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NEGOTIATION IN DISTRIBUTED LARGE SCALE SYSTEMS:
A MULTI-AGENT MPC ARCHITECTURE

ABSTRACT

In the present work, a distributed control architecture for large
scale systems is proposed. This architecture is multi-agent
based. The model plant is divided in several partitions and there
is an MPC Agent in charge of each partition. MPC Agents
interact over a platform that allows them to be located physically
separated. One of the main new concepts of this architecture is
the Negotiator Agent. Negotiator Agents interact with MPC
Agents when they have common control variables. These shared
variables represent physical connections between partitions that
should be preserved in order to respect the topology of the
network.

The case of study in which the proposal architecture will be
applied and tested is the Barcelona water transport network. First
results of using the proposed methodology are based on a small
academical water network example.
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1. INTRODUCTION

Large Scale Systems (LSS) are complex dynamical
systems at service of everyone and in charge of
industry, governments, and enterprises. The
applications are wide. Examples of applications of
LSS in continuous domains are: power networks,
sewer networks, water networks, canal and rivers
networks for agriculture, etc. Other examples of
applications of LSS but in discrete domain are:
Traffic control, railways control, manufacturing
industry, etc.

The quality of management and control of this kind
of systems is crucial. Most of them are directly related
with the quality of life of people in cities and have
impact on the environment preservation. As for
example: sewer networks, metropolitan water
networks, canal and rivers networks for agriculture. If
inefficient control strategies are used in these systems
results might derive on: spills of contaminated water
to the field, the sea or within the cities, floods,
restrictions of water in the cities, bad quality of water,
unsatisfied hydric needs in agriculture etc. In other
types of LSS risks and consequences can be: pollution,
traffic unsafety, blackouts, etc.

Model Predictive Control (MPC), also known as
receding horizon control, is a control technique widely
use in industry [see (Qin & Badwell, 2000) (Qin &
Badwell, 2003) (Camacho & Bordons, Model
Predictive Control in the process Industry, 1995)]. It
has been also applied to LSS. Examples of
applications in sewer networks can be found in :
(Cembrano, Figueras, Quevedo, Puig, Salamero, &
Marti, 2002) (Cembrano, Quevedo, Salamero, Puig,
Figueras, & Marti, 2002) ; applications in water
networks are: (Cembrano, Wells, Quevedo, Pérez, &
Argelaguet, 2000) (Cembrano, Quevedo, Puig, Pérez,
Figueras, & All, 2005) .

But due to the increase of automatization of LSS,
complexity is also increasing. Such complexity is due
to the need of many sensors and actuators in a
dynamical non-linear environment. Additionally, LSS
are composed of many interacting subsystems.
Optimization of these systems requires restrictions to
assure safety and guarantee operational limits
satisfaction, cost reduction, etc. Finally, the increasing
size of the systems is another important issue. All
these problems are difficult to be overcome using a
centralized control structure due to robustness and
reliability problems and due to communications
limitations. For all these reasons, many distributed
MPC control have been developed and applied over
the last forty years (Scattolini, 2009). In (Venkat,

Rawlings, & Wrigth, 2005) the authors consider that
centralized MPC is widely used but unsuitable for
LSS and talk about the need of a distributed control
structure.

One of the main problems of distributed control of
LSS is how relations between partitions are
preserved. These relations could be pipes that
connect two different control zones of a decentralized
water transport network for example, or any kind of
connection between different control zones. When
these connections represent control variables, the
distributed control has to be consistent for both zones
and the optimal value of these variables will have to
accomplish a common goal. In the present work, a
Multi-Agent MPC architecture is proposed to deal
with the negotiation of these variables.

Although the proposed architecture is intended to
be general enough to be applied in any continuous
LSS (for discrete domain applications should be
adapted), for validation purposes, a case study will be
used based on the case of the Barcelona water
transport network. In the next section this case of
study will be presented.

The organization of this document is as follows:

Chapter 2 presents the state of art. In this chapter the
background and the current state of the main topics
related with this work will be explained. In particular
MPC, distributed MPC, negotiation, Multi-Agent
Systems, Reinforcement Learning and works that
relate some of this areas will be discussed.

In Chapter 3, the description and formalization of
the problem to be addressed are introduced. In Chapter
4 and 5 the objectives and contributions of the thesis,
respectively, are presented. In Chapter 6, the proposed
architecture is described. In Chapter 7, the work plan
will show the work done and the planning of the next
tasks. In Chapter 8, first results of using the
methodology presented in this proposal are based on a
small academic water network example.

1.1. Case of study

The objective of using a real case of study in this
work is to validate results and technical viability of the
proposed architecture. Although the solution obtained
by the proposed architecture and methodology has to
be efficient for the considered case, it has to be general
enough for being applied in any kind of continuous
LSS.

The case of study is the Barcelona water transport
network. The network is managed by the company



Aguas de Barcelona (AGBAR), a partner of the
European Project Decentralized and Wireless Control
of Large Scale Systems, WIDE, of which this work is
part of.

AGBAR not only supplies water to Barcelona city
but also to the metropolitan area (see data in the table
below). (WIDE - 224168 - FP7-ICT-2007-2,
Decentralized Wireless Control of Large-Scale
Systems)

Territorial extension 425 Km®
Drinkable water net 4.470 Km
Drinkable water production 237.7 hm®
Population 2.828.235
Metropolitan area of Barcelona — Water net (2006)

The sources of water are the rivers Ter and
Llobregat. Since 1976, the network has a centralized
tele-control system, organized in a two-level
architecture. At the upper level a supervisory control
system installed in the control centre of AGBAR is in
charge to optimally control the whole network by
taking into account operational restrictions and
consumer demands. This upper level provides the
set-points for the lower-level control system. This
optimizes the pressure profile to minimize losses by
leakage and provide sufficient pressure, e.g. for high
rise buildings. The system responds to changes in
network topology (ruptures), typical daily/weekly
profiles, as well as major changes in demand, etc.
(WIDE - 224168 - FP7-ICT-2007-2, Decentralized
Wireless Control of Large-Scale Systems)

The Barcelona water network is comprised of 200
sectors with approximately 400 control points. At
present, the Barcelona information system receives, in
real time, data from 200 control points, mainly
through flow meters and a few pressure sensors.

Sensors measurements are sent to the operational data
base of the telecontrol information system via
telephone XTC network or GSM radio using the
ModBus communication protocol. (WIDE - 224168 -
FP7-ICT-2007-2, Decentralized Wireless Control of
Large-Scale Systems)

This water network, as any other, is composed by
nodes, valves, pumps, tubes, and sources.

Figure 1 depicts the diagram of the Barcelona water
transport network. Each tank supplies water a demand
sector. The inputs/outputs of a tank are controlled
using valves/pumps depending on the elevation. The
state of the network are the tank levels/volumes of the
tanks, which need to be optimally manage to satisfy
the demands at the minimum cost without this
disrupting the water service. From the control point
of view, the control actions are the flow set points of
valves and pumps. It is assumed that there is a local
PID controller that controls the water pressure.
Demands are considered as measured perturbations.

In the past, different versions of this network have
been used as a case of study. First one is in the book
(Brdys & Ulanicki, 1994) and latter in (Cembrano,
Figueras, Quevedo, Puig, Salamero, & Marti, 2002)
(Cembrano, Quevedo, Salamero, Puig, Figueras, &
Marti, 2002) (Cembrano, Wells, Quevedo, Pérez, &
Argelaguet, 2000).

Recent work on centralized MPC applied to the
same network but with updated topology is (Caini,
Puig Cayuela, & Cembrano, 2009). A decentralized
approach of the same updated network is (Fambrini &
Ocampo Martinez, 2009) and an optimal
decomposition approach for the same net but in a
distributed MPC fashion is studied in (Barcelli, 2008).



di4

23

di 42 d24 d25 d39
D) Sin E E o
x1 x2 x23 x24 x25 x35 [@€ED)
ul uis u u24 u25.
1Beguesd. db x11 x14 Min Palloat iPalgja2 Pallejag x43
P wd S e | Ry £ o
lode 1 y106 - d52 ds3
X3 x4 x5 = ONode 2 400MGE e
© @ssoGy VPalkja7o L ey X7 g2y 430 d40 @ o cesovaL ) (e7sBEv
B @b P e Y
26 127 MasGuimbau2 allvidrera_ 041 Maig
-y Breere @
x
o wiskce ] scinonl  opus2 Cantag iCanGuetzd PapioZAGEAR| 42 x4 x45
7 p S o =) CETD
e = B B | [ e i wzg 907 u30d (D)
a (MasGuimbaut "0 Node 4
_ _ _ p o ), urz  Jvscunwan TORF Node 4 1 ol a5
a4 e = L o) | (Geval
ot ey (@) | (@D
)| G o= (D) w34 Y Grm) D% e
d7 u ™ vBonanov: L MinaClital iCerdMontforit Nallsnsane!
iCescapinal ut9 u20! w1 R icordA
? 1GanGuey 102 (CanGuey 105, iCanGuel AT |38 canani8 &
ot m “ T
" Py P 2 at =
> 4195TOR Kvatures. Node A 7 uds
13 x22 v Yoronsmia o A P
u7’ le 5 C150ALT. d58 iTorreBaro1 ds9
wd ut3 g1 Node3 e a6 5 T
Viadecans1 1475CC. o’ das 9 Roquetes. VTiniaiz00
o oro] [ PR <> a— & | ) %] Sl
O u86 D Terlontcada -
sl iEspluguos 10 Tecamel Venlonca canhut 960
Node 7 4 a0 eo ode &
oy X6 . u110 d61
u120 | Node 15 - ugs Impulsié. T < AportT _d6
D& u 7] =
ue7 aPousCAST g7y uss {Comeliaizo iColbolar Ehrr::ada /SifoTer
U8 a1 th R o ESIE12 o i a0 .
X67 iMasJove l>—> ut21 \_T VPousEstrella Node 9 ulid g2 o d 50
i c151BON
oscsst s w17
st s R vl ug o1 Nodes iz | o -
d85 E0GAVED @ uie || N gy
P Ui e FEmat e o
Wortomar G780 o * 482 83l a75 ugo o
iComelia10o ::-; aPouss uti2
— (- castioos o U10] wel) 1 capsons e 63 <51
acasTe 65 4100 icavas T 0 Node 11 PsgStioan . w2 @
— Ll u 71 ut16 onasta
o g O— D
e Nods 10 v A srzopom o Node 3 ust
R fmm”i?u‘ | gé x57
x66 w96 70 a7088E 1Guinarderat
o P wy = e 55 =
a4 [ E us5 uss wioa
as6 w6 ey moo w2 —— B O | >-O—{ e dos
—y [> m s g A oot
isJ05u s 58
s e B o)
w5 s 76 WnicTaspis -, B o
AportLL2 [ >———-— d8s d69 o) [anmo]
isipspt Node 14 vSu0Tot o5 mem d65
Legend
Infrastructures SUMMARY
<] 67 STATE VARIABLES
121 CONTROL ACTIONS
Source o Pumping  Valve
(Superficalor  Reservoir Den‘;and Distribution node * gyation 88 DISTURBANCES
Underground) sector 15 NODES

2. STATE OF ART

2.1. Model Predictive control philosophy

As it was mentioned before, Model Predictive Control
is a recognized powerful approach with proven capability
to handle a large number of industrial control problems.

The philosophy of MPC is well resumed in (Scattolini,
2009) when it says that the main characteristic of MPC is
to transform the control problem into an optimization one,
so that at any sampling time instant, a sequence of futures
control values is computed by solving a finite horizon
optimal control problem. Then, only the first element of
the computed control sequence is effectively used and the
overall procedure is repeated at the next sampling time
according to the so-called receding horizon principle. For
a more detailed explanation about MPC see the text book
(Camacho & Bordons, Model Predictive Control, 2004).

The main characteristics of centralized MPC are
(Negenborn, De Shutter, & Hellendoorn, Multi-Agent
model predictive control: A survey, 2004):

The centralized system model is given by a
(possibly time-varying) dynamic system of

constraints on inputs, states, and outputs.

The goal of the control problem is to minimize a
cost function. The control problem is stated as a
multiple-objective optimization problem that is
transformed to a single objective one using a
weighted approach.

The problem is solved by a single centralized
agent, the information set of which consists of
measurements of the physical system, and the
control action set of which consists of all
possible control actions. The agent solves the
problem with a three-step procedure (see
Figure 2):

1. It reformulates the problem of controlling
the time-varying dynamic system using a
time-invariant approximation of the system, with
a control and a prediction horizon to make
tractable the solution computation and a rolling
horizon for robustness.

2. It solves the reformulated control
problems, often using general, numerical
solutions techniques, while taking into account
constraints on control actions and states.

3. It combines the solutions to the
approximations to obtain a solution to the overall
problem. This typically involves implementing
the control actions found from the beginning of



the time horizon of the current approximation,
until the beginning of the next approximation.
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Figure 2: Example of conventional MPC.

In Figure 2, it can be noticed that the control problem is to
find actions wuy...us+N, , such that after N, steps, the
system behavior y approaches to the desired behavior y*.
In this example, y indeed reaches the desired set point y*.
(Negenborn, De Shutter, & Hellendoorn, Multi-Agent
model predictive control: A survey, 2004)

In Negenborn, (De Shutter, & Hellendoorn 2004) one
can find some advantage and disadvantages of the MPC
framework:

Advantages

- The MPC framework handles input, state, and
output constraints explicitly in a systematic way.
This is due to the control problem formulation is
based on the system model which includes the
constraints.

- It can operate without intervention for long
periods. This is due to the rolling horizon
principle, which enables that the agent looks
ahead to prevent the system from going in the
wrong direction.

- It adapts easily to new contexts because of the
rolling horizon use.

Disadvantages

- The approximation of the distributed control
problem with static problems can be of large
size. In particular, when the prediction horizon
becomes large, the number of variables of which
the agent has to find the value increases quickly.

- The resources needed for computation and
memory may be high, increasing more when the
time horizon increases. The amount of resources
required also grows with increasing system
complexity.

- The feasibility of the solution to distributed
control problem is not guaranteed. Solutions to
the distributed problem are not guaranteed to be
solutions to the original control problem.

2.2. MPC Taxonomy

There are several applications and new approaches of
MPC are continuously arising. Although it is a well
known and accepted control strategy, it is still an open
field of research.

Three main types of structures in which MPC is
applied can be found in the literature (See figure 3)

‘
Centralized
Decentralized
MPC < Fully connected
Distributed
Partially connected
\

Figure 3: MPC Taxonomy

Centralized MPC is the classical way of implementing
MPC strategy. In (Rawlings & Stewart, 2008) the authors
state that the move from distributed PID to MPC of small
systems was essentially a move towards centralized
decision making. This technology gained support because
the performance benefits were large.

But, as it was mention before, there are strong reasons
that leads MPC to decentralized or distributed
implementations.

According to (Scattolini, 2009), decentralized control
is based on considering the control input (z) and the
controlled output (y) variables are grouped into disjoints
sets. These sets are then coupled to produce
non-overlapping pairs from which local regulators can be
single-input  single-output or multivariable (locally
centralized) depending on the cardinality of the selected
input and output groups.

Many proposals has been suggested to define these sets
disjoint where they are not naturally in that way.
(Camponogara, Jia, Krogh, & Talukdar, 2002) (El Fawal,
Georges, & Bornard, 1998) (Van Breemen & De Vryes,
2001) (Barcelli, 2008) (Rawlings & Stewart, 2008). Other
line of investigation is to communicate overlapping sets.
This is called distributed control.



In distributed control structures, it is assumed that
some information is transmitted among the local
regulators, so that each one of them has some knowledge
on the behavior of the others. In the next section
distributed control implemented whit MPC approach is
discussed.

2.3. Distributed MPC

When the local regulators of a distributed control
structure are designed with MPC, the information
transmitted typically consists of the future predicted
control or state variables computed locally. In this way,
any local regulator can predict the interaction effects over
the considered prediction horizon. If the information
exchange among the local regulators concerns the
predicted evolution of the systems states, any local
regulator needs only to know the dynamics of the
subsystem directly controlled. On the contrary, if the
predictive control actions are transmitted, the local
regulators must know the model of all subsystems. In any
case, it is apparent that the transmission and the
synchronization protocols have major impact on the
achievable performance. (Scattolini, 2009)

Fully connected algorithms are the ones in which every
regulator has bi- directional communication with all the
other regulators. If any local regulator has communication
just with a subset of the others, then is partially connected

2.4. Distributed MPC taxonomy

In (Scattolini, 2009), a taxonomy of MPC approaches
based in the protocol used for exchanging information
among local regulators is provided. This taxonomy is
summarized in the following diagram:

P
Independent
Distributed Iterative
MPC
Algorithms Cooperative
Non-iterative
\

Figure 4: Distributed MPC Taxonomy

In iterative algorithms information is bi-directionally
transmitted among local regulator many times within the
sampling time. In non-iterative algorithms information is
bi-directionally transmitted among the local regulators
only once within each sampling time.

In iterative algorithms there is a sub- classification.
When each local regulator minimizes a local performance
index, it is said to be an independent algorithm, and when
they minimize a global cost function it is called
cooperative algorithm.

2.5. Cooperative vs independent algorithms.

Independent (non-cooperative) algorithms are widely
studied in game theory (much more widely used in
comparison with cooperative algorithms) and also applied
in MPC distributed control strategies (see an example of
application of min-max algorithm in (Jia & Krogh,
2002)). More details about cooperative games can be
found in (Fernandez Garcia, 2000)

As discussed in (Venkat, Rawlings, & Wrigth, 2005)
it is apparent that in iterative and independent algorithms
each local regulator tends to move towards a Nash
equilibrium, while iterative and cooperating methods seek
to achieve the Pareto optimal solution provided by an
ideal centralized control structure. However, Nash
equilibrium can be even unstable and far from the Pareto
optimal solution. So, specific constraints have to be
included in the MPC problem formulation to guarantee
closed-loop stability. (Scattolini, 2009)

As for the MPC algorithms published in the literature,
the state feedback method described in (Camponogara,
Jia, Krogh, & Talukdar, 2002) for discrete-time linear
systems belongs to the set of independent, noniterative
algorithms. A stability constraint is included in the
problem formulation, although stability can be verified
only a-posteriori with an analysis of the resulting
closed-loop dynamics. Nash equilibrium solutions are
searched in the independent, iterative and fully connected
methods developed in (Du, Xi, & Li, 2001) for
discrete-time unconstrained linear systems represented by
input—output models. (Scattolini, 2009)

There is a analogous classification in game theory of
distributed MPC taxonomy. Distributed algorithms
correspond to algorithms where there is exchange of
information between players. MPC iterative algorithms
correspond to dynamic algorithms, whereas MPC non
noniterative algorithms correspond to static algorithms.
MPC  independent  algorithms  correspond  to
non-cooperative algorithms and cooperative algorithms
are called cooperative as well.



2.6. Negotiation in
environments using MPC

cooperative

The seminal Tamura coordination method was
discussed in the book (Brdys & Ulanicki, 1994) even
before MPC was first introduced. This method is based on
using augmented Lagrangian to negotiate values on
overlapping sub-networks in distributed large scale
systems. Recent works have applied this method (EI
Fawal, Georges, & Bornard, 1998) (Gémez, Rodellar,
Vea, Mantecon, & Cardona, 1998) (Negenborn et all,
2008).

An interesting approach is presented in (Venkat,
Rawlings, & Wrigth, 2005), where an iterative,
cooperating method for linear discrete-time systems is
presented. In particular, the proposed approach
guarantees the attainment of the global (Pareto) optimum
when the iterative procedure converges, but still ensures
closed-loop stability and feasibility if the procedure is
stopped at any intermediate iteration. (Scattolini, 2009)

In (Rawlings & Stewart, 2008), an alternative
approach to solve the same problem was discussed. The
novelty involves maintaining the distributed structure of
all the local controllers, but changing the objective
functions so that the local agents cooperate.

2.7. Reinforcement Learning.

Learning is the incorporation of knowledge and skills
by an agent, leading to an improvement in the agent
performance (Busonui, De Shutter, & Babuska, 2005).
Learning is wused mainly in systems where the
environment is large, complex, open and time-varying.
That is because designing an agent behavior that takes
into consideration all the possible circumstances that the
agent may encounter is a very difficult, if not impossible,
task. Besides, openness and variation over time, implies
that even if such a behavior were designed, it would
quickly become obsolete as the environment changes.
(Busonui, De Shutter, & Babuska, 2005)

Due to difficulties in dealing with open and
time-varying environments, most multiagent learning
algorithms are designed for unchanging environments.
They typically involve some fixed learning structures that
are updated by a set of rules involving some fixed or
scheduled parameters. This kind of learning is called
“static” learning (Busonui, De Shutter, & Babuska, 2005).

By allowing the learning parameters or structures of
the static algorithms to adapt, the learning processes of the
agents should be able to regain their ability of handling

open and time-varying environments (Busonui, De
Shutter, & Babuska, 2005).

Note that adaptive learning is not a radically different
process from learning. It can be viewed as a kind of
“meta-learning” — that is, a special case of “learning how
to learn” (Busonui, De Shutter, & Babuska, 2005).

In the book (Sutton & Barto, 1998) Reinforcement
Learning (RL) is define as: learning what to do, how to
map situations to actions, so as to maximize a numerical
reward signal. The learner is not told which actions to
take, as in most forms of machine learning, but instead
must discover which actions yield the most reward by
trying them. In the most interesting and challenging cases,
actions may affect not only the immediate reward but also
the next situation and, through that, all subsequent
rewards. These two characteristics (trial-and-error search
and delayed reward) are the two most important
distinguishing features of reinforcement learning.

Reinforcement learning is defined not by
characterizing learning methods, but by characterizing a
learning problem. Any method that is well suited to
solving that problem is considered to be a reinforcement
learning method. The basic idea is to capture the most
important aspects of the real problem facing a learning
agent interacting with its environment to achieve a goal.
Clearly, such an agent must be able to sense the state of
the environment to some extent and must be able to take
actions that affect the state. The agent also must have a
goal or goals relating to the state of the environment. The
formulation is intended to include just these three aspects
(sensation, action, and goal) in their simplest possible
forms without trivializing any of them (Sutton & Barto,
1998).

Another key feature of reinforcement learning is that it
explicitly considers the whole problem of a goal-directed
agent interacting with an uncertain environment. This is
in contrast with many approaches that consider
subproblems without addressing how they might fit into a
larger picture. (Sutton & Barto, 1998)

A full specification of the reinforcement learning
problem in terms of optimal control of Markov decision
processes and a deeper explanation about the most
important RL topics can be found in (Sutton & Barto,
1998).

Although the applications of RL are typically static,
many control applications have been developed for
dynamical environments (Agostini & Calaya) (Martinez
& De Prada Moraga, 2003) (Tesauro, 2003). Even more,
there are some works that relate MPC and RL. In (Ernst,
Capitanescu, & Wehenkel, Reinforcement Learning Vs
Model Predictive Control: A comparison on a power
system problem, 2007) a comparison between both



approaches is made, and in (Ernst, Glavic, Capitanescu, &
Wehenkel, 2006) they are seen as complementary
frameworks.

An interesting paper about cooperative learning
applying RL in control is (Bakhtiari, Araabi, & Nili
AhmadAbadi, 2007). In the area of Distributed Artificial
Intelligent, papers about learning in cooperative
Multi-Agent systems whit RL are (Lauer & Riedmiller,
2000) (Claus & Boutilier, 1998) (Kapentanakis &
Kudenko, 2002). The Ilast one also talks about
coordination. Another application of RL for coordination
in Multi-agents systems is (Boutilier, 1999). In all those
papers, the term Multi-Agent is referring to agents in
Distributed Artificial Intelligence terminology. In the next
section a short description of these terms will be made.

2.8. Multi Agent Systems

The term agent has been used indiscriminately until
now in this work. In control, distributed and
decentralized systems are usually called Multi-agent
systems and their local controllers are called agents.

In RL, the controller or the software entity that performs
a RL algorithm is also called agent.

There is a branch of Artificial Intelligence called
Distributed Artificial Intelligence (IAD). This branch
arises as a result of the natural evolution of the systems
that could be found because they are more and more
complex, large and often heterogeneous.

The solution of problems of this nature under a
traditional scheme, involved the design of large and
complex algorithms that consume a very high level of
resources for calculation. It was about the 80s that it was
thought that small and simple programs that interact with
each other could considerably simplify the design and
development of these systems reducing the necessary
resources.

Many IAD researchers have defined the term Agent.
This term is still a controversial issue. In (Stan &
Graesser, 1996), the main agent definitions are presented
and explained as well as a taxonomy of autonomous
agents is provided. Next, some of these definitions are
presented.

The Maes Agent: "Autonomous agents are
computational systems that inhabit some complex
dynamic environment, sense and act autonomously in this
environment, and by doing so realize a set of goals or
tasks for which they are designed." (Stan & Graesser,
1996)

The IBM Agent: "Intelligent agents are software
entities that carry out some set of operations on behalf of a
user or another program with some degree of
independence or autonomy, and in doing so, employ some
knowledge or representation of the user's goals or
desires." (Stan & Graesser, 1996)

The Wooldridge and Jennings Agent: A hardware or
(more usually) software-based computer system that
enjoys the following properties:

- Autonomy: agents operate without the direct
intervention of humans or others, and have some
kind of control over their actions and internal
state;

- Social ability: agents interact with other agents
(and possibly humans) via some kind of
agent-communication language;

- Reactivity: agents perceive their environment,
(which may be the physical world, a user via a
graphical user interface, a collection of other
agents, the Internet, or perhaps all of these
combined), and respond in a timely fashion to
changes that occur in it;

- Pro-activeness: agents do not simply act in
response to their environment, they are able to
exhibit goal-directed behavior by taking the
initiative." (Stan & Graesser, 1996)

As a result of many years of research in this area,
important contributions have been made on theory,
methodologies, communications protocols, standards and
software tools that lead to the appearance of the Agent
Oriented Paradigm (AOP).

The AOP is widely used in software applications and
specially in Internet applications (for example
e-commerce). Other interesting applications in robotics
can be found in literature.

In control applications sometimes the terms of agent in
IAD and in control are not consistent although there are
some applications in terms of agents in the AOP way.
Examples of these applications are mention next.

In the paper (Maturana, Staron, & Kenwood, 2005)
new tools for developing MAS in distributed control
applications are described and a case of study of a
chilled-water system of a ship is presented.



Another, and more recent, application in distributed
control network of interconnected chemical reactor is
presented in (Tatara, Cinar, & Teymour, 2007)

2.8.1.Properties and Characteristics of the
Agents

In (Stan & Graesser, 1996) we can find the following
table that shows some properties of the agents.

2.8.2.Potential advantages of Multi-Agent
Systems

In (Busonui, De Shutter, & Babuska, 2005) one can
find some of MAs principal potential advantages over
centralized systems.

* Speed-up of the system activity, due to parallel
computation.

* Robustness and reliability, when the capabilities of the
agents overlap. The system is tolerant to failures in one or
several agents, by having other agents take over the
activity of the faulty ones.

* Scalability and flexibility. In principle, since MAS are
inherently modular, adding and removing agents to the
system should be easy. In this way, the system could adapt
to a changing task on-the-fly, without ever needing to
shutdown or to be redesigned.

» Ease of design, development, and maintenance. This
also follows from the inherent modularity of the MAS.

The potential benefits described above should be
carefully weighed with the simplicity of a centralized
solution, considering the characteristics of the task.

Property Other Names Meaning
Reactive (sensing and | responds in a
acting) timely fashion
to changes in
the
environment
Autonomous exercises
control  over
its own
actions
Goal-oriented pro-active does not
purposeful simply act in
response  to
the
environment
Temporally is a
continuous continuously
running
process
Communicative | socially able communicates
with other
agents,
perhaps
including
people
Learning adaptive changes its
behavior
based on its
previous
experience
Mobile able to
transport itself
from one
machine  to
another
Flexible actions are not
scripted
Character believable
"personality”
and emotional
state.

3. DEFINITION OF THE
PROBLEM

The standard MPC formulation is (Camponogara, Jia,
Krogh, & Talukdar, 2002):

in J(X(k), UCkY
xin J(X(R). U(R)

where
X(R)={x(k+1k),_ x(k+NIk)}
UCky ={u(KE),..u(k+N -1k)}
s.t.
x(k+i+UkR)=F(x(k+ilR)u(k+ilk)) (i=0,..N-1)

GIX(R),UCR)) <0

x(kl k) =x(k).



This formulation can be summarized as a series of
static optimization problems:

{SPc|k=0,12,... }, each of the form:
SPi: minJ (S)
N

s.t. G(S)<0
H(S)=0,

where S is the vector of the decision variables, including
state variables X and control variables U, over the
prediction horizon. The equality constraint in the problem
includes the prediction model and other equality
operation constraints. (Camponogara, Jia, Krogh, &
Talukdar, 2002)

Distributed MPC is a decomposition of SPx into a set

of M sub-problems, {SP | i =1,2,..., M}, and each
sub-problem is assigned to a different agent.
(Camponogara, Jia, Krogh, & Talukdar, 2002)

Figure 5: Distributed control system (Giovanini &
Balderud, 2006)

Figure 5 shows the structure of the distributed control
system problem. It can be seen how subsystems are
connected (they can be fully connected or partially
connected). These connections represent control variables
shared among the objective functions of two agents.

4. OBJECTIVES

— Todevelop a distributed control Architecture for
Large Scale Systems based on three main
concepts:  Negotiation-Cooperation-Learning.
As an answer to the distributed control problem
defined in Chapter 3.

— To conjugate Distributed Model Predictive
Control, Reinforcement Learning and the Agent
Oriented Paradigm as the basis of the proposed
approach.

— To prove technical feasibility of the proposed
approach.

— To provide a general methodology for the
application of the proposed architecture.

— To validate the proposed architecture applying it
on the Barcelona water transportation network.

— To contrast results against the centralized and
decentralized approaches applied to the same
case of study.

5. EXPECTED
CONTRIBUTIONS

As it was argued in the state of art (Chapter 2), as much
MPC, RL and AOP are powerful tools widely studied and
applied each one in their own area. Works have been
made relating MPC and RL but not in cooperative or even
negotiating environments. There is a very short
intersection between AOP and control and no intersection
at all of these three areas.

In the state of art, it was also shown how these three
fields have many things in common. One of the
contributions expected in this thesis is to select suitable
algorithms and tools of these branches and adapt them to
create an adaptive distributed control architecture capable
of performing negotiation-cooperation-learning actions
on a efficient communication platform.

In order to develop this efficient communication and
coordination it will be necessary to exploit the protocols,
standards and tools that the AOP offers.

Another expected contribution is to introduce the term
agent in the control language as a basic element of the
AOP and to combine suitable solutions between
distributed control and distributed Artificial Intelligence.

For unifying purposes one will define Agent as:

The basic entity of software that the AOP
uses to describe an element that has some level
of autonomy within a dynamic and complex
system. Besides, encapsulating its characteristics
and functionality, implements processes of
reaction and/or deliberation, as well as
communication and it is represented, from its
initial design, by means of a particular, proposed
or experimental, method of the AOP. The



functionality of the Agent is given by its
behaviors and its characteristics are represented
in its internal state.

The previous definition is analogous to the Object
definition of the Object Oriented Paradigm (OOP), in the
sense that, if we want to define what an object is without
being placed in specific context, anything is an object.
Nevertheless, within the computational and the OOP, the
object concept is well defined and known. In the same
way if we were not placed in any context, an agent can be
almost anything. Since the theory of agents is part of
Computer Science this is the suitable context to define the
term. Placed in this context, this definition remarks the
AOP and present it as a feasible solution for applications
to the diverse areas of the sciences and engineering.

6. PROPOSED
ARCHITECTURE:
MULTI-AGENT MPC

In this section, the proposed architecture is
presented. First, the concepts of partitioning of the plant
and partitioning of the optimization problem will be
defined for the aims of this work. Next, definitions of the
elements of the architecture will be made as well as the
structure of the architecture and its dynamics.

There have been detected two main problems in the
design process of a distributed system: the partitioning of
the plant and the partitioning of the optimization problem.

6.1. Partitioning of the plant.

Many proposals for partitioning the plant can be found
in the literature (Camponogara, Jia, Krogh, & Talukdar,
2002) (El Fawal, Georges, & Bornard, 1998) (Van
Breemen & De Vryes, 2001) (Barcelli, 2008) (Rawlings
& Stewart, 2008). For the implementation of the MAMPC
(Multi-Agent MPC) Architecture an intuitive partitioning
of the network can work. Nevertheless, if either a more
rigorous method or an intuitive one is used, there are some
considerations to take into account:

Plant partitioning considerations. The plant
partitioning  considerations  represent all  the

considerations to take in to account in the process of
partitioning of the plant in order to apply the MAMPC
Architecture. These considerations are:

1- The set of partitions must be a complete set of
partitions.

2- The physical topology of the network must be
respected. This means that the plant model
represents a large infrastructure that will not be
modified, not physically nor logically respecting its
topology configuration.

3- Minimum relations between partitions are desirable
(always fulfilling consideration 1).

4-  Generalization and specification are allowed. That
means that the model can be aggregated or
disaggregated for simplification or specification
without failing with that to consideration 1.

5- There is a compromise between the number of
partitions and the number of relations between them.
That means that it is not desirable to have too many
partitions in order to have to little relations, nor to
have few partitions with too many relations.

6- Economical, geographical, and management
considerations have to be taken in to account and the
result of the system partitioning must be approved by
the final manager of the system.

Definition 1. Complete set of partitions. Given a model
of the plant P, a complete set of partitions of P is:

P=s, Us,U..Us,
where s; s ...s, are partitions (sub-networks) of the plant.

It is said to be complete because the sum of all partitions
is equal to the original plant P. When the equation above
is not satisfied the set of partitions will be not complete
and therefore incorrect.

Definition 2. MAMPC Architecture. MAMPC is a
distributed control architecture that can be defined as:

y= {AN,P,W,V,,,U,,, b}

where:

A is the set of MPC Agents, N is the set of Negotiator
Agents, P is the Complete Set of Partitions of the plant, W
is the set of nodes, V},, is the set formed by all sets of
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Negotiation Variables where nn is the number of elements
in N, U,, is the set formed by all sets of Internal
Variables where na is the number of elements in 4 and b
is the Agent platform.

6.2.Partitioning of the Optimization
Problem.

In the state of the art it was mentioned that distributed
control works propose to partition the system via the
partitioning of the optimization problem. In this kind of
approach the resulting partitions have no geographical or
topological meaning and therefore for implementation the
control has to be achieved remotely.

In the present approach, the partitioning of the plant is
related to the partitioning of the optimization problem but
it is not the same.

Definition 3. Partitioning of the Optimization
Problem. The partitioning of the Optimization problem
for the MAMPC Architecture represents the way in which
the optimization problem is dealt with. It is divided in two
parts. The Agent Multivariable Problem and the Agent
Negotiation Problem.

Definition 4. The Agent Multivariable Problem. The
Agent Multivariable problem is the control optimization
of one partition of the system solved by an MPC Agent via
MPC of all the internal variables.

Definition 5. The Agent Negotiator problem. The
Agent Negotiator problem represents the optimal value of
the negotiation variables that can exist between MPC
Agents. This problem is solved by the Negotiator Agent
and the result is the optimal value for the relation as a
common goal. That means that agents cooperate in a way
that this common goal has priority over the goal of each
MPC Agent.

6.3.Elements of the MAMPC Architecture.

The main actors in MAMPC Architecture are MPC
Agents and Negotiators Agents. They interact over an
Agent platform. Other important entities are: negotiation
variables, internal variables and nodes. Next a definition
of each one is given.

Definition 6. MPC Agent. An MPC Agent is the entity of
the MAMPC Architecture that is in charge of one specific
partition of the system. There is one specific MPC Agent

for each partition of the problem. The MPC Agent solves
the agent multivariable problem for all of its internal
variables by means of MPC. Also an MPC Agent can
have negotiation variables, in this case the MPC Agent
will cooperate with one or more Negotiator Agents to
determine the optimum value for these variables. An
MPC Agent will cooperate with as many negotiator
Agents as many MPC Agents with negotiation variables
shares.

A is the set of MPC Agents defined by

A={ay,a, .., a5}
where {n > 1| na is the number od MPC Agents}

Definition 7. Negotiator Agent. A negotiator Agent is
the entity of the MAMPC Architecture capable to
determine the value of one or more negotiation variables
between two MPC Agents. In this negotiation, each MPC
Agent is arranged to cooperate so that the negotiator agent
solves an optimization of a common goal by means of an
algorithm based on Reinforcement Learning. A negotiator
Agent exists when two, and only two, MPC Agents have
one or more negotiation variables in common.

N is the set of Negotiator Agents defined by

N ={n;,ny, .., Npp}

where nn is the maximal possible value of the Negotiation
Agents that satisfies:

,.
I}
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Definition 8. Nontrade variables. The nontrade
variables are the independent control variables that each
MPC Agent has. By independent it can be understood that
a variable is not related to other MPC Agent.

U is the set of internal variables defined by

U={u,uy, .., Uy} WwhereU; € q

Definition 9. Negotiation Variables. A negotiation
variable between two MPC Agents exists when there is a
physical connection preserved between two partitions of
the system that represents a control variable. When this
occurs each MPC Agent cooperates by means of a
Negotiator Agent in order to determine a common
optimum value for this variables. An MPC Agent can
have many negotiation variables shared bilaterally with
one or more MPC Agents.

11



V is the set of negotiation variables defined by
V ={v,v, .., Vp}
Each Negotiator Agent deals with a subset of V.

Definition 10. Nodes. A node is the physical device
(commonly a computer) in which the agents are located.
In MAMPC Architecture, there is a node for each MPC
Agent. Nodes are communicated via LAN, WAN or
Internet.

W is the set of nodes defined by
W = {wy,wy, .., Wy }
where there is a node for each MPC Agent.

Definition 11. Agent Platform. All agents in MAMPC
Architecture, run over an agent platform. This platform
has to be installed and running in all nodes. It works as a
virtual machine providing the agents a homogenous
medium to communicate and, the user, a way to manage
agents. Agent platform is denoted by b.

6.4.Structure of the MAMPC Architecture

Once all the elements of the architecture were defined,
the structure of the proposed MAMPC Architecture is
presented.

It was mention before that the partitioning of the plant
and the partitioning of the optimization problem (section
6.1 and 6.2 respectively) are two different things in
MAMPC Architecture. The partitioning of the plant is
related to the structure of the resulting MAMPC system
and the partitioning of the optimization problem is related
to the internal design of MPC Agents and Negotiation
Agents. In order to explain how this and other new
concepts are related Figure 6 is presented.

In Figure 6, a MAMPC system with three partitions is
shown. This partitioning accomplishes the plant
partitioning considerations defined before. The resulting
structure of this MAMPC system is:

P = Sl V) Sz U S3
where P is a complete set of partitions

A ={ay, a5, a3}
N = {ny,n,,n3}
U, = {Cl: C2, C6,C9}

U, = {04' Cs, Cs,}

Figure 6: MAMPC system with three partitions

U; = {512' C13, C14,C15}

Viz ={cs¢7}
Viz = {ci0}
Vos = {cial}

W = {wy, wy, w3}

As can be seen in Figure 6, a; is the MPC agent in
charge of partition s, and _its set of internal variables is
U,. It has two sets of negotiation variables, V;, shared
with a, and V;; shared with az;. So a; will be
interacting with n; and n,, that are the negotiation
agents in charge of V;, and V3, respectively. a; will be
allocated in wy, a, in w, and so on.

In general, the structure of the plant partitioning can be
seen as shown in Figure 7 where each partition can have
one or more negotiation variables with other partitions or
do not have any. If this is the case, it is said to be internal.
The MAMPC Architecture can have partitions connected
and internal mixed (partially connected).
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Figure 7: Structure of the plant partitioning

Another important thing of MAMPC Architecture
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structure is how agents interact. The interaction is needed
only for negotiation of control variables between MPC
Agents. But this interaction can not be from MPC Agent
to MPC Agent. It has to be through a Negotiation Agent.
Figure 8 shows, in general, how this interaction is made.

Figure 8: Agent interaction structure of MAMAPC
Architecture.

OO,

Wi We Wh

+ +...+ Aﬂ

Figure 9 Assignation of agents, partitions and nodes

Figure 9 shows the general structure of the MAMPC
Architecture. Each partition has sensors and actuators
installed in the transport network. The local control is

achieved via PID. In a higher level, the Multi Agent
system solves the distributed optimization problem. There
is one MPC Agent for each partition of the plant and one
node for each MPC Agent. Communication of agents is
possible through the Agent Platform and custom physical
connections between computers are needed.

6.4.1. INTERNAL DESCRIPTION OF THE MPC
AGENT

The core of the MPC agent is a MPC controller. This
controller solves the multivariable problem of one
partition of the plant based in a model. This model
contains the set U, of the agent. Other important part of
the MPC Agent is it communication block. MPC Agents
can communicate in a sophisticated way because are
implemented using the Agent Oriented Paradigm. This
paradigm provides methods, standards and tools that
allowed good communication skills.

Figure 10: Internal architecture of the MPC Agent

6.4.2. INTERNAL DESCRIPTION OF THE

NEGOTIATION AGENT

The Negotiation Agent determine the optimal value of
aset V., .This set contains the shared variables of two, and
just two MPC Agents. The Negotiation Agent optimizes
them through a Negotiation algorithm based on
Reinforcement Learning. Each negotiation variable is an
optimization problem. This problem is solved as a whole
looking for the optimal value of the relation. The method
is based on the reinforces given at each step and on the
experience obtained. This experience is stored in a
knowledge base, one for each negotiation variable. As
MPC Agents, Negotiation Agents has it communication
block that uses to communicate with two related MPC
Agents.
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Negotiation Algorithm
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Figure 11: Internal architecture of the Negotiation Agent

6.5. DYNAMICS OF THE MAMPC
ARCHITECTURE

The Dynamics of the MAMPC Architecture can be
described in the following algorithm.

1. First Negotiation Agents applied a random
action (that is the same to say that determine a
random value for them negotiation variables)

2. The resulting values of the Negotiation Agents
are sent to the respective MPC Agents

3. MPC Agents fix as restrictions in the
manipulated variables all the received values and
calculates the rest.

4. MPC Agents calculates the error obtained as a
result of its negotiation variables.

5. MPC Agents send to the respective Negotiation
Agents the result of the computed control action.

6. Negotiation Agents applied the negotiation
algorithm and determine the new control action
of all the shared variables.

7. Go to 2 until stop by the user

8. End

6.6. BENEFITS OF THE PROPOSED
ARCHITECTURE

1. The use of MPC as principal control strategy will
bring many benefits, in one hand all its technical
benefits and in the other hand its acceptance in
industry.

2. The flexibility of the partitioning technique. This

flexibility allows to conjugate administrative,
geographic, topologic and economic criteria.

3. Negotiation is made from a cooperative point of
view, optimizing the relation between the agents in
order to obtain a global optimum for both agents.

4. In decentralization of highly connected large scale
systems, negotiation is a promising solution.

5. This architecture makes a future fault tolerance
implementation possible.

6. Plus, all other benefits of decentralization (speed,
scalability, simplicity in the maintenance of the
system, etc, etc )

The use of MAS will allow to:

1. Perform an appropriate  coordination and
synchronization of the agents

2. Provide a management and communication platform
for the MAS. This will allow to allocate MPC Agents
in different computers of a net.

3. To use appropriate tools of development and
standards

4. To use methods and tools of Analysis and Design in
order to make an appropriate formalization and
documentation of the system

The use of RL in the negotiation process will allow to:

1. Make the process of negotiation adaptive
. Learn from its own experience

3. Explicitly consider the whole problem of two
goal-oriented agents

4. Deal with a dynamical and uncertain

environment

Optimize whit or without a model

6. Connect the process of negotiation whit the one
of the control MPC, this because of
compatibilities found between them (see Chapter
2)

b
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2008-2009

7.

WORK PLAN

Task

Documentary
(MPC, LSS, MAS)

Investigation

Sep

7,

7

Oct Nov

Z 55
_ .

Dec Jen Feb Mar | Apr | May

Jun

Jul

Searching of negotiation-
cooperation algorithms

/ﬁ::

Investigation on RL

Choosing tools

Connection and tool configuration

7

4

Testing the connections

Implementation of static
Q-learning algorithm in Jade

Design  of the  proposed
Architecture

Design of the negotiation
algorithm

%

Application of the proposed
architecture in a toy problem

Analysis of the results

Writing and presentation of the
thesis proposal

N\

Events’

Work to do

Work done

! Events like congresses, summer courses and visits to labs. Here are represented in two months but in fact they will be
distributed in among summer of 2009 to summer of 2011. Events program so far: WIDE School (4-7 Jul, Siena Italy), NecSys09
(24-27 Sep, Venice, Italy )
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2009-2010

Task

Sep

Oct

Nov

Dec

Jen

Feb

Mzo

Apr

May

Jun

Jul

Formalization of the framework
MAS-MPC-RL

Application of the architecture to
the aggregated case of study

Experiments and analysis of the
results

Investigation and testing of
coordination techniques

2010-2011

Work to do

Work done

#

Task

Sep

Oct

Nov

Dec

Jen

Feb

Mzo

Apr

May

Jun

Jul

18

Implementation of coordination in
the case of study

20

Learning to negotiate: refinement
of the negotiation algorithm®

21

MAS coordination with multiples
negotiators study.

22

Application in case of study

23

Writing of the thesis

25

Finish

? Learning to negotiate: refinement of the negotiation algorithm: In this task, different algorithms of RL and tests will be
developed in order to refine the negotiation-learning algorithm. Effects of MPC and RL algorithm parameters will be studied and
a criteria for their tuning will be provided in the proposed methodology.
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8. PRELIMINARY
RESULTS

So far, the work done can be summarized as:

Validation of the technical suitability of the connection
of the selected tools. Connection, configuration and
testing of MATLAB, Java and Jade have been done
assuring with that the technical suitability of the proposal.

Research work on “Negotiation in distributed control
systems by means of the application of Reinforcement
Learning in Multi-Agent environments”. This work
was presented as final project of the subject “Artificial
Intelligence applied to Control and Identification”. It
summarizes some parts of the state of art of RL and MAS. A
static problem using the RL algorithm, Q-Learning, is also
presented. This algorithm was implemented in Jade and a
short description of this tool is also commented.

Development and application of the MA-MPC
Architecture described in the next section.

8.1. Development and application of
the MA-MPC Architecture

The proposed architecture was applied to a hypothetical
water distribution network with 8 states (tanks) and 11
control variables. This system was divided in two
cooperatives MPC Agents and a Negotiator Agent that
determine the value of the overlapping variables subset
that contains two shared control variables (see Figure 12).

The example choosen was the presented in (Barcelli, 2008)
where a centralized and a decentralized solution was
proposed.

The objectives of this case of study are:

— To refine the proposed architecture through the
identification of problems in the development process.

— To validate the connection between MPC and RL
frameworks.

—  To validate the technical feasibility of connection of the
chosen tools.

—  To detect relevant design issues to be considered in the
proposed architecture.

Partition 1
- - €D
u? uB
x1 x5 =

ull u10

ud us E )

7 e Partition 2
ud

2

Figure 12: Academic case of study and its partitioning

The proposed metodology can be divided in for phases

—  Analysis

—  Design

—  Training

—  Explotation

Next each phase will be detailed.

8.1.1. Analysis

In the analysis phase, the MA-MPC Architecture is
defined for this case of study. The main tasks to develop in
this phase are:

—  Definition of the optimization goals
—  Definition of the partition of the network

—  Definition of the architecture
—  Definition of restrictions and other considerations

Defining Goals

The control goal of the application presented in Figure 12
is to keep a volume in tanks around 3m’
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Defining the network partitions
The system is decomposed in two partitions:

S1={X1, X2, X4, X5, X6}
S2={X3 X7, X8 }

P={x1, X2, X3 X4, X5, X6, X7, X5, U1, Uz U3, Ug Us, Us U7 Ug, Ug
Ujo Uzz]
P=51U52U U1UU2

Thus, the partition is a complete set of partitions.

Defining the Architecture
In this step, the MA-MPC Architecture is defined for the
problem.

Starting from the definition of the architecture, every
element is defined as follows:

y= {ANP,W,V,,,U,,, b}
where:

A={a1, az}

N={ni}

EI{Wl, Wz}

V={u1o, ui1}

Ui={uy, uz, ue, uz, ug, us }
Uz={u3, us,us}

Defining restrictions and considerations
The maximum volume in tanks is 20m3, the control value
of the messured variables is from 0.0 to 0.4 except for the u;

that is from 0.0 to 0.1

The sampling time is 1 hour and the prediction horizon is
24 hours.

The demands are considered as measured perturbations.
They typically present a sinusoidal like behaviour throghout
the day.

8.1.2. Design

In the design process the sub-problems of every
MPC-Agent and Negotiator Agent are formulated. This

Bi=

formulation is based in the information collected in the
analysis phase.

Formulation of the MPC problem

In this step all the MPC parameters and requierements have
to be defined for both agents, such as:

—  The plant

— The measured, non-measured and manipulated
variables

— Limits and constraints

— References (goals)

—  Prediction horizon

—  Control Horizon

— Initial state

—  Perturbations models

All these data have to be set in all MPC-Agents. The
prediction and control horizon should be the same for all
MPC-Agents.

The definition of these parameters for this problem are:

Agent 1
Plant
A1=15
01 0 0 -1 0 01 0 0 O
10 -1 0 0 -1 00 0 0 O
o0 o0 -1 0 1 00 0 -1 0
o 0o 0o 0 1 010 -1 0 O
o001 1 0 0 0O O O -1
€ =1Is
D1=0
States
MPC Agent 1: X | X2 | X3 | X2 | X5

Corresponding state in the | x; | x» | x4 | X5 | X5
centralized plant

Outputs

MPC Agent 1: Vi |\ V2 |\ V3| Va| V5

Corresponding output inthe | y; | yo | yu | v5 | vs
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| centralized plant | | | |

yx Max value=20

yx Mix value=0

Perturbation variables (demands)

MPC Agent 1: | w9 | uro | unz
Corresponding | ds | ds | ds
variable in the

centralized

plant

u Min value 0.0 00| 0.0
u Max value 04| 04| 04

Manipulated variables (Internal variables)

u Max value

MPC Agent 1: | uz | uz | us | us | us | Us | U7 | us

Correspondin | us | uz | us | ur | us | uo | Uz | U

g variable in

the

centralized

plant

u Min value 00 | 00| 00| 00| 00| 00| 00 | 0o
04| 01| 04| 04| 04| 04| 04 | 04

Shared variables

Goal: 3

Prediction horizon (p):24

Control horizon (m):1

Initial State:

MPC Agent 1: X7 | X2 | X3

X4

X5

Initial value 0|3 |5

Perturbations (demands)

Figure 13: Demands of MPC Agent 1

25

05/ \ / \ ‘M,‘ \ /

-0.5
0

Agent 2
Az = 13
01 0 0 -1 0
B,={1t 0 -1 0 -1 0 O
0 0 1 -1 0 0 -1
C2 = 13
Dz = 0
States
MPC Agent 2: X1 | x2 | X3
Corresponding state in the | x5 | x5 | xg
centralized plant
Outputs
MPC Agent 2: Vi | V2 | V3
Corresponding output in the | y3 | y7 | ys
centralized plant
yx Max value=20
yx Mix value=0
Perturbation variables (demands)
MPC Agent2: | us | us
Corresponding | ds | ds
variable in the
centralized
plant
u Min value 00| 0.0
u Max value 04| 04
Manipulated variables (Internal variables)
MPC Agent 2: | ur | uz | us | us | us
Corresponding | usz | us | us | Uz | U1z
state in the
centralized
plant
u Min value 0.0 0.0 0.0 0.0 0.0
0.4 04 0.4 04 0.4
u Max value
Shared variables
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Goal: 3

Prediction horizon (p):24

Control horizon (m):1

Initial State:

MPC Agent 2: X7 | X2 | X3

Initial value 5 | 10| 20

Cooperation of MPC-Agents

The cooperative interaction of MPC agents is a basic
issue in the proposed approach. Three main actions are
necessary to perform this cooperation:

— To perform actions and provide data requiered by the
Negotiatior Agent

— To accept the value detemined by the Negotiator Agent
of its internal shared variable.

— To adjust the value of its control variables in order to
coordinate the solution of the negotiation and solve
with this the multivariable problem.

Philosophy of the Negotiatior Agent algorithm

For the partitioning of the network purposes, in the
distributed model the shared control variables have to be
duplicated. This is done in order to provide each
MPC-Agent involved in the relation with an internal
representation of the shared variable.

The Negotiator Agent seeks to restore the connections
broken in the distribution problem, connecting what was
divided unifiying this dupplicate variables in just one as in
the original model. Therefore, for the Negotiator Agent, this
two control variables are taken as just one.

The philosophy of the negotiation algorithm proposed is
to consider the shared variables not has a two diferent
problems with conflicting goals but as one problem with
just one goal, like in the centralized approach. The
Negotiator Agent solves the optimization problem for these
variable and communicate the result to the MPC-Agents at
each sampling time. Since the MPC-Agents are able to
cooperate, the MPC- Agents will take the value, set it as a
hard contraint in its respective internal control variables and
recalculate the multivariable control problem.

The optimization of the Negotiator Agent algorithm is
based on its experience and in maximizing the

reinforcements received of every action taken in the past on
similar situations.

This algoritm is based on Q-learning algorithm (see
Figure 15), and adapted to be applied in dynamical
environments. Next, the formulation of the algorithm is
detailed.

Formulation of the negotiation-learning problem

— A set of Knowledge bases (Q-tables)

— A communication protocol that allows him to have
bi-directional communication with two MPC-Agents
with shared control variables.

— A negotiation algoritm

Input: learning rate a, discount factor
L Q) 0, YeeXuel
2. ohserve initial state 2
3 loop
& u hiz) where his a policy derived from () (e.g,, e-greedy)
5 apply u, observe r and 2’
Q) = Q) ol ey Q) - Q)
Toaed
8: end loop

Figure 15: Q-learning algorithm

The goal of the Negotiation agent is to detemine the
optimal value of the set of shared variables V. Each element
of the set I is an optimization problem addressed
individually by the Negotiator Agent and there is a
Knowledge base for each one.

The formulation described below was applied to shared
variables of the problem’.

Q-Table

The Q-table represents the knowledge base of the agent,
and it has a Q-table for each shared variable because each
one can have diferent behaviour and even different goals.

For this problem two bidimentional Q-matrices were
built. One dimention is for state and the other for the control
action Q(s,a).

3
A definition of the RL elements mentioned in this formulation can be
found in Annex 1.
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States in the Q-table

The states (s) were defined based on the philosophy of
the proposed algorithm. Therefore the state represents the
global state of each sub-problem.This state is established in
terms of the error of the output with respect to the goal. To
determine the state MPC-Agents have to cooperate agreeing
the internal value of Negotiated Variables.

The definition of the error that MPC Agents use is:
& = Gi-Vi

where ¢; is the error, g; the goal and y; the output of the i
variable.

The state is determined by:

1
s =5 (leul + lea))

&;1 1s the error of the variable i of agent one, and ¢;, of the
correspondent variable in agent two. This state is updated
every sampling time.

Since the states are continuous, they have to be
discretized for the application on the RL algorithm. In this
case 100 discrete states, from 0 to 10 were defined.

Actions in the Q-table

In this aproach, actions (a) are all the posible values that
the shared variable can take. Since all the manipulated
variables are set between 0 and 0.4 the determined
discretization is 40 states from 0.0 to 0.4. So, the resulting
table Q (s, a) is Q(100,40)

Reward function

The reward function determines the reward of every
action taken by the agent. In this case the reward function is:

r =p —s where p is avalue >than s
Communication protocol

MPC Agent Negotiator MPC Agent 2

Agent
— | (Luwést)

(Y2,u2 €3,8t2 )

a
1

(stu,|t, E,m,gl,vl,Vz,per,< (s, t, p,m,ggvl,Vz,per,k

! i

Figure 15: Communication protocol

Figure 15 shows a sequence diagram of the communication
protocol designed for this application

where:

yx 1is the output signal of the MPC Agent in the instant £
u, in the control vector of all the measured variables of
the MPC Agent in the instant &

&, is the error whith respect to the goal of the output y;,
where y; is the output of the internal variable.

St, in the state of the plant in the £ instant

t is the sampling time

p 1s the prediction horizon

m is the control horizon

g, is the goal

v, is the shared variable 1

v, 1s the shared variable 2

per are the Perturbations

k is the current time instant

x can be 1 for Agent 1 or 2 for agent 2

al is the procces of the negotiation algorithm

a2 is the procces of the MPC Agent algorithm

The negotiation algorithm has two modes, the training
(exploration) mode and the explotation mode

8.1.3. Training (exploration)

As in any RL algorithm, the proposed architecture is
based on the agent experience and the expected
reinforcements. As richer the agent experience has been, as
efficient the optimization algorithm will be.

An off-line training was done in order to provide this
experience to the Negotiatior Agent. First exhaustive
methods were applied, but the matrices obteined let many
states without being visited. So, control actions determined
using the centralized approach were used as initialization
values for the agent training process. The following training
algorithm summarizes the agent training problem
developed:
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1. Set up the parameters and data of the MAMPC
Architecture.
a. Set the perturbations (demands) vector
b. Set up a vector of the control actions taken by
the shared variable in the centralized case.
c. Setup the initial state of the plant
2. Create MPCagentl and MPCagent2

3. =1
4. do
a. Select i action for the shared variable of the
action vector
b. Send paramenters to MPCagentl and
MPCagent2
c. Receive ¢ and ¢,
d. Calculate state (s)
e. Calculate reward (s)
f. Update Q-matrix
Q(s,a) =7+ (a x (Q(s,a))
5. While i < vector of control actions length

6. j=i

7. Define number of iterations for training (iterations)

8. do

Select a random action

Send paramenters to MPCagentl and
MPCagent2

Receive ¢;; and ¢,

Calculate state (s)

Calculate reward (s)

Update Q-matrix

IS

Mo Ao

Q(s,a) =7+ (a x (Q(s,2))

9. While i < iterations
10. End

8.1.4. Explotation

In RL explotation phase the knowledge adquired in the
exploration (and training) phase is used. (More details about
exploration-explotation are given in Annex 1)

Explotation phase use the knowledge adquired in order
to solve the MPC distributed problem through the MA
system.

The explotation algorithm is the following:

1. Load Q-matrices

2. Load perturbations

3. Load initial values of the plant of MPCagentl and
MPCagent?2.

4. Time (simulation time)
Select a random action (a)
6. do

hd

Send paramenters to MPCagentl and
MPCagent2

b. Receive ¢&; and ¢,
c. Calculate state (s)
d. Calculate reward (r)
e. Select next action
a= maxy(Q(s’,a"))

f.  Update Q-matrix

Q(s,a) =7+ (ax (Q(s',a")
g s=s
h. a=a’

7. Whilei<time

8.1.5. Implementation

The MPC Agents were implemented in MATLAB and
exported to Java with MATLAB Builder toolbox. The
Negotiator Agent and the support classes were implemented
in Java.

8.1.6. Results

The results obtained using the decentralized MPC using
MA are compared with the corresponding outputs of the
centralized solution. Figure 16 and 18 presents the outputs
of Agent 1 and 2, while Figure 17 and 19 present the same
outputs obtained by the centralized MPC controller.

A more detailed comparison of the ouputs of the shared
variables is shown in Figures 20,21,22,23. In this figures
outputs (levels) of the tanks related to shared variables
(tanks 1, 5, 7 and 9 of Figure 12 respectively) are compare
whit the same outputs of the centralized case solve whit
MPC.
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Outputs MPC Agent 1

9 20 T T T T T T
y1
8 - y2 H
A\
A :
7t //\\ y4 Ll
/A v
6l 4

Outputs MPC Agent 2

50
Figure 16: Outputs of MPC Agent 1 Figure 17: Outputs of MPC Agent 2
Corresponding outputs to the centralized case of the MPC Agent 1 Corresponding outputs to centralized case of MPC Agent 2
T T T T T T T T T 20 T T T T T T T T T
y1 —y3
7+ N ——y2|] 18 J7h
—y4 8
s 161
6 6]
141 1
50 0 . . . . . . . . .

50

Figure 18: Centralized outputs of the corresponding outputs of Figure 19: Centralized outputs of the corresponding outputs of

MPC Agent 1

Level of tank 1 whit MAMPC Architecture and whit Centralized MPC solution
3.5

25

0.5

[ 5 10 15 20 25 30 35 40 45 50

Figure 20: comparison between MAMPC and centralized MPC

solutions of tank 1

Lewel of tank 7 whit MAMPC Architecture and whit Centralized MPC solution

Figure 22: comparison between MAMPC and centralized MPC

solutions of tank 7

MPC Agent 2

Level of tank 5 whit MAMPC Architecture and whit Centralized MPC solution
9

0 5 10 15 20 25 30 35

Figure 21: comparison between MAMPC and centralized MPC

solutions of tank 5

Level of tank 8 whit MAMPC Architecture and whit Centralized MPC solution

101 1

\ //\
\
2 \ /
0 . . . . . . , . .
25 30 35 40 45

0 5 10 15 20 50

Figure 23: comparison between MAMPC and centralized MPC

solutions of tank 8
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8.1.7. Conclusions

The results obteined suggest that the use of a distributed
control architecture based on negotiation can converge to
the centralized solution with an acceptable degree of
approximation but benefiting from the decentralization
properties. Even more, the application of learning
techniques can provide the Negotiatior Agent the ability of
prediction. Training of the negotiator can be made directly
from a centralized MPC. In order to achieve optimization
and even prediction abilities, no model is needed by the
negotiator. Data from centralized MPC is advisable but non
essential.

Interaction between classes exported from MATLAB to
Java were very efficient in this application. MATLAB
allows to profit from the MPC toolbox and all the facilities
to manage systems and matrices.

The use of Java will allow to use Jade for the Multi-agent
implementation since Jade works in Java. Jade is Multi-
agent lenguage that provides support to manage agents and
its interactions through a special platform called Jade RMA
(Remote Agent Management) GUI.

The type and quality of the training in a very important
issue in order to obtain an efficient optimization. Some
relevant things to consider in order to improve the
performance of the algorithm are:

— The number of iterations in the off-line training is
important to make more efficient the algorithm

— To consider more control actions obtained from
different operating scenarios in the training phase will
provide more significant experience.

— The effects of the variation of the parameter a have to
be studied.

— The interelation of the parameters in the prediction
process for MPC Agents and Negotiator Agents have to
be studied.

— The discretization and the values of the actions and
states that can be chosen from it are a key issue.

— There is a compromise between exploration and
explotation that can be implemented on line to enable
the system adaptation capability taken that does not
come from training but from exploring during the
optimization, This compromise have to be studied.

— The computational training cost is high (for one
computer), so the parallel implementation in a MAS
have to be studied.

— Communication protocols for MAS have to be studied
and tested

— Aditional coordination methods for MAS have to be
studied an tested.

—  Other RL algoritms (like Sarsa) can be adapted and
proved for this architecture.

— The effects of increasing the number and size of the
partitions needs to be studied

— The effects of increasing the number of shared
variables needs to be studied.

9. MATERIAL
RESOURCES

This work is part of the European project: Decentralized and
wireless control of Large Scale Systems, WIDE (TREP
FP-7INF-SO-ICT-224168) and it is developed at the Institut
de Robotica i Informatica Industrial (IRI). Data of the case
of study is provided by AGBAR who is also partner of the
WIDE project. Other collaborators of the project will
provide some models and control data of the centralized
approach. Expenses of computer, publications and trips to
related events will be cover by the founds of the project. No
special requirements are needed.

24






10. BIBLIOGRAPHY

Agostini, A., & Calaya, E. Feasible control of complex
systems using automatic learning. in Proc. ICINCO
(Barcelona) 2005.

Bakhtiari, R., Araabi, B. N., & Nili AhmadAbadi, M. (2007).
A cooperative learning aproach to mixed performance
controller design: A behavioural viewpoint. Int. J.
Intelligent Systems Technologies and applications , 2,
137-160.

Barcelli, D. (2008). Optimal decomposition of Barcelona’s
water distribution network system for applying
dsitribuited Model Predictive Control. Master thesis .
Universitat Politecnica de Catalufia-IRI-Universita degli
Study di Siena.

Boutilier, C. (1999). Secuential Optimality and
coordination in Multi-Agent Systems. In Proceedings of the
Sixteenth International Joint Conference on Artificial
Intelligence .

Brdys, M. A., & Ulanicki, B. (1994). Operational control of
water systems, Structures, Algorithms and Applications.
Great Britain: Prentice Hall International.

Busonui, L., De Shutter, B., & Babuska, R. (2005). Learning
and coordination in dynamic Multiagent Systems.
Technical report, Delf center for Systems and control .

Caini, E., Puig Cayuela, V., & Cembrano, G. (2009).
Development of a simulation environmet for water
drinking networks: Application to the validation of a
centralized MPC controller for the Barcelona Case of study.
Barcelona, Spain: IRI-CSIC-UPC.

Camacho, E. F., & Bordons, C. (2004). Model Predictive
Control. Springer.

Camacho, E. F., & Bordons, C. (1995). Model Predictive
Control in the process Industry.

Camponogara, E., Jia, D., Krogh, B. H., & Talukdar, S.
(2002, Feb). Distributed Model Predictive Control. IEEE
Control Systems Megazine , 44-52.

Cembrano, G., Figueras, J., Quevedo, J., Puig, V., Salamero,
M., & Marti, J. (2002). Global control of the Barcelona
Sewerage system for environment protection. /IFAC.

Cembrano, G., Quevedo, J., Puig, V., Pérez, R., Figueras, J.,
& All. (2005). First results of predictive control
applications on water supply and distribution in
Santiago-Chile. Proceedings of the IFAC wor conference.

Cembrano, G., Quevedo, J., Salamero, M., Puig, V.,
Figueras, J., & Marti, J. (2002). Optimal control of urban
drainage systems. A case of study. Control Engineering
Practice (12), 1-9.

Cembrano, G., Wells, G., Quevedo, J., Pérez, R., &
Argelaguet, R. (2000). Optimal Control of a water
distribution network in a supervisory control system.
Control of Engineering Practice (8), 1177-1188.

Claus, C., & Boutilier, C. (1998). The dynamics of
Reinforcement Learning in cooperative multiagent
systems. In Proceedings of the Fifteenth National
Conference on Artificial Intelligence .

Du, X., Xi, Y., & Li, S. (2001). Distributed Model Predictive
Control for Large Scale Systems. Proceedings of the IEEE
American Control Conference, (pp. 3142-3143). Arlington,
VA, USA.

El Fawal, H., Georges, D., & Bornard, G. (1998). Optimal
control of  complex irrigation systems via
descomposition-coordination and the use of augmented
lagrangian. In |EEE (Ed.), in Proc. IEEE Int. conference
Systems, man and cybernetics, 4, pp. 3874-3879. San

Diego. CA.

Ernst, D., Capitanescu, F., & Wehenkel, L. (2007).
Reinforcement Learning Vs Model Predictive Control: A
comparison on a power system problem. [EEE
Transactions on Power Systems , 22.

Ernst, D., Glavic, M., Capitanescu, F., & Wehenkel, L.
(2006). Model Predictive Control and Reinforcement
Learning as a two complementary frameworks.

vi



Proceedings of the 13th IFAC Workshop on Control
Applications of Optimisation, (p. 6).

Fambrini, V., & Ocampo Martinez, C. (2009). Modelling a
decentralized Model Predictive Control of drinking water
network. Barcelona, Spain: IRI-CSIC-UPC.

Fernandez Garcia, J. R. (2000). Complejidad y algoritmos
en juegos cooperativos . Tesis Doctoral, departamento de
matemadtica aplicada, Universidad de Sevilla .

Giovanini, L., & Balderud, J. (2006). Game approach to
distributed MPC. Proceedings of the International Control
Conference. Glasgow.

Gdémez, M., Rodellar, J., Vea, F., Mantecon, J., & Cardona,
J. (1998). Decentralized adaptive control for water
distribution. Proceedings of the 1998 IEEE International on
systems, man and cybernetics, (pp. 1411-1416). San diego
Califoirnia. USA.

Jia, D., & Krogh, B. (2002). Min-max feedback model
predictive control for distributed control with
communications. Proceedings of the IEEE American
Control Conference, (pp. 4507-4512). Anchorage, AK. USA.

Kapentanakis, S., & Kudenko, D. (2002). Reinforcement
Learning of coodination in cooperative multi-agents
systems. Eighteenth national conference on Artificial
intelligence, (pp. 326-331). Edmonton, Alberta, Canada .

Lauer, M., & Riedmiller, M. (2000). An algorithm for
distributed Reinforecement Learning in cooperative
Multi-Agent system. Proceedings of the Seventeenth
International Conference on Machine Learning , (pp.
535-542).

Martinez, E., & De Prada Moraga, C. (2003). Control
Inteligente de Procesos wusando aprendizaje por
interaccién. XXIV Jornadas de Automdtica. Ledn, Spain:
Universidad de Ledn.

Maturana, P., Staron, R., & Kenwood, H. (2005, Ene-Feb).
Metodologies and tools for intelligent agents in
distributed control. IEEE Intelligent Systems , 42-49.

Negenborn, R. R. (2008). Multi-Agent Model Predictive
Control with applications to power networks. Engineering
Applications of Artificial Intelligence , 21, 353-366.

Negenborn, R. R., De Shutter, B., & Hellendoorn, J. (2004).
Multi-Agent model predictive control: A survey. Technical
report, Delf University of Technology, Delf center for
systems and control.

Qin, S. J.,, & Badwell, T. A. (2003). A survey of industrial
Model Predictive Control Technology. 11.

Qin, S. J., & Badwell, T. A. (2000). An overview of non
linear Model Predictive Control Applications. In Nonlinear
Predictive Control (pp. 369-392). Verlag.

Rawlings, J. B., & Stewart, B. (2008). Coordinating multiple
optimization-Based controllers: New opportunities and
challenges. Journal of process control (18), 839-845.

Scattolini, R. (2009). Architectures for distributed and
hiearical Model Predictive Control- A Review. Journal of
Process Control , 723-731.

Stan, F., & Graesser, A. (1996). Is it an agent or just a
program?: A taxonomy of autonomous agents. Proc. of the
third International workshop on Agent theories,
architectures and lenguages . Springer-Verlag.

Sutton, & Barto. (1998). Reinforcement Learning, An
introduction. London, England: MIT Press Cambridge
Massachussetts.

Tatara, E., Cinar, A.,, & Teymour, F. (2007). Control of
complex distributed systems with distributed intelligent
agents. Journal of process control (17), 415-427.

Tesauro, G. (2003). Extending Q- Learning to General
Adaptive Multi-gent System. In Advances in Neural
Information Processing Systems . MIT Press.

Van Breemen, A. N., & De Vryes, T. A. (2001). Design and
implementation of a room thermostat using an agent
based approach. Control Eng. Practice, 9 (3), 233-248.

Venkat, A. N., Rawlings, J. B.,, & Wrigth, S. J. (2005).
Stability and Optimality of distributed Model Predictive
Control. IEEE Conference on Decision and Control / IEE
European .

WIDE - 224168 - FP7-ICT-2007-2, Decentralized Wireless
Control of Large-Scale Systems. (n.d.). Retrieved May 29,
2009, from http://ist-wide.dii.unisi.it/

vii



ANNEX 1: REINFORCEMENT LEARNING ELEMENTS AND PROBLEM DEFINITION (SUTTON &

BARTO, 1998)

Elements of Reinforcement Learning

Beyond the agent and the environment, one can identify
four main subelements of a reinforcement learning system:
a policy, a reward function, a value function, and,
optionally, a model of the environment.

A policy defines the learning agent's way of behaving at a
given time. Roughly speaking, a policy is a mapping from
perceived states of the environment to actions to be taken
when in those states. It corresponds to what in psychology
would be called a set of stimulus-response rules or
associations. In some cases the policy may be a simple
function or lookup table, whereas in others it may involve
extensive computation such as a search process. The policy
is the core of a reinforcement learning agent in the sense that
it alone is sufficient to determine behavior. In general,
policies may be stochastic.

A reward function defines the goal in a reinforcement
learning problem. Roughly speaking, it maps each
perceived state (or state-action pair) of the environment to a
single number, a reward, indicating the intrinsic desirability
of that state. A reinforcement learning agent's sole objective
is to maximize the total reward it receives in the long run.
The reward function must necessarily be unalterable by the
agent. It may, however, serve as a basis for altering the
policy. For example, if an action selected by the policy is
followed by low reward, then the policy may be changed to
select some other action in that situation in the future. In
general, reward functions may be stochastic.

Whereas a reward function indicates what is good in an
immediate sense, a value function specifies what is good in
the long run. Roughly speaking, the value of a state is the
total amount of reward an agent can expect to accumulate
over the future, starting from that state. Whereas rewards
determine the immediate, intrinsic desirability of
environmental states, values indicate the long-term
desirability of states after taking into account the states that
are likely to follow, and the rewards available in those
states. For example, a state might always yield a low
immediate reward but still have a high value because it is
regularly followed by other states that yield high rewards.
Or the reverse could be true.

Rewards are in a sense primary, whereas values, as
predictions of rewards, are secondary. Without rewards
there could be no values, and the only purpose of estimating

values is to achieve more reward. Nevertheless, it is values
with which we are most concerned when making and
evaluating decisions. Action choices are made based on
value judgments. We seek actions that bring about states of
highest value, not highest reward, because these actions
obtain the greatest amount of reward for us over the long
run. In decision-making and planning, the derived quantity
called value is the one with which we are most concerned.
Unfortunately, it is much harder to determine values than it
is to determine rewards. Rewards are basically given
directly by the environment, but values must be estimated
and reestimated from the sequences of observations an
agent makes over its entire lifetime. In fact, the most
important component of almost all reinforcement learning
algorithms is a method for efficiently estimating values. The
central role of value estimation is arguably the most
important thing we have learned about reinforcement
learning over the last few decades.

The fourth and final element of some reinforcement
learning systems is a model of the environment. This is
something that mimics the behavior of the environment. For
example, given a state and action, the model might predict
the resultant next state and next reward. Models are used for
planning, by which we mean any way of deciding on a
course of action by considering possible future situations
before they are actually experienced. The incorporation of
models and planning into reinforcement learning systems is
a relatively new development. Early reinforcement learning
systems were explicitly trial-and-error learners; what they
did was viewed as almost the opposite of planning.
Nevertheless, it gradually became clear that reinforcement
learning methods are closely related to dynamic
programming methods, which do use models, and that they
in turn are closely related to state-space planning methods.

The reinforcement learning problem
The Agent-Environment Interface

The reinforcement learning problem is meant to be a
straightforward framing of the problem of learning from
interaction to achieve a goal. The learner and
decision-maker is called the agent. The thing it interacts
with, comprising everything outside the agent, is called the
environment. These interact continually, the agent selecting
actions and the environment responding to those actions and
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presenting new situations to the agent. The environment
also gives rise to rewards, special numerical values that the
agent tries to maximize over time. A complete specification
of an environment defines a task, one instance of the
reinforcement learning problem.

More specifically, the agent and environment interact at
each of a sequence of discrete time steps, t=1,2,...,n At each
time step t, the agent receives some representation of the
environment's state, St = & , where &is the set of
possible states, and on that basis selects an action,

a € Als ), where Al5¢lis the set of actions available
in state #t. One time step later, in part as a consequence of
its action, the agent receives a numerical reward,
P41 € ']?, and finds itself in a new state, ¥t-+1.Figure
bellow diagrams the agent-environment interaction.
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The agent-environment interaction in reinforcement
learning.

At each time step, the agent implements a mapping from
states to probabilities of selecting each possible action. This
mapping is call\ed the agent's policy and is denoted 7t,
where Ttl8: @i the probability that s = Uif 53 = 5.
Reinforcement learning methods specify how the agent
changes its policy as a result of its experience. The agent's
goal, roughly speaking, is to maximize the total amount of
reward it receives over the long run.

This framework is abstract and flexible and can be
applied to many different problems in many different ways.
For example, the time steps need not refer to fixed intervals
of real time; they can refer to arbitrary successive stages of
decision-making and acting. The actions can be low-level
controls, such as the voltages applied to the motors of a
robot arm, or high-level decisions, such as whether or not to
have lunch or to go to graduate school. Similarly, the states
can take a wide variety of forms. They can be completely
determined by low-level sensations, such as direct sensor
readings, or they can be more high-level and abstract, such
as symbolic descriptions of objects in a room. Some of what
makes up a state could be based on memory of past
sensations or even be entirely mental or subjective. For
example, an agent could be in "the state" of not being sure
where an object is, or of having just been "surprised" in
some clearly defined sense. Similarly, some actions might
be totally mental or computational. For example, some
actions might control what an agent chooses to think about,
or where it focuses its attention. In general, actions can be
any decisions we want to learn how to make, and the states
can be anything we can know that might be useful in making
them.
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