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NEGOTIATION IN DISTRIBUTED LARGE SCALE SYSTEMS: 

A MULTI-AGENT MPC ARCHITECTURE 

 

 

 

ABSTRACT 

 

   In the present work, a distributed control architecture for large 
scale systems is proposed.  This architecture is multi-agent 
based.  The model plant is divided in several partitions and there 
is an MPC Agent in charge of each partition. MPC Agents 
interact over a platform that allows them to be located physically 
separated.  One of the main new concepts of this architecture is 
the Negotiator Agent. Negotiator Agents interact with MPC 
Agents when they have common control variables. These shared 
variables represent physical connections between partitions that 
should be preserved in order to respect the topology of the 
network. 

   The case of study in which the proposal architecture will be 
applied and tested is the Barcelona water transport network. First 
results of using the proposed methodology are based on a small 
academical water network example. 
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1. INTRODUCTION 

 
   Large Scale Systems (LSS) are complex dynamical 
systems at service of everyone and in charge of 
industry, governments, and enterprises. The 
applications are wide. Examples of applications of 
LSS in continuous domains are: power networks, 
sewer networks, water networks, canal and rivers 
networks for agriculture, etc. Other examples of 
applications of LSS but in discrete domain are:   
Traffic control, railways control, manufacturing 
industry, etc.  

   The quality of management and control of this kind 
of systems is crucial. Most of them are directly related 
with the quality of life of people in cities and have 
impact on the environment preservation. As for 
example: sewer networks, metropolitan water 
networks, canal and rivers networks for agriculture. If 
inefficient control strategies are used in these systems 
results might derive on:  spills of contaminated water 
to the field, the sea or within the cities, floods, 
restrictions of water in the cities, bad quality of water, 
unsatisfied hydric needs in agriculture etc. In other 
types of LSS risks and consequences can be: pollution, 
traffic unsafety, blackouts, etc. 

   Model Predictive Control (MPC), also known as 
receding horizon control, is a control technique widely 
use in industry [see (Qin & Badwell, 2000) (Qin & 
Badwell, 2003) (Camacho & Bordons, Model 
Predictive Control in the process Industry, 1995)]. It 
has been also applied to LSS. Examples of 
applications in sewer networks can be found in : 
(Cembrano, Figueras, Quevedo, Puig, Salamero, & 
Martí, 2002) (Cembrano, Quevedo, Salamero, Puig, 
Figueras, & Martí, 2002) ; applications in water 
networks are: (Cembrano, Wells, Quevedo, Pérez, & 
Argelaguet, 2000) (Cembrano, Quevedo, Puig, Pérez, 
Figueras, & All, 2005) .     

   But due to the increase of automatization of LSS, 
complexity is also increasing. Such complexity is due 
to the need of many sensors and actuators in a 
dynamical non-linear environment. Additionally, LSS 
are composed of many interacting subsystems. 
Optimization of these systems requires restrictions to 
assure safety and guarantee operational limits 
satisfaction, cost reduction, etc. Finally, the increasing 
size of the systems is another important issue. All 
these problems are difficult to be overcome using a 
centralized control structure due to robustness and 
reliability problems and due to communications 
limitations. For all these reasons, many distributed 
MPC control have been developed and applied over 
the last forty years (Scattolini, 2009). In (Venkat, 

Rawlings, & Wrigth, 2005) the authors consider that 
centralized MPC is widely used but unsuitable for 
LSS and talk about the need of a distributed control 
structure. 
 
   One of the main problems of distributed control of 
LSS is how relations between partitions are  
preserved. These relations could be pipes that  
connect two different control zones of a decentralized 
water transport network for example,  or any kind of 
connection between different control zones.  When 
these connections represent control variables, the 
distributed control has to be consistent for both zones 
and the optimal value of these variables will have to 
accomplish a common goal. In the present work, a 
Multi-Agent MPC architecture is proposed to deal 
with the negotiation of these variables.   

   Although the proposed architecture is intended to 
be general enough to be applied in any continuous 
LSS (for discrete domain applications should be 
adapted), for validation purposes, a case study will be 
used based on the case of the Barcelona water 
transport network. In the next section this case of 
study will be presented. 

   The organization of this document is as follows: 

 Chapter 2 presents the state of art. In this chapter the 
background and the current state of the main topics 
related with this work will be explained. In particular 
MPC, distributed MPC, negotiation, Multi-Agent 
Systems, Reinforcement Learning and works that 
relate some of this areas will be discussed.  

   In Chapter 3, the description and formalization of 
the problem to be addressed are introduced. In Chapter 
4 and 5 the objectives and contributions of the thesis, 
respectively, are presented. In Chapter 6, the proposed 
architecture is described. In Chapter 7, the work plan 
will show the work done and the planning of the next 
tasks. In Chapter 8, first results of using the 
methodology presented in this proposal are based on a 
small academic water network example.  

 

 

1.1. Case of study 
 
   The objective of using a real case of study in this 
work is to validate results and technical viability of the 
proposed architecture. Although the solution obtained 
by the proposed architecture and methodology has to 
be efficient for the considered case, it has to be general 
enough for being applied in any kind of continuous 
LSS. 

   The case of study is the Barcelona water transport 
network. The network is managed by the company 
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Aguas de Barcelona (AGBAR), a partner of the 
European Project Decentralized and Wireless Control 
of Large Scale Systems, WIDE, of which this work is 
part of.  

  

  AGBAR not only supplies water to Barcelona city 
but also to the metropolitan area (see data in the table 
below). (WIDE - 224168 - FP7-ICT-2007-2, 
Decentralized Wireless Control of Large-Scale 
Systems) 

 

 

  

   The sources of water are the rivers Ter and 
Llobregat. Since 1976, the network has a centralized 
tele-control system, organized in a two-level 
architecture. At the upper level a supervisory control 
system installed in the control centre of AGBAR is in 
charge to optimally control the whole network by 
taking into account operational restrictions and 
consumer demands. This upper level provides the 
set-points for the lower-level control system. This 
optimizes the pressure profile to minimize losses by 
leakage and provide sufficient pressure, e.g. for high 
rise buildings. The system responds to changes in 
network topology (ruptures), typical daily/weekly 
profiles, as well as major changes in demand, etc. 
(WIDE - 224168 - FP7-ICT-2007-2, Decentralized 
Wireless Control of Large-Scale Systems) 

 

   The Barcelona water network is comprised of 200 
sectors with approximately 400 control points. At 
present, the Barcelona information system receives, in 
real time, data from 200 control points, mainly 
through flow meters and a few pressure sensors. 

Sensors measurements are sent to the operational data 
base of the telecontrol information system via 
telephone XTC network or GSM radio using the 
ModBus communication protocol. (WIDE - 224168 - 
FP7-ICT-2007-2, Decentralized Wireless Control of 
Large-Scale Systems) 

 

   This water network, as any other, is composed by 
nodes, valves, pumps, tubes, and sources.   

 

   Figure 1 depicts the diagram of the Barcelona water 
transport network. Each tank supplies water a demand 
sector. The inputs/outputs of a tank are controlled 
using valves/pumps depending on the elevation. The 
state of the network are the tank levels/volumes of the 
tanks, which need to be optimally manage to satisfy 
the demands at the minimum cost without this 
disrupting  the water service. From the control point 
of view, the control actions are the flow set points of 
valves and pumps. It is assumed that there is a local 
PID controller that controls the water pressure. 
Demands are considered as measured perturbations. 

 

   In the past, different versions of this network have 
been used as a case of study. First one is in the book 
(Brdys & Ulanicki, 1994) and latter in (Cembrano, 
Figueras, Quevedo, Puig, Salamero, & Martí, 2002) 
(Cembrano, Quevedo, Salamero, Puig, Figueras, & 
Martí, 2002) (Cembrano, Wells, Quevedo, Pérez, & 
Argelaguet, 2000). 

 

   Recent work on centralized MPC applied to the 
same network but with updated topology is (Caini, 
Puig Cayuela, & Cembrano, 2009). A decentralized 
approach of the same updated network is (Fambrini & 
Ocampo Martinez, 2009) and an optimal 
decomposition approach for the same net but in a 
distributed MPC fashion is studied in (Barcelli, 2008).   

 

 

 

Territorial extension  425 Km2 

Drinkable water net 4.470 Km 

Drinkable water production 237.7 hm3 

Population 2.828.235 

Metropolitan area of Barcelona – Water net (2006) 
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Figure 1: Diagram of the Barcelona water network.

 

2. STATE OF ART 
 

2.1. Model Predictive control philosophy 
 

   As it was mentioned before, Model Predictive Control 
is a recognized powerful approach with proven capability 
to handle a large number of industrial control problems.  

   The philosophy of MPC is well resumed in (Scattolini, 
2009) when it says that the main characteristic of MPC is 
to transform the control problem into an optimization one, 
so that at any sampling time instant, a sequence of futures 
control values is computed by solving a finite horizon 
optimal control problem. Then, only the first element of 
the computed control sequence is effectively used and the 
overall procedure is repeated at the next sampling time 
according to the so-called receding horizon principle. For 
a more detailed explanation about MPC see the text book 
(Camacho & Bordons, Model Predictive Control, 2004). 

   The main characteristics of centralized MPC are 
(Negenborn, De Shutter, & Hellendoorn, Multi-Agent 
model predictive control: A survey, 2004): 

- The centralized system model is given by a 
(possibly time-varying) dynamic system of 

difference or differential equations and 
constraints on inputs, states, and outputs. 

- The goal of the control problem is to minimize a 
cost function. The control problem is stated as a 
multiple-objective optimization problem that is 
transformed to a single objective one using a 
weighted approach. 

- The problem is solved by a single centralized 
agent, the information set of which consists of 
measurements of the physical system, and the 
control action set of which consists of all 
possible control actions. The agent solves the 
problem with a three-step procedure (see  
Figure 2): 
 

1. It reformulates the problem of controlling 
the time-varying dynamic system using a 
time-invariant approximation of the system, with 
a control and a prediction horizon to make 
tractable the solution computation and a rolling 
horizon for robustness. 
    2. It solves the reformulated control 
problems, often using general, numerical 
solutions techniques, while taking into account 
constraints on control actions and states. 
    3. It combines the solutions to the 
approximations to obtain a solution to the overall 
problem. This typically involves implementing 
the control actions found from the beginning of 
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the time horizon of the current approximation, 
until the beginning of the next approximation. 

 

 
Figure 2: Example of conventional MPC.  

In Figure 2, it can be noticed that the control problem is to 
find actions uk…uk+Nc , such that after Np steps, the 
system behavior y approaches to the desired behavior y*. 
In this example, y indeed reaches the desired set point y*. 
(Negenborn, De Shutter, & Hellendoorn, Multi-Agent 
model predictive control: A survey, 2004) 

 

   In Negenborn, (De Shutter, & Hellendoorn 2004) one 
can find some advantage and disadvantages of the MPC 
framework: 
 
Advantages  

 
- The MPC framework handles input, state, and 

output constraints explicitly in a systematic way. 
This is due to the control problem formulation is 
based on the system model which includes the 
constraints. 

- It can operate without intervention for long 
periods. This is due to the rolling horizon 
principle, which enables that the agent looks 
ahead to prevent the system from going in the 
wrong direction. 

- It adapts easily to new contexts because of the 
rolling horizon use. 
 
 
 

Disadvantages  
 

- The approximation of the distributed control 
problem with static problems can be of large 
size. In particular, when the prediction horizon 
becomes large, the number of variables of which 
the agent has to find the value increases quickly. 

- The resources needed for computation and 
memory may be high, increasing more when the 
time horizon increases. The amount of resources 
required also grows with increasing system 
complexity. 

- The feasibility of the solution to distributed 
control problem is not guaranteed. Solutions to 
the distributed problem are not guaranteed to be  
solutions to the original control problem. 
 

 

2.2. MPC Taxonomy 
 

   There are several applications and new approaches of 
MPC are continuously arising. Although it is a well 
known and accepted control strategy, it is still an open 
field of research. 
 
   Three main types of structures in which MPC is 
applied can be found in the literature (See figure 3) 
 

 

 

 

 

   

 

 

Figure 3: MPC Taxonomy 

   Centralized MPC is the classical way of implementing 
MPC strategy. In (Rawlings & Stewart, 2008) the authors 
state that the move from distributed PID to MPC of small 
systems was essentially a move towards centralized 
decision making. This technology gained support because 
the performance benefits were large.   

   But, as it was mention before, there are strong reasons 
that leads MPC to decentralized or distributed 
implementations. 

   According to (Scattolini, 2009), decentralized control 
is based on considering the control input (u) and the 
controlled output (y) variables are grouped into disjoints 
sets. These sets are then coupled to produce 
non-overlapping pairs from which local regulators can be 
single-input single-output or multivariable (locally 
centralized) depending on the cardinality of the selected 
input and output groups. 

   Many proposals has been suggested to define these sets 
disjoint where they are not naturally in that way. 
(Camponogara, Jia, Krogh, & Talukdar, 2002) (El Fawal, 
Georges, & Bornard, 1998) (Van Breemen & De Vryes, 
2001) (Barcelli, 2008) (Rawlings & Stewart, 2008). Other 
line of investigation is to communicate overlapping sets. 
This is called distributed control. 

MPC 

Centralized 

Decentralized 

Distributed 

 

Fully connected 

Partially connected 
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   In distributed control structures, it is assumed that 
some information is transmitted among the local 
regulators, so that each one of them has some knowledge 
on the behavior of the others. In the next section 
distributed control implemented whit MPC approach is 
discussed. 

 

2.3. Distributed MPC  
 

   When the local regulators of a distributed control 
structure are designed with MPC, the information 
transmitted typically consists of the future predicted 
control or state variables computed locally. In this way, 
any local regulator can predict the interaction effects over 
the considered prediction horizon. If the information 
exchange among the local regulators concerns the 
predicted evolution of the systems states, any local 
regulator needs only to know the dynamics of the 
subsystem directly controlled. On the contrary, if the 
predictive control actions are transmitted, the local 
regulators must know the model of all subsystems. In any 
case, it is apparent that the transmission and the 
synchronization protocols have major impact on the 
achievable performance. (Scattolini, 2009) 

   Fully connected algorithms are the ones in which every 
regulator has bi- directional communication with all the 
other regulators. If any local regulator has communication 
just with a subset of the others, then is partially connected  

 

 
2.4. Distributed MPC taxonomy 

   
 In (Scattolini, 2009), a taxonomy of MPC approaches 
based in the protocol used for exchanging information 
among local regulators is provided. This taxonomy is 
summarized in the following diagram: 

 

 

 

 

 

Figure 4: Distributed MPC Taxonomy 

 

 

  In iterative algorithms information is bi-directionally 
transmitted among local regulator many times within the 
sampling time. In non-iterative algorithms information is 
bi-directionally transmitted among the local regulators 
only once within each sampling time. 

   In iterative algorithms there is a sub- classification. 
When each local regulator minimizes a local performance 
index, it is said to be an independent algorithm, and when 
they minimize a global cost function it is called 
cooperative algorithm. 

 

 

2.5. Cooperative vs independent algorithms. 
    
   Independent (non-cooperative) algorithms are widely 
studied in game theory (much more widely used in 
comparison with cooperative algorithms) and also applied 
in MPC distributed control strategies (see an example of 
application of min-max algorithm in (Jia & Krogh, 
2002)). More details about cooperative games can be 
found in (Fernández García, 2000) 

   As discussed in (Venkat, Rawlings, & Wrigth, 2005) 
it is apparent that in iterative and independent algorithms 
each local regulator tends to move towards a Nash 
equilibrium, while iterative and cooperating methods seek 
to achieve the Pareto optimal solution provided by an 
ideal centralized control structure. However, Nash 
equilibrium can be even unstable and far from the Pareto 
optimal solution. So, specific constraints have to be 
included in the MPC problem formulation to guarantee 
closed-loop stability. (Scattolini, 2009) 
 
   As for the MPC algorithms published in the literature, 
the state feedback method described in (Camponogara, 
Jia, Krogh, & Talukdar, 2002)  for discrete-time linear 
systems belongs to the set of independent, noniterative 
algorithms. A stability constraint is included in the 
problem formulation, although stability can be verified 
only a-posteriori with an analysis of the resulting 
closed-loop dynamics. Nash equilibrium solutions are 
searched in the independent, iterative and fully connected 
methods developed in (Du, Xi, & Li, 2001) for 
discrete-time unconstrained linear systems represented by 
input–output models. (Scattolini, 2009) 
 

 

 

   There is a analogous classification in game theory of 
distributed MPC taxonomy. Distributed algorithms 
correspond to algorithms where there is exchange of 
information between players.  MPC iterative algorithms 
correspond to dynamic algorithms, whereas MPC non 
noniterative algorithms correspond to static algorithms.  
MPC independent algorithms correspond to 
non-cooperative algorithms and cooperative algorithms 
are called cooperative as well. 

 

 

 

Distributed 
MPC 
Algorithms 

Iterative 

Non-iterative 

Cooperative 

Independent 
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2.6. Negotiation in cooperative 
environments using MPC 

 
   The seminal Tamura coordination method was 
discussed in the book (Brdys & Ulanicki, 1994) even 
before MPC was first introduced. This method is based on 
using augmented Lagrangian to negotiate values on 
overlapping sub-networks in distributed large scale 
systems.  Recent works have applied this method (El 
Fawal, Georges, & Bornard, 1998) (Gómez, Rodellar, 
Vea, Mantecon, & Cardona, 1998) (Negenborn et all, 
2008). 
 
 
   An interesting approach is presented in (Venkat, 
Rawlings, & Wrigth, 2005), where an iterative, 
cooperating method for linear discrete-time systems is 
presented. In particular, the proposed approach 
guarantees the attainment of the global (Pareto) optimum 
when the iterative procedure converges, but still ensures 
closed-loop stability and feasibility if the procedure is 
stopped at any intermediate iteration. (Scattolini, 2009) 
 

 

   In (Rawlings & Stewart, 2008), an alternative 
approach to solve the same problem was discussed. The 
novelty involves maintaining the distributed structure of 
all the local controllers, but changing the objective 
functions so that the local agents cooperate. 
 
    
 

2.7. Reinforcement Learning. 
 

   Learning is the incorporation of knowledge  and skills 
by an agent, leading to an improvement in the agent 
performance (Busonui, De Shutter, & Babuska, 2005). 
Learning is used mainly in systems where the 
environment is large, complex, open and time-varying. 
That is because designing an agent behavior that takes 
into consideration all the possible circumstances that the 
agent may encounter is a very difficult, if not impossible, 
task. Besides, openness and variation over time, implies 
that even if such a behavior were designed, it would 
quickly become obsolete as the environment changes. 
(Busonui, De Shutter, & Babuska, 2005)    

   Due to difficulties in dealing with open and 
time-varying environments, most multiagent learning 
algorithms are designed for unchanging environments. 
They typically involve some fixed learning structures that 
are updated by a set of rules involving some fixed or 
scheduled parameters. This kind of learning is called 
“static” learning (Busonui, De Shutter, & Babuska, 2005). 
 
   By allowing the learning parameters or structures of 
the static algorithms to adapt, the learning processes of the 
agents should be able to regain their ability of handling 

open and time-varying environments (Busonui, De 
Shutter, & Babuska, 2005). 
 
Note that adaptive learning is not a radically different 
process from learning. It can be viewed as a kind of 
“meta-learning” – that is, a special case of “learning how 
to learn” (Busonui, De Shutter, & Babuska, 2005).  
   
   In the book (Sutton & Barto, 1998) Reinforcement 
Learning (RL) is define as:  learning what to do, how to 
map situations to actions, so as to maximize a numerical 
reward signal. The learner is not told which actions to 
take, as in most forms of machine learning, but instead 
must discover which actions yield the most reward by 
trying them. In the most interesting and challenging cases, 
actions may affect not only the immediate reward but also 
the next situation and, through that, all subsequent 
rewards. These two characteristics (trial-and-error search 
and delayed reward) are the two most important 
distinguishing features of reinforcement learning. 

 

   Reinforcement learning is defined not by 
characterizing learning methods, but by characterizing a 
learning problem. Any method that is well suited to 
solving that problem is considered to be a reinforcement 
learning method. The basic idea is to capture the most 
important aspects of the real problem facing a learning 
agent interacting with its environment to achieve a goal. 
Clearly, such an agent must be able to sense the state of 
the environment to some extent and must be able to take 
actions that affect the state. The agent also must have a 
goal or goals relating to the state of the environment. The 
formulation is intended to include just these three aspects 
(sensation, action, and goal) in their simplest possible 
forms without trivializing any of them (Sutton & Barto, 
1998). 

 Another key feature of reinforcement learning is that it 
explicitly considers the whole problem of a goal-directed 
agent interacting with an uncertain environment. This is 
in contrast with many approaches that consider 
subproblems without addressing how they might fit into a 
larger picture. (Sutton & Barto, 1998)  

   A full specification of the reinforcement learning 
problem in terms of optimal control of Markov decision 
processes and a deeper explanation about the most 
important RL topics can be found in (Sutton & Barto, 
1998). 
 
   Although the applications of RL are typically static, 
many control applications have been developed for 
dynamical environments (Agostini & Calaya) (Martinez 
& De Prada Moraga, 2003) (Tesauro, 2003). Even more, 
there are some works that relate MPC and RL. In (Ernst, 
Capitanescu, & Wehenkel, Reinforcement Learning Vs 
Model Predictive Control: A comparison on a power 
system problem, 2007) a comparison between both 
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approaches is made, and in (Ernst, Glavic, Capitanescu, & 
Wehenkel, 2006) they are seen as complementary 
frameworks. 
 
   An interesting paper about cooperative learning 
applying RL in control is (Bakhtiari, Araabi, & Nili 
AhmadAbadi, 2007). In the area of Distributed Artificial 
Intelligent, papers about learning in cooperative 
Multi-Agent systems whit RL are (Lauer & Riedmiller, 
2000) (Claus & Boutilier, 1998) (Kapentanakis & 
Kudenko, 2002). The last one also talks about 
coordination. Another application of RL for coordination 
in Multi-agents systems is (Boutilier, 1999). In all those 
papers, the term Multi-Agent is referring to agents in 
Distributed Artificial Intelligence terminology. In the next 
section a short description of these terms will be made.         
 

 
 

2.8. Multi Agent Systems 
 

   The term agent has been used indiscriminately until 
now in this work.  In control, distributed and 
decentralized systems are usually called Multi-agent 
systems and their local controllers are called agents. 

  In RL, the controller or the software entity that performs 
a RL algorithm is also called agent. 

   There is a branch of Artificial Intelligence called 
Distributed Artificial Intelligence (IAD). This branch 
arises as a result of the natural evolution of the systems 
that could be found because they are more and more 
complex, large and often heterogeneous.  

   The solution of problems of this nature under a 
traditional scheme, involved the design of large and 
complex algorithms that consume a very high level of 
resources for calculation. It was about the 80´s that it was 
thought that small and simple programs that interact with 
each other could considerably simplify the design and 
development of these systems reducing the necessary 
resources. 

   Many IAD researchers have defined the term Agent. 
This term is still a controversial issue. In (Stan & 
Graesser, 1996), the main agent definitions are presented 
and explained as well as a taxonomy of autonomous 
agents is provided. Next, some of these definitions  are 
presented. 

 
   The Maes Agent: "Autonomous agents are 
computational systems that inhabit some complex 
dynamic environment, sense and act autonomously in this 
environment, and by doing so realize a set of goals or 
tasks for which they are designed." (Stan & Graesser, 
1996) 
 
 

   The IBM Agent: "Intelligent agents are software 
entities that carry out some set of operations on behalf of a 
user or another program with some degree of 
independence or autonomy, and in doing so, employ some 
knowledge or representation of the user's goals or 
desires." (Stan & Graesser, 1996) 
 
   The Wooldridge and Jennings Agent:  A hardware or 
(more usually) software-based computer system that 
enjoys the following properties: 
 

 
- Autonomy: agents operate without the direct 

intervention of humans or others, and have some 
kind of control over their actions and internal 
state; 
 

- Social ability: agents interact with other agents 
(and possibly humans) via some kind of 
agent-communication language; 

 
- Reactivity: agents perceive their environment, 

(which may be the physical world, a user via a 
graphical user interface, a collection of other 
agents, the Internet, or perhaps all of these 
combined), and respond in a timely fashion to 
changes that occur in it; 

 
- Pro-activeness: agents do not simply act in 

response to their environment, they are able to 
exhibit goal-directed behavior by taking the 
initiative." (Stan & Graesser, 1996) 

 

 

   As a result of many years of research in this area, 
important contributions have been made on theory, 
methodologies, communications protocols, standards and 
software tools that lead to the appearance of the Agent 
Oriented Paradigm (AOP).   
 
 
   The AOP is widely used in software applications and 
specially in Internet applications (for example 
e-commerce). Other interesting applications in robotics 
can be found in literature.  
 
 
   In control applications sometimes the terms of agent in 
IAD and in control are not consistent although there are 
some applications in terms of agents in the AOP way. 
Examples of these applications are mention next. 
 
 
   In the paper (Maturana, Staron, & Kenwood, 2005) 
new tools for developing MAS in distributed control 
applications are described and a case of study of a 
chilled-water system of a ship is presented. 
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   Another, and more recent, application in distributed 
control network of interconnected chemical reactor is 
presented in (Tatara, Çinar, & Teymour, 2007) 
 
 
 

2.8.1. Properties and Characteristics of the 
Agents  

   In (Stan & Graesser, 1996) we can find the following 
table that shows some properties of the agents. 

 

Property Other Names Meaning 

 
Reactive (sensing and 

acting) 
 

responds in a 
timely fashion 
to changes in 
the 
environment 

Autonomous  exercises 
control over 
its own 
actions 

Goal-oriented 
 

pro-active 
purposeful 
 

does not 
simply act in 
response to 
the 
environment 

Temporally 
continuous 

 is a 
continuously 
running 
process 

Communicative  
 

socially able communicates 
with other 
agents, 
perhaps 
including 
people 

Learning  
 

adaptive  changes its 
behavior 
based on its 
previous 
experience 

Mobile   able to 
transport itself 
from one 
machine to 
another 

Flexible   actions are not 
scripted 
 

Character  believable 
"personality" 
and emotional 
state. 

 

2.8.2. Potential advantages of Multi-Agent 
Systems 
 
 

   In (Busonui, De Shutter, & Babuska, 2005) one can 
find some of MAs principal potential advantages over 
centralized systems. 
 
 
• Speed-up of the system activity, due to parallel 
computation. 
 
• Robustness and reliability, when the capabilities of the 
agents overlap. The system is tolerant to failures in one or 
several agents, by having other agents take over the 
activity of the faulty ones. 
 
• Scalability and flexibility. In principle, since MAS are 
inherently modular, adding and removing agents to the 
system should be easy. In this way, the system could adapt 
to a changing task on-the-fly, without ever needing to 
shutdown or to be redesigned. 
 
• Ease of design, development, and maintenance. This 
also follows from the inherent modularity of the MAS.  
 

 
   The potential benefits described above should be 
carefully weighed with the simplicity of a centralized 
solution, considering the characteristics of the task. 
 
 
 
 

3. DEFINITION OF THE 

PROBLEM 
The standard MPC formulation is (Camponogara, Jia, 
Krogh, & Talukdar, 2002):  
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   This formulation can be summarized as a series of 
static optimization problems: 
 

 { SP k | k = 0,1,2,… } , each of the form: 

                 SP k : min J (S) 
                                                S 

                       s.t. G(S)≤ 0 

                       H(S)= 0, 

 
 
where S is the vector of the decision variables, including 
state variables X and control variables U, over the 
prediction horizon. The equality constraint in the problem 
includes the prediction model and other equality 
operation constraints. (Camponogara, Jia, Krogh, & 
Talukdar, 2002) 
 
 
   Distributed MPC is a decomposition of SP k  into a set 

of M sub-problems, {SP ki | i =1,2,…, M},  and each 
sub-problem is assigned to a different agent. 
(Camponogara, Jia, Krogh, & Talukdar, 2002) 
 

 
Figure 5: Distributed control system (Giovanini & 

Balderud, 2006) 

 

   Figure 5 shows the structure of the distributed control 
system problem. It can be seen how subsystems are 
connected (they can be fully connected or partially 
connected). These connections represent control variables 
shared among the objective functions of two agents. 

 

4. OBJECTIVES 
 

− To develop a distributed control Architecture for 
Large Scale Systems based on three main 
concepts: Negotiation-Cooperation-Learning. 
As an answer to the distributed control problem 
defined in Chapter 3. 

− To conjugate Distributed Model Predictive 
Control, Reinforcement Learning and the Agent 
Oriented Paradigm as the basis of the proposed 
approach. 

− To prove technical feasibility of the proposed 
approach.  

− To provide a general methodology for the 
application of the proposed architecture. 

− To validate the proposed architecture applying it 
on the Barcelona water transportation network. 

− To contrast results against the centralized and 
decentralized approaches applied to the same 
case of study. 

 

 

5. EXPECTED 

CONTRIBUTIONS 
 

   As it was argued in the state of art (Chapter 2), as much 
MPC, RL and AOP are powerful tools widely studied and 
applied each one in their own area. Works have been 
made relating MPC and RL but not in cooperative or even 
negotiating environments. There is a very short 
intersection between AOP and control and no intersection 
at all of these three areas. 
 
 
   In the state of art, it was also shown how these three 
fields have many things in common. One of the 
contributions expected in this thesis is to select suitable 
algorithms and tools of these branches and adapt them to 
create an adaptive distributed control architecture capable 
of performing negotiation-cooperation-learning actions 
on a efficient communication platform. 
 
 
   In order to develop this efficient communication and 
coordination it will be necessary to exploit the protocols, 
standards and tools that the AOP offers.   
      
   Another expected contribution is to introduce the term 
agent in the control language as a basic element of the 
AOP and to combine suitable solutions between 
distributed control and distributed Artificial Intelligence. 
 
   For unifying purposes one will define Agent as: 

 

   The basic entity of software that the AOP 
uses to describe an element that has some level 
of autonomy within a dynamic and complex 
system. Besides, encapsulating its characteristics 
and functionality, implements processes of 
reaction and/or deliberation, as well as 
communication and it is represented, from its 
initial design, by means of a particular, proposed 
or experimental, method of the AOP. The 
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functionality of the Agent is given by its 
behaviors and its characteristics are represented 
in its internal state. 

 

   The previous definition is analogous to the Object 
definition of the Object Oriented Paradigm (OOP), in the 
sense that, if we want to define what an object is without 
being placed in specific context, anything is an object. 
Nevertheless, within the computational and the OOP, the 
object concept is well defined and known. In the same 
way if we were not placed in any context, an agent can be 
almost anything. Since the theory of agents is part of 
Computer Science this is the suitable context to define the 
term. Placed in this context, this definition remarks the 
AOP and present it as a feasible solution for applications 
to the diverse areas of the sciences and engineering.  

 
  
 
 

6. PROPOSED 

ARCHITECTURE: 

MULTI-AGENT MPC 

 

     In this section, the proposed architecture is 
presented. First, the concepts of partitioning of the plant 
and partitioning of the optimization problem will be 
defined for the aims of this work. Next, definitions of the 
elements of the architecture will be made as well as the 
structure of the architecture and its dynamics.  

    There have been detected two main problems in the 
design process of a distributed system: the partitioning of 
the plant and the partitioning of the optimization problem.   

 

6.1. Partitioning of the plant.  
 

   Many proposals for partitioning the plant can be found 
in the literature (Camponogara, Jia, Krogh, & Talukdar, 
2002) (El Fawal, Georges, & Bornard, 1998) (Van 
Breemen & De Vryes, 2001) (Barcelli, 2008) (Rawlings 
& Stewart, 2008). For the implementation of the MAMPC 
(Multi-Agent MPC) Architecture an intuitive partitioning 
of the network can work. Nevertheless, if either a more 
rigorous method or an intuitive one is used, there are some 
considerations to take into account: 

  Plant partitioning considerations. The plant 
partitioning considerations represent all the 

considerations to take in to account in the process of 
partitioning of the plant in order to apply the MAMPC 
Architecture. These considerations are: 

1- The set of partitions must be a complete set of 
partitions. 

2- The physical topology of the network must be 
respected. This means that the plant model  
represents a large infrastructure that will not be 
modified, not physically nor logically respecting its 
topology configuration.    

3- Minimum relations between partitions are desirable 
(always fulfilling consideration 1). 

4- Generalization and specification are allowed. That 
means that the model can be aggregated or 
disaggregated for simplification or specification 
without failing with that to consideration 1. 

5- There is a compromise between the number of 
partitions and the number of relations between them. 
That means that it is not desirable to have too many 
partitions in order to have to little relations, nor to 
have few partitions with too many relations. 

6- Economical, geographical, and management 
considerations have to be taken in to account and the 
result of the system partitioning must be approved by 
the final manager of the system.   

 

Definition 1. Complete set of partitions. Given a model 
of the plant P, a complete set of partitions of P is: 

� � ��  � �� � …� �	 
where s1, s2 …sn are partitions (sub-networks) of the plant. 

It is said to be complete because the sum of all partitions 
is equal to the original plant P. When the equation above 
is not satisfied the set of partitions will be not complete 
and therefore incorrect. 

 

Definition 2. MAMPC Architecture. MAMPC is a 
distributed control architecture that can be defined as: 

 

γ �  �A, N, P,W, V��, U��, b� 
 

where: 

A is the set of MPC Agents, N is the set of Negotiator 
Agents, P is the Complete Set of Partitions of the plant, W 
is the set of nodes, �		 is the set formed by all sets of 
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Negotiation Variables where nn is the number of elements 
in N, �	�  is the set formed by all sets of Internal 
Variables where na is the number of elements in A and b 
is the Agent platform.  

 

6.2.Partitioning of the Optimization 
Problem.  
 

   In the state of the art it was mentioned that distributed 
control works propose to partition the system via the 
partitioning of the optimization problem. In this kind of 
approach the resulting partitions have no geographical or 
topological meaning and therefore for implementation the 
control has to be achieved remotely.  

   In the present approach, the partitioning of the plant is 
related to the partitioning of the optimization problem but 
it is not the same.  

 

Definition 3. Partitioning of the Optimization 

Problem. The partitioning of the Optimization problem 
for the MAMPC Architecture represents the way in which 
the optimization problem is dealt with. It is divided in two 
parts. The Agent Multivariable Problem and the Agent 
Negotiation Problem. 

Definition 4. The Agent Multivariable Problem. The 
Agent Multivariable problem is the control optimization 
of one partition of the system solved by an MPC Agent via 
MPC of all the internal variables. 

Definition 5. The Agent Negotiator problem. The 
Agent Negotiator problem represents the optimal value of 
the negotiation variables that can exist between MPC 
Agents.  This problem is solved by the Negotiator Agent 
and the result is the optimal value for the relation as a 
common goal. That means that agents cooperate in a way 
that this common goal has priority over the goal of each 
MPC Agent.  

  

 

6.3.Elements of the MAMPC Architecture.  
 

   The main actors in MAMPC Architecture are MPC 
Agents and Negotiators Agents. They interact over an 
Agent platform.  Other important entities are: negotiation 
variables, internal variables and nodes. Next a definition 
of each one is given.  

 

Definition 6. MPC Agent. An MPC Agent is the entity of 
the MAMPC Architecture that is in charge of one specific 
partition of the system. There is one specific MPC Agent 

for each partition of the problem. The MPC Agent solves 
the agent multivariable problem for all of its internal 
variables by means of MPC. Also an MPC Agent can 
have negotiation variables, in this case the MPC Agent 
will cooperate with one or more Negotiator Agents to 
determine the optimum value for these variables. An 
MPC Agent will cooperate with as many negotiator 
Agents as many MPC Agents with negotiation variables 
shares.  

A is the set of MPC Agents defined by 

 

� � ���, ��, … , �	��    
����� � ! 1|   � $� %��  &'(�� )* +�, �-� %�� 

Definition 7. Negotiator Agent. A negotiator Agent is 
the entity of the MAMPC Architecture capable to 
determine the value of one or more negotiation variables 
between two MPC Agents. In this negotiation, each MPC 
Agent is arranged to cooperate so that the negotiator agent 
solves an optimization of a common goal by means of an 
algorithm based on Reinforcement Learning. A negotiator 
Agent exists when two, and only two, MPC Agents have 
one or more negotiation variables in common.   

N is the set of Negotiator Agents defined by 

 

. � � �,  �, … ,  		�         
where nn is the maximal possible value of the Negotiation 
Agents that satisfies:  

 
 

  / 0 1  2 13
456

45	
  

  

Definition 8. Nontrade variables. The nontrade 
variables are the independent control variables that each 
MPC Agent has. By independent it can be understood that 
a variable is not related to other MPC Agent.   

U is the set of internal variables defined by 

� � �&�, &�, … , &	7�       ����� �4 8  �4  
 

Definition 9. Negotiation Variables. A negotiation 
variable between two MPC Agents exists when there is a 
physical connection preserved between two partitions of 
the system that represents a control variable. When this 
occurs each MPC Agent cooperates by means of a 
Negotiator Agent in order to determine a common 
optimum value for this variables. An MPC Agent can 
have many negotiation variables shared bilaterally with 
one or more MPC Agents.     
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V is the set of negotiation variables defined by 

� � � 9�, 9�, … , 9	:�    
Each Negotiator Agent deals with a subset of V.   

Definition 10. Nodes. A node is the physical device 
(commonly a computer) in which the agents are located. 
In MAMPC Architecture, there is a node for each MPC 
Agent. Nodes are communicated via LAN, WAN or 
Internet. 

W is the set of nodes defined by 

; � ���, ��, … , �	<�    
where there is a node for each MPC Agent.        

Definition 11. Agent Platform. All agents in MAMPC 
Architecture, run over an agent platform. This platform 
has to be installed and running in all nodes. It works as a 
virtual machine providing the agents a homogenous 
medium to communicate and, the user, a way to manage 
agents. Agent platform is denoted by b.   

 

                                   

6.4.Structure of the MAMPC Architecture 
 

   Once all the elements of the architecture were defined, 
the structure of the proposed MAMPC Architecture is 
presented. 

   It was mention before that the partitioning of the plant 
and the partitioning of the optimization problem (section 
6.1 and 6.2 respectively) are two different things in 
MAMPC Architecture. The partitioning of the plant is 
related to the structure of the resulting MAMPC system 
and the partitioning of the optimization problem is related 
to the internal design of MPC Agents and Negotiation 
Agents. In order to explain how this and other new 
concepts are related Figure 6 is presented. 

   In Figure 6, a MAMPC system with three partitions is 
shown. This partitioning accomplishes the plant 
partitioning considerations defined before. The resulting 
structure of this MAMPC system is: 

� � ��  � �� � �= 
where P is a complete set of partitions 

� � ���, ��, �=� . � � �,  �,  =�         �� � >?�, ?�, ?@,?AB  

�� � >?C, ?D, ?E,B   

 

 

4

1
1

1
5

 

Figure 6: MAMPC system with three partitions  

 

�= � >?��, ?�=, ?�C,?�DB   ��� � � ?=, ?F�    ��= � � ?�6� ��= � � ?��� ; � ���, ��, �=� 
 

   As can be seen in Figure 6, �� is the MPC agent in 
charge of partition s1 and , its set of internal variables is  ��. It has two sets of negotiation variables, ��� shared 
with  �� and ��=  shared with  �= . So ��  will be 
interacting with  �  and   � , that are the negotiation 
agents in charge of ��� and ��=, respectively. �� will be 
allocated in ��, �� in ��  and so on. 
 
   In general, the structure of the plant partitioning can be 
seen as shown in Figure 7 where each partition can have 
one or more negotiation variables with other partitions or 
do not have any. If this is the case, it is said to be internal. 
The MAMPC Architecture can have partitions connected 
and internal mixed (partially connected).    

S1

Sn

S2

 

Figure 7: Structure of the plant partitioning 

 

   Another important thing of MAMPC Architecture 
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structure is how agents interact. The interaction is needed 
only for negotiation of control variables between MPC 
Agents. But this interaction can not be from MPC Agent 
to MPC Agent. It has to be through a Negotiation Agent. 
Figure 8 shows, in general, how this interaction is made.  

 

a1 ay

ax

az

n1

n2

nnn

 

 

Figure 8: Agent interaction structure of MAMAPC 

Architecture. 

 

s1 sn
s2

w1

a1

w2

a2

wnw

ana

w1 wnww12

 

Figure 9 Assignation of agents, partitions and nodes 

 

Figure 9 shows the general structure of the MAMPC 
Architecture. Each partition has sensors and actuators 
installed in the transport network. The local control is 

achieved via PID. In a higher level, the Multi Agent 
system solves the distributed optimization problem. There 
is one MPC Agent for each partition of the plant and one 
node for each MPC Agent. Communication of agents is 
possible through the Agent Platform and custom physical 
connections between computers are needed.      

6.4.1. INTERNAL DESCRIPTION OF THE MPC 
AGENT 
   

 The core of the MPC agent is a MPC controller. This 
controller solves the multivariable problem of one 
partition of the plant based in a model. This model 
contains the set �G of the agent. Other important part of 
the MPC Agent is it communication block. MPC Agents 
can communicate in a sophisticated way because are 
implemented using the Agent Oriented Paradigm. This 
paradigm provides methods, standards and tools that 
allowed good communication skills.    

 

a1

MPC

Plant

U

com ax

 

Figure 10: Internal architecture of the MPC Agent 

 

6.4.2. INTERNAL DESCRIPTION OF THE 

NEGOTIATION AGENT 

   The Negotiation Agent determine the optimal value of 
a set �G .This set contains the shared variables of two, and 
just two MPC Agents. The Negotiation Agent optimizes 
them through a Negotiation algorithm based on 
Reinforcement Learning.  Each negotiation variable is an 
optimization problem. This problem is solved as a whole 
looking for the optimal value of the relation. The method 
is based on the reinforces given at each step and on the 
experience obtained. This experience is stored in a 
knowledge base, one for each negotiation variable. As 
MPC Agents, Negotiation Agents has it communication 
block that uses to communicate with two related MPC 
Agents. 
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Figure 11: Internal architecture of the Negotiation Agent 

 

6.5. DYNAMICS OF THE MAMPC 
ARCHITECTURE  

 

The Dynamics of the MAMPC Architecture can be 
described in the following algorithm. 

 

1. First Negotiation Agents applied a random 
action (that is the same to say that determine a 
random value for them negotiation variables)  

2. The resulting values of the Negotiation Agents 
are sent to the respective MPC Agents 

3. MPC Agents fix as restrictions in the 
manipulated variables all the received values and 
calculates the rest. 

4. MPC Agents calculates the error obtained as a 
result of its negotiation variables. 

5. MPC Agents send to the respective Negotiation 
Agents the result of the computed control action.  

6. Negotiation Agents applied the negotiation 
algorithm and determine the new control action 
of all the shared variables. 

7. Go to 2 until stop by the user 
8. End 

 

6.6. BENEFITS OF THE PROPOSED 
ARCHITECTURE 

1. The use of MPC as principal control strategy will 
bring many benefits, in one hand all its technical 
benefits and in the other hand its acceptance in 
industry. 

2. The flexibility of the partitioning technique. This 

flexibility allows to conjugate administrative, 
geographic, topologic and economic criteria. 

3. Negotiation is made from a cooperative point of 
view, optimizing the relation between the agents in 
order to obtain a global optimum for both agents.      

4. In decentralization of highly connected large scale 
systems, negotiation is a promising solution. 

5. This architecture makes a future fault tolerance 
implementation possible.   

6. Plus, all other benefits of decentralization (speed, 
scalability, simplicity in the maintenance of the 
system, etc, etc ) 

The use of MAS will allow to: 

1. Perform an appropriate coordination and 
synchronization of the agents 

2. Provide a management and communication platform 
for the MAS. This will allow to allocate MPC Agents 
in different computers of a net. 

3. To use appropriate tools of development and 
standards 

4. To use methods and tools of Analysis and Design in 
order to make an appropriate formalization and 
documentation of the system 

 
 
 

The use of RL in the negotiation process will allow to: 

1. Make the process of negotiation adaptive 
2. Learn from its own experience   
3. Explicitly consider the whole problem of two 

goal-oriented agents 
4. Deal with a dynamical and uncertain 

environment 
5. Optimize whit or without a model      
6. Connect the process of negotiation whit the one 

of the control MPC, this because of 
compatibilities found between them (see Chapter 
2)  
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7. WORK PLAN 

2008-2009 

# Task Sep Oct Nov Dec Jen Feb Mar Apr May Jun Jul 

1 Documentary Investigation 
(MPC, LSS, MAS) 

           

2 Searching of negotiation- 
cooperation algorithms 

           

3 Investigation on RL 
 

           

4 Choosing tools 
 

           

5 Connection and tool configuration 
  

           

6  Testing the connections 
 

           

7 
 

Implementation of static 
Q-learning algorithm in Jade 

           

8 Design of the proposed 
Architecture 

           

9 Design of the negotiation 
algorithm 

           

10 Application of the proposed 
architecture in a toy problem 

           

11 Analysis of the results  
 

           

12 Writing and presentation of the 
thesis proposal 

           

13 Events1 
 

           

 

Work to do 
 

 

Work done 
 

 

 

 

 

                                                                 
1
 Events like congresses, summer courses and visits to labs. Here are represented in two months but in fact they will be 
distributed in among summer of 2009 to summer of 2011. Events program so far: WIDE School (4-7 Jul, Siena Italy), NecSys09 
(24-27 Sep, Venice, Italy ) 
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2009-2010 

# Task Sep Oct Nov Dec Jen Feb Mzo Apr May Jun Jul 

14 Formalization of the framework 
MAS-MPC-RL 

           

15 Application of the architecture to 
the aggregated case of study 

           

16 Experiments and analysis of the 
results  

           

17 Investigation and testing of 
coordination techniques  

           

 

Work to do 
 

 

Work done 
 

 

2010-2011 

# Task Sep Oct Nov Dec Jen Feb Mzo Apr May Jun Jul 

18 Implementation of coordination in 
the case of study 

           

20 Learning to negotiate: refinement 
of the negotiation algorithm2 

           

21 MAS coordination with multiples 
negotiators study. 

           

22 Application in case of study 
 

           

23 Writing of the thesis 
 

           

25 Finish 
 

           

 

 
 
 
 
 
 
 
 

                                                                 
2
 Learning to negotiate: refinement of the negotiation algorithm: In this task, different algorithms of RL and tests will be 
developed in order to refine the negotiation-learning algorithm. Effects of MPC and RL algorithm parameters will be studied and 
a criteria for their tuning will be provided in the proposed methodology. 
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8. PRELIMINARY 

RESULTS 
 

   So far, the work done can be summarized as: 

Validation of the technical suitability of the connection 

of the selected tools.   Connection,  configuration and 
testing of MATLAB, Java and Jade have been done  
assuring with that the technical suitability of the proposal. 

Research work on “Negotiation in distributed control 

systems by means of the application of Reinforcement 

Learning in Multi-Agent environments”.  This work 
was presented as final project of the subject “Artificial 
Intelligence applied to Control and Identification”.  It 
summarizes some parts of the state of art of RL and MAS. A 
static problem using the RL algorithm, Q-Learning, is also 
presented. This algorithm was implemented in Jade and a 
short description of this tool is also commented. 

Development and application of the MA-MPC 

Architecture described in the next section. 

 

8.1. Development and application of 
the MA-MPC Architecture 

   The proposed architecture was applied to a hypothetical 
water distribution network with 8 states (tanks) and 11 
control variables. This system was divided in two 
cooperatives MPC Agents and a Negotiator Agent that 
determine the value of the overlapping variables subset V 
that contains two shared control variables (see Figure 12). 

The example choosen was the presented in (Barcelli, 2008) 
where a centralized and a decentralized solution was 
proposed. 

The objectives of this case of study are:  

− To refine the proposed architecture through the 
identification of problems in the development process. 

− To validate the connection between MPC and RL 
frameworks. 

− To validate the technical feasibility of connection of the 
chosen tools. 

− To detect relevant design issues to be considered in the 
proposed architecture. 

 

 

 

Figure 12: Academic case of study and its partitioning 

 

 

The proposed metodology can be divided in for phases 

− Analysis 
− Design 
− Training 
− Explotation 

 
Next each phase will be detailed. 
 
 
 
 

8.1.1. Analysis 
 

   In the analysis phase, the MA-MPC Architecture is 
defined for this case of study. The main tasks to develop in 
this phase are: 
 
− Definition of the optimization goals 
− Definition of the partition of the network 
− Definition of the architecture 
− Definition of restrictions and other considerations 

 
 
Defining Goals 

 

   The control goal of the application presented in Figure 12 
is to keep a volume in tanks around 3m3  
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Defining the network partitions  

 

   The system is decomposed in two partitions: 
 s1={x1, x2, x4, x5, x6} s2={x3, x7, x8 }  P={ x1, x2, x3, x4, x5, x6, x7, x8, u1,u2, u3, u4, u5, u6, u7, u8, u9, u10, u11 } � = T� � T� � �� � ��  
 
Thus, the partition is a complete set of partitions. 
 

 
 
Defining the Architecture  

   In this step, the MA-MPC Architecture is defined for the 
problem. 
 
   Starting from the definition of  the architecture, every 
element is defined as follows:  
 γ =  {A, N, P,W, V��, U��, b} 
where: 

 A={a1, a2} N={n1} E={w1, w2} V={ u10, u11} U1={u1, u2, u6, u7, u8, u9 } U2={u3, u4, u5 }   
Defining restrictions and considerations 

 

   The maximum volume in tanks is 20m3, the control value 
of the messured variables is from 0.0 to 0.4 except for the u2 
that is from 0.0 to 0.1 
 
   The sampling time is 1 hour and the prediction horizon is 
24 hours. 
 
   The demands are considered as measured perturbations. 
They typically present a sinusoidal like behaviour throghout 
the day.    
 
 
 
 
 

8.1.2. Design 
 
In the design process the sub-problems of every 
MPC-Agent and Negotiator Agent are formulated. This 

formulation is based in the information collected in the 
analysis phase. 
   
 
Formulation of the MPC problem 

In this step all the MPC parameters and requierements have 
to be defined for both agents, such as: 

− The plant 
− The measured, non-measured and manipulated 

variables 
− Limits and constraints 
− References (goals) 
− Prediction horizon 
− Control Horizon 
− Initial state 
− Perturbations models 

 

   All these data have to be set in all MPC-Agents. The 
prediction and control horizon should be the same for all 
MPC-Agents. 

 

   The definition of these parameters for this problem are: 

 

Agent 1 

Plant 

�� = YD 
0 1 0 0 -1 0 0 1 0 0 0 1 0 -1 0 0 -1 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 -1 0 0 0 0 0 1 0 1 0 -1 0 0 0 0 1 1 0 0 0 0 0 0 -1 

 

,� = YD 
 [� = \  
 

States 
MPC Agent 1: 
 

x1  
 

x2 x3 x4 x5 
Corresponding state in the 
centralized plant 

x1  
 

x2 x4 x5 x6 
 

Outputs 
MPC Agent 1: 
 

y1  
 

y2 y3 y4 y5 
Corresponding output in the y1  y2 y4 y5 y6 

B1== 
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centralized plant  
 yx Max value=20 yx Mix value=0 
Perturbation variables (demands) 

MPC Agent 1: 
 

u9  
 

u10 u11  
Corresponding 
variable in the 
centralized 
plant 

d4  
 

d6 d5  

u Min value 
u Max value 

0.0 0.4 0.0 0.4 0.0 0.4 
 

Manipulated variables (Internal variables) 
MPC Agent 1: 
 

u1  
 

u2 u3  u4 u5 u6 u7 u8 
Correspondin
g variable in 
the 
centralized 
plant 

u1  
 

u2 u6  u7 u8 u9 u10 u11 

u Min value 
u Max value 

0.0 0.4 0.0 0.1 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.4 
Shared variables  

 

Goal: 3 
Prediction horizon (p):24 
Control horizon (m):1 
Initial State:  
MPC Agent 1: 
 

x1  
 

x2 x3 x4 x5 
Initial value 0 

 
3 5  0  5 

 

 

 

Perturbations (demands) 

 

Figure 13: Demands of MPC Agent 1 

  

Figure 14: Demands of MPC Agent 2 

Agent 2 

�� = Y= 
f� = g0 1 01 0 210 0 1     0 0 210 21 021 0 0     0021h ,� � Y= [� � \  

 
States 

MPC Agent 2: 
 

x1  
 

x2 x3 
Corresponding state in the 
centralized plant 

x3  
 

x7 x8 
 

Outputs 
MPC Agent 2: 
 

y1  
 

y2 y3 
Corresponding output in the 
centralized plant 

y3  
 

y7 y8 
 yx Max value�20 yx Mix value�0 
Perturbation variables (demands) 

MPC Agent 2: u6  
 

u7 
Corresponding 
variable in the 
centralized 
plant 

d8  
 

d3 

u Min value 
u Max value 

0.0 0.4 0.0 0.4 
 

Manipulated variables (Internal variables) 
MPC Agent 2: 
 

u1 u2 u3 u4 u5 
Corresponding 
state in the 
centralized 
plant 

u3 u4 u5 u10 u11 

u Min value 
u Max value 

0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.4 
  

Shared variables  
 

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

 

 

d4

d6

d5
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Goal: 3 
Prediction horizon (p):24 
Control horizon (m):1 
Initial State:  
MPC Agent 2: 
 

x1  
 

x2 x3  
Initial value 5 

 
10 20 

  
 

 

Cooperation of MPC-Agents 

   The cooperative interaction of MPC agents is a basic 
issue in the proposed approach. Three main actions are 
necessary to perform this cooperation: 

− To perform actions and provide data requiered by the 
Negotiatior Agent  

− To accept the value detemined by the Negotiator Agent 
of its internal shared variable. 

− To adjust the value of its control variables in order to 
coordinate the solution of the negotiation and solve 
with this the multivariable problem. 

 

Philosophy of the Negotiatior Agent algorithm  

   For the partitioning of the network purposes, in the 
distributed model the shared control variables have to be 
duplicated. This is done in order to provide each 
MPC-Agent involved in the relation with an internal 
representation of the shared variable.  

   The Negotiator Agent seeks to restore the connections 
broken in the distribution problem,  connecting what was 
divided  unifiying this dupplicate variables in just one as in 
the original model. Therefore, for the Negotiator Agent, this 
two control variables are taken as just one.  

   The philosophy of the negotiation algorithm proposed is 
to consider the shared variables not has a two diferent 
problems with conflicting goals but as one problem with 
just one goal, like in the centralized approach. The 
Negotiator Agent solves the optimization problem for these 
variable and communicate the result to the MPC-Agents at 
each sampling time. Since the MPC-Agents are able to 
cooperate,  the MPC- Agents will take the value, set it as a 
hard contraint in its respective internal control variables and 
recalculate the multivariable control problem. 

   The optimization of the Negotiator Agent algorithm is 
based on its experience and in maximizing the 

reinforcements received of every action taken in the past on 
similar situations. 

   This algoritm is based on Q-learning algorithm (see 
Figure 15), and adapted to be applied in dynamical 
environments. Next, the formulation of the algorithm is 
detailed.  

Formulation of the negotiation-learning problem  

− A set of Knowledge bases (Q-tables) 
− A communication protocol that allows him to have 

bi-directional communication with two MPC-Agents 
with shared control variables. 

− A negotiation algoritm 

 

Figure 15: Q-learning algorithm 

 

   The goal of the Negotiation agent is to detemine the 
optimal value of the set of shared variables V. Each element 
of the set V  is an optimization problem addressed 
individually by the Negotiator Agent and there is a 
Knowledge base for each one. 

   The formulation described below was applied to shared 
variables of the problem3. 

 

 

Q-Table 

   The Q-table represents the knowledge base of the agent, 
and it has a Q-table for each shared variable because each 
one can have diferent behaviour and even different goals. 

   For this problem two bidimentional Q-matrices were 
built. One dimention is for state and the other for the control 
action Q(s,a).  

                                                                 
3
 A definition of the RL elements mentioned in this formulation can be 

found in Annex 1. 
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States in the Q-table    

   The states (s) were defined based on the philosophy of 
the proposed algorithm. Therefore the state represents the 
global state of each sub-problem.This state is established in 
terms of the error of the output with respect to the goal. To 
determine the state MPC-Agents have to cooperate agreeing 
the internal value of Negotiated Variables.  

   The definition of the error that MPC Agents use is: 

i4 = -4jk4 
where i4 is the error, -4 the goal and k4  the output of the i 

variable.  

   The state is determined by: 

� = 1
2
1|i4�| l |i4�|3 

i4� is the error of the variable i of agent one, and i4� of the 
correspondent variable in agent two. This state is updated 
every sampling time. 

   Since the states are continuous, they have to be  
discretized for the application on the RL algorithm. In this 
case 100 discrete states, from 0 to 10 were defined. 

Actions in the Q-table  

   In this aproach, actions (a) are all the posible values that 
the shared variable can take. Since all the manipulated 
variables are set between 0 and 0.4 the determined 
discretization is 40 states from 0.0 to 0.4. So, the resulting 
table Q (s, a) is Q(100,40)      

Reward function 

   The reward function determines the reward of every 
action taken by the agent. In this case the reward function is: 

� � m 2 �  where m is a value ≥ than � 

Communication protocol 

 

   

 

 

  

 

Figure 15: Communication protocol 

Figure 15 shows a sequence diagram of the communication 
protocol designed for this application 

 

where: 

yx  is the output signal of the MPC Agent in the instant k 
ux  in the control vector of all the measured variables of  
the MPC Agent in the instant k  
iG is the error whith respect to the goal of the output yi, 
where yi is the output of the internal variable. 
Stx in the state of the plant in the k instant 
t is the sampling time 
p is the prediction horizon 
m is the control horizon 
gx is the goal 
v1 is the shared variable 1 
v2 is the shared variable 2 
per are the Perturbations 
k is the current time instant 
x can be 1 for Agent 1 or 2 for agent 2 
a1 is the procces of the negotiation algorithm 
a2 is the procces of the MPC Agent algorithm    
 
 
   The negotiation algorithm has two modes, the training 
(exploration) mode and the explotation mode  
 
 
 
 

8.1.3. Training (exploration) 
 
   As in any RL algorithm, the proposed architecture is 
based on the agent experience and the expected 
reinforcements. As richer the agent experience has been, as 
efficient the optimization algorithm will be. 
.  
 
 An off-line training was done in order to provide this 
experience to the Negotiatior Agent. First  exhaustive  
methods were applied, but the matrices obteined let many 
states without being visited. So, control actions determined 
using the centralized approach were used as initialization 
values for the agent training process. The following training 
algorithm summarizes the agent training problem 
developed: 
 

 
 
 
 
 
 

K+1 K+1 

(st2, t, p,m,g2,v1,v2,per,k 
) 

(st1, t, p,m,g1,v1,v2,per,k 
) 

(y2,u2 i�,st2 ) (y1,u1 i�,st1 ) 
a
1 

MPC Agent MPC Agent 2 Negotiator 
Agent 

a
2 

a
2 
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1. Set up the parameters and data of the MAMPC 
Architecture.  

a. Set the perturbations (demands) vector 
b. Set up a vector of the control actions taken by 

the shared variable in the centralized case. 
c. Set up the initial state of the plant 

2. Create MPCagent1 and MPCagent2 
3. i=1 
4. do  

a. Select i action for the shared variable of the 
action vector 

b. Send paramenters to MPCagent1 and 
MPCagent2 

c. Receive   i4� and i4� 
d. Calculate state (s) 
e. Calculate reward (s) 
f. Update Q-matrix 

n1�, �3 = � l 1o p 1n1�, �33 
5. While i ≤ vector of control actions length 
6. j=i 
7. Define number of iterations for training (iterations) 
8. do  

a. Select a random action 
b. Send paramenters to MPCagent1 and 

MPCagent2 
c. Receive   i4� and i4� 
d. Calculate state (s) 
e. Calculate reward (s) 
f. Update Q-matrix 

n1�, �3 = � l 1o p 1n1�, �33 
9. While i ≤ iterations 
10. End  

 
 
 
 
 
 
 
 
 
8.1.4. Explotation 

 

   In RL explotation phase the knowledge adquired in the 
exploration (and training) phase is used. (More details about 
exploration-explotation are given in Annex 1)  

   Explotation phase use the knowledge adquired in order 
to solve the MPC distributed problem through the MA 
system. 
 

   The explotation algorithm is the following: 
 
1. Load Q-matrices 
2. Load perturbations 
3. Load initial values of the plant of MPCagent1 and 

MPCagent2. 
4. Time (simulation time) 
5. Select a random action (a) 
6. do  

a. Send paramenters to MPCagent1 and 
MPCagent2 

b. Receive   i4� and i4� 
c. Calculate state (s) 
d. Calculate reward (r) 
e. Select next action � = max�r1n1�

s, �t33 
f. Update Q-matrix 

n1�, �3 � � l 1o p 1n1�t, �t33 

g. s�s’ 
h. a�a’ 

7. While i ≤ time 

 

 

 
8.1.5. Implementation 

 
   The MPC Agents were implemented in MATLAB and 
exported to Java with MATLAB Builder toolbox. The 
Negotiator Agent and the support classes were implemented 
in Java.   
 
 
 
 

8.1.6. Results 

   The results obtained using the decentralized MPC using 
MA are compared with the corresponding outputs of the 
centralized solution. Figure 16 and 18 presents the outputs 
of Agent 1 and 2, while Figure 17 and 19 present the same 
outputs obtained by the centralized MPC controller. 
 
     A more detailed comparison of the ouputs of the shared 
variables is shown in Figures 20,21,22,23. In this figures 
outputs (levels) of the tanks related to shared variables 
(tanks 1, 5, 7 and 9 of Figure 12 respectively) are compare 
whit the same outputs of the centralized case solve whit 
MPC.  
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Figure 16: Outputs of MPC Agent 1 

 
Figure 17: Outputs of MPC Agent 2 

 
Figure 18: Centralized outputs of the corresponding outputs of 

MPC Agent 1 

 
Figure 19: Centralized outputs of the corresponding outputs of 

MPC Agent 2 

 

 

 
Figure 20: comparison between MAMPC and centralized MPC 

solutions of tank 1 

 
Figure 21: comparison between MAMPC and centralized MPC 

solutions of tank 5 

 
Figure 22: comparison between MAMPC and centralized MPC 

solutions of tank 7 

 
Figure 23: comparison between MAMPC and centralized MPC 

solutions of tank 8 
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8.1.7. Conclusions 
 
 
   The results obteined suggest that the use of a distributed 
control architecture based on negotiation can converge to 
the centralized solution with an acceptable degree of 
approximation but benefiting from the decentralization 
properties. Even more, the application of learning 
techniques can provide the Negotiatior Agent the ability of 
prediction. Training of the negotiator can be made directly 
from a centralized MPC. In order to achieve optimization 
and even  prediction abilities, no model is needed by the 
negotiator. Data from centralized MPC is advisable but non 
essential. 
 

   Interaction between classes exported from MATLAB to 
Java were very efficient in this application. MATLAB 
allows to profit from the MPC toolbox and all the facilities 
to manage systems and matrices. 
 
   The use of Java will allow to use Jade for the Multi-agent 
implementation since Jade works in Java. Jade is Multi- 
agent lenguage that provides support to manage  agents and 
its interactions through a special platform called Jade RMA 
(Remote Agent Management) GUI. 
 
   The type and quality of the training in a very important 
issue in order to obtain an efficient optimization. Some 
relevant things to consider in order to improve the 
performance of the algorithm are: 
 
− The number of iterations in the off-line training is 

important to make more efficient the algorithm 
− To consider more control actions obtained from 

different operating scenarios in the training phase will 
provide more significant experience. 

− The effects of the variation of the parameter α have to 
be studied. 

− The interelation of the parameters in the prediction 
process for MPC Agents and Negotiator Agents have to 
be studied.  

− The discretization and the values of the actions and 
states that can be chosen from it are a key issue. 

− There is a compromise between exploration and 
explotation that can be implemented on line to enable 
the system adaptation capability taken that does not 
come from training but from exploring during the 
optimization, This compromise have to be studied. 

− The computational training cost is high (for one 
computer), so the parallel implementation in a MAS 
have to be studied. 

− Communication protocols for MAS have to be studied 
and tested 

− Aditional coordination methods for MAS have to be 
studied an tested. 

− Other RL algoritms (like Sarsa) can be adapted and 
proved for this architecture. 

− The effects of increasing the number and size of the 
partitions needs to be studied 

− The effects of increasing the number of shared 
variables needs to be studied. 

 

 

 

 

9. MATERIAL 

RESOURCES 
This work is part of the European project: Decentralized and 
wireless control of Large Scale Systems, WIDE (TREP 
FP-7INF-SO-ICT-224168) and it is developed at the Institut 
de Robòtica i Informàtica Industrial (IRI). Data of the case 
of study is provided by AGBAR who is also partner of the 
WIDE project. Other collaborators of the project will 
provide some models and control data of the centralized 
approach. Expenses of computer, publications and trips to 
related events will be cover by the founds of the project. No 
special requirements are needed.
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ANNEX 1: REINFORCEMENT LEARNING ELEMENTS AND PROBLEM DEFINITION (SUTTON & 

BARTO, 1998) 

 

Elements of Reinforcement Learning  

   Beyond the agent and the environment, one can identify 
four main subelements of a reinforcement learning system: 
a policy, a reward function, a value function, and, 
optionally, a model of the environment.  

   A policy defines the learning agent's way of behaving at a 
given time. Roughly speaking, a policy is a mapping from 
perceived states of the environment to actions to be taken 
when in those states. It corresponds to what in psychology 
would be called a set of stimulus-response rules or 
associations. In some cases the policy may be a simple 
function or lookup table, whereas in others it may involve 
extensive computation such as a search process. The policy 
is the core of a reinforcement learning agent in the sense that 
it alone is sufficient to determine behavior. In general, 
policies may be stochastic.  

   A reward function defines the goal in a reinforcement 
learning problem. Roughly speaking, it maps each 
perceived state (or state-action pair) of the environment to a 
single number, a reward, indicating the intrinsic desirability 
of that state. A reinforcement learning agent's sole objective 
is to maximize the total reward it receives in the long run. 
The reward function must necessarily be unalterable by the 
agent. It may, however, serve as a basis for altering the 
policy. For example, if an action selected by the policy is 
followed by low reward, then the policy may be changed to 
select some other action in that situation in the future. In 
general, reward functions may be stochastic.  

   Whereas a reward function indicates what is good in an 
immediate sense, a value function specifies what is good in 
the long run. Roughly speaking, the value of a state is the 
total amount of reward an agent can expect to accumulate 
over the future, starting from that state. Whereas rewards 
determine the immediate, intrinsic desirability of 
environmental states, values indicate the long-term 
desirability of states after taking into account the states that 
are likely to follow, and the rewards available in those 
states. For example, a state might always yield a low 
immediate reward but still have a high value because it is 
regularly followed by other states that yield high rewards. 
Or the reverse could be true.  

   Rewards are in a sense primary, whereas values, as 
predictions of rewards, are secondary. Without rewards 
there could be no values, and the only purpose of estimating 

values is to achieve more reward. Nevertheless, it is values 
with which we are most concerned when making and 
evaluating decisions. Action choices are made based on 
value judgments. We seek actions that bring about states of 
highest value, not highest reward, because these actions 
obtain the greatest amount of reward for us over the long 
run. In decision-making and planning, the derived quantity 
called value is the one with which we are most concerned. 
Unfortunately, it is much harder to determine values than it 
is to determine rewards. Rewards are basically given 
directly by the environment, but values must be estimated 
and reestimated from the sequences of observations an 
agent makes over its entire lifetime. In fact, the most 
important component of almost all reinforcement learning 
algorithms is a method for efficiently estimating values. The 
central role of value estimation is arguably the most 
important thing we have learned about reinforcement 
learning over the last few decades.  

   The fourth and final element of some reinforcement 
learning systems is a model of the environment. This is 
something that mimics the behavior of the environment. For 
example, given a state and action, the model might predict 
the resultant next state and next reward. Models are used for 
planning, by which we mean any way of deciding on a 
course of action by considering possible future situations 
before they are actually experienced. The incorporation of 
models and planning into reinforcement learning systems is 
a relatively new development. Early reinforcement learning 
systems were explicitly trial-and-error learners; what they 
did was viewed as almost the opposite of planning. 
Nevertheless, it gradually became clear that reinforcement 
learning methods are closely related to dynamic 
programming methods, which do use models, and that they 
in turn are closely related to state-space planning methods.  

  

The reinforcement learning problem 

     The Agent-Environment Interface  

   The reinforcement learning problem is meant to be a 
straightforward framing of the problem of learning from 
interaction to achieve a goal. The learner and 
decision-maker is called the agent. The thing it interacts 
with, comprising everything outside the agent, is called the 
environment. These interact continually, the agent selecting 
actions and the environment responding to those actions and 



 

presenting new situations to the agent. The environment 
also gives rise to rewards, special numerical values that the 
agent tries to maximize over time. A complete specification 
of an environment defines a task, one instance of the 
reinforcement learning problem.  

   More specifically, the agent and environment interact at 
each of a sequence of discrete time steps, t=1,2,…
time step t, the agent receives some representation of the 
environment's state, , where 
possible states, and on that basis selects an 

, where is the set of actions available 
in state . One time step later, in part as a consequence of 
its action, the agent receives a numerical 

, and finds itself in a new state, 
bellow diagrams the agent-environment interaction. 

 

The agent-environment interaction in reinforcement 
learning. 
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environment interaction in reinforcement 

   At each time step, the agent implements a mapping from
states to probabilities of selecting each possible action. This 
mapping is called the agent's 

where is the probability that 
Reinforcement learning methods specify how the agent 
changes its policy as a result of its experie
goal, roughly speaking, is to maximize the total amount of 
reward it receives over the long run.

   This framework is abstract and flexible and can be 
applied to many different problems in many different ways. 
For example, the time steps n
of real time; they can refer to arbitrary successive stages of 
decision-making and acting. The actions can be low
controls, such as the voltages applied to the motors of a 
robot arm, or high-level decisions, such as w
have lunch or to go to graduate school. Similarly, the states 
can take a wide variety of forms. They can be completely 
determined by low-level sensations, such as direct sensor 
readings, or they can be more high
as symbolic descriptions of objects in a room. Some of what 
makes up a state could be based on memory of past 
sensations or even be entirely mental or subjective. For 
example, an agent could be in "the state" of not being sure 
where an object is, or of havin
some clearly defined sense. Similarly, some actions might 
be totally mental or computational. For example, some 
actions might control what an agent chooses to think about, 
or where it focuses its attention. In general, actions ca
any decisions we want to learn how to make, and the states 
can be anything we can know that might be useful in making 
them.

ix 

At each time step, the agent implements a mapping from 
states to probabilities of selecting each possible action. This 
mapping is called the agent's policy and is denoted , 

is the probability that if . 
Reinforcement learning methods specify how the agent 
changes its policy as a result of its experience. The agent's 

to maximize the total amount of 
reward it receives over the long run. 

This framework is abstract and flexible and can be 
applied to many different problems in many different ways. 
For example, the time steps need not refer to fixed intervals 
of real time; they can refer to arbitrary successive stages of 

making and acting. The actions can be low-level 
controls, such as the voltages applied to the motors of a 

level decisions, such as whether or not to 
have lunch or to go to graduate school. Similarly, the states 
can take a wide variety of forms. They can be completely 

level sensations, such as direct sensor 
readings, or they can be more high-level and abstract, such 
symbolic descriptions of objects in a room. Some of what 

makes up a state could be based on memory of past 
sensations or even be entirely mental or subjective. For 
example, an agent could be in "the state" of not being sure 
where an object is, or of having just been "surprised" in 
some clearly defined sense. Similarly, some actions might 
be totally mental or computational. For example, some 
actions might control what an agent chooses to think about, 
or where it focuses its attention. In general, actions can be 
any decisions we want to learn how to make, and the states 
can be anything we can know that might be useful in making 
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