highly
competitive with low acceptance rates < 30%. ICCV and ECCV have CiteSeer impact factor rankings
in the top 5% and 7%, respectively of all computer science journals and conferences. MICCAI has also
an acceptance rate < 30%.
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Submitted

1. E. Serradell, J. Kybic, F. Moreno-Noguer and P. Fua, Robust Elastic 2D/3D Ge-
ometric Graph Matching, submitted to Conference on Medical Image Computing
and Computer Assisted Intervention, MICCAI 2011.

In progress

We are currently working in some of the tasks presented in 5. We expect to present our
work as follows:

1. Active Learning with Gaussian Processes for Nonrigid Graph Matching. We in-
tend to use Gaussian Processes to constrain the search for matches in an Active
Learning approach to robustly estimate nonrigid deformations. We are preparing
a conference paper to send to the next CVPR (Conference on Computer Vision
and Pattern Recognition).

2. Simultaneous Correspondence and Non-Rigid 3D Reconstruction of the Coronary
Tree from Single X-ray Images. We are extending the work already accepted for
publication in ICCV 2011, by performing a better segmentation of the blood vessels
in both 2D and 3D. As a result, improved tree-like structures will be extracted and
the recovered models will contain less error. We are preparing a journal paper to
send to TMI (IEEE Transactions on Medical Imaging).

3. Combining geometric and appearance priors for robust shape recovery. We are
currently researching a method to extend the results presented in our ECCV 2010
paper to other rigid transformation models, i.e. fundamental matrix. We are
preparing a journal paper to sent to PAMI (IEEE Transactions on Pattern Analysis
and Machine Intelligence.
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