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1 Introduction

The deployment of service robots in urban environments is a challenging task
and remains as an open issue for the robotics community. The requirements
for a successful execution of such tasks are quite rigorous: robots, necessar-
ily, must behave naturally to other persons, since urban environments are
designed for people, and at the same time, safety must be considered as a
top priority. Thereby, social acceptance and human safety become the key
criteria for a social robot navigation in typically human environments, such
as streets, shopping malls or open spaces. These two requirements inevitably
entail a more intelligent and aware robot navigation if we want robots to be
accepted by people in their ordinary everyday.

Tackling the social navigation problem by only relying on a robust nav-
igation is not enough, although this topic has grown enormously in the few
past years. Thus, the understanding of human motion in urban environ-
ments is of extreme importance in order to adapt service robots to typical
human environments and not in the contrary. In addition, an adequate
measure of the performance should consider social acceptance and human
safety instead of time of execution, considered in other typical navigation
approaches.

All those arguments motivate the research of a unified social-aware frame-
work for the deployment of social robots in urban environments, that rec-
ognizes and identifies the social obligations for a new generation of robots
truly accepted in human urban settings.

A prerequisite to more social and intelligent robots boils down to the
development of new prediction tools, like a long-term prediction. We define
the term “human intentionality long-term prediction” as a tool to forecast
intentions or motivations that drive human behaviors.

There are a number of real world applications where motion intention-
ality can be applied, besides our original motivation. For example, human
motion scene surveillance, where we can detect abnormal trajectories mak-
ing use of prediction information, and thus identifying all those erratic tra-
jectories; human tracking, to obtain a robust tracking of human motion;
robot navigation in crowded human environments, in order to adjust robot
navigation to be aware of human motion; or social interaction, to improve
the social interaction between robots and humans. All these issues require
prediction information, preferably a long-term prediction.

In general, the analysis of future scenarios is typically done using short-
term prediction, which is a propagation of the current state into a certain
time horizon, but it has several limitations, specially appreciable on more
complex environments.
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2 Objectives

As stated before, the main motivation of the present Ph.D. thesis is the
study of an integrated social-aware framework for the deployment of social
robots in urban environments. This framework, will lead to the obtainment
of new methods to correctly deploy service robots, that were not considered
by state of the art approaches. The general social-awareness navigation
framework consists of prediction algorithms, social models of interaction,
navigation algorithms, planning techniques and performance functions that
take into account human acceptance and safety.

In brief, in this thesis we have the objectives to develop new methods in:

• Robot social-awareness navigation framework.

• Human motion trajectory predictor.

• Extended social force model.

• Robot social-awareness navigation methods.

The research in general of prediction techniques is one of the parts of
the framework, and thus, one of the objectives of the thesis that permit the
forecasting of a scene evolution in the future. More concretely the objective
is the study of new long-term human motion intentionality predictors based
on geometry criteria, and prediction of trajectories in urban scenarios.

In addition, one of the objectives of this Ph.D. thesis is the study of robot
models for motion interaction in both indoor and outdoor environments, be-
tween robots to persons and persons to persons. In order to model these
social interactions, we will make use of the Social Force Model (SFM) intro-
duced by Helbing [28]. Specifically, the proposed work presents a powerful
scheme for robot’s human-awareness navigation based on the social-forces
concept. Our objective is to completely describe a urban scene: static ob-
stacles, pedestrians and the social motion interactions that take place, and
that describe future pedestrian trajectories, as well as the impact produced
by the robot movement while navigating in such environments.

By making use of intentionality prediction, this thesis aims to obtain a
human motion model to cope with the current problems of robot navigation
in urban environments. That entails the integration of prediction informa-
tion and an extended social force model in addition to original approaches
to this issue. Due to the nature of human behavior, we need a set of tools,
aside from typical polls, to provide information of the performance of ser-
vice robots, which is a specially troublesome task when humans are part of
the system. To this end, we will study metric functions capable of measure
human responses for either robot navigation as well as robot companion
tasks.
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3 Expected contributions

This Ph.D. work seeks to contribute to the understanding of the deployment
of service robots in urban scenarios, paying special attention to robot safety
and to the acceptance among pedestrians.

To this end, we require new social tools to provide the required amount of
“intelligence” to the social robots behavior. We expect to do a contribution
proposing a new general long-term prediction algorithm.

In the present thesis project, we expect to enrich the Social Force Model
(SFM) introduced by Helbing [28] to model the social interactions under the
presence of a social robot, and thus we aim to obtain the robot-person inter-
action force parameters specifically suited for our robotic platform Tibi [49].

We will propose a powerful scheme for robot’s social navigation based on
the social-forces concept and the human motion predictor. A social aware
navigation is also well suited for a robot companion task and we expect to
contribute on this issue based on our general social navigation scheme.

Moreover, we expect to contribute with new metrics to evaluate in gen-
eral the robot’s performance, based on vital spaces and comfortableness cri-
teria. Since the verification of man-in-the-loop systems is fuzzy, an analytical
metric that justifies the behavior of social robots is more than desirable.

Additionally, we expect to apply of those techniques into the robot com-
panion task and contribute to the problem with an alternative new ap-
proach.

4 State of the art

A review of the current state of the art on the more significant contributions
is provided. This section is divided in three parts: human motion prediction,
social robot navigation, including the classical navigation approaches and a
review of the robot companion task.

4.1 Human motion prediction

Concerning the wide variety of human motion predictors in the literature,
two major human motion predictors (HMP) groups can be distinguished: a
geometric-based group and a place dependent-based group. For the latter
group, we have to learn the prediction model for each one of the environ-
ments where the HMP is used. The geometric-based group does not always
need to learn the human motion intentionality (HMI) for each specific envi-
ronment, although training is also required in one way or another.

Bennewitz et al. [4], propose a place-dependent method in which they an-
alyze a collection of people’s motion behaviors in an indoor environment by
a clustering technique that uses the Expectation-Maximization algorithm.
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Once they learn the classes of motion trajectories, they use these primi-
tive trajectories as patterns for human motion trajectory association, and
thus, inferring HMI. One of the main disadvantages of the place-dependent
methods, as we will discuss later, is the lack of flexibility on abnormal ob-
servations, that is, all those erratic trajectories due to a person stopping or
changing its destination. Our algorithm is able to quickly adapt to changes
in intentionality and perform successfully.

Vasquez et al. [59] cluster different motion patterns by a dissimilarity
measure which allows the use of pairwise clustering algorithms in order to
group observed trajectories into patterns. Chen et al. [8] propose a cluster-
ing method and three different prediction strategies based on the quality of
the matching.

Using heuristics and geometric criteria, Foka et al. [19] propose a geometric-
based method for human motion prediction that uses human motion inten-
tionality in terms of goals. Prediction is done by identifying final desti-
nations based on the instantaneous tangent angle in combination with a
grid-based probability assignation to all final destinations. It has been used
for on-line prediction for robot navigation in dynamic environments. An-
other geometrical approach proposed by Ferrer et al. [16] predicts future
trajectories by minimizing the variance of curvature of forecast paths.

A mixed approach, proposed by Ziebart et al. [64] uses both place de-
pendent and geometric criteria. They use a reward function to generate
the optimal paths towards a destination. This method can also be used as
a modeling of route preferences as well as for inferring destinations. This
method requires intensive place-dependent training, which is an important
drawback for the generalization of its use as a predictor.

Dee et al. [11] propose a vision-based prediction to infer intentionality,
characterized as the combination of obstacles and free space pixels under
the field of view of the person. Liu et al. [37] propose a method for long
term prediction using localization awareness.

4.2 Social robot navigation

Robot navigation is a mature field of robotics; there exist many works that
demonstrate that robots are able to navigate in many environments [7, 36,
30]. However, nowadays robots navigate in pedestrian areas, therefore, more
social-interactive approaches are required. Potential Field methods keep a
great synergy with the social forces as we will discuss later [31, 6]. The
proposed work is greatly based on this navigation approach but focusing on
the social acceptance and safety.

Because a mobile robot must be able to avoid obstacles in the environ-
ment where it is working, many different algorithms for obstacle avoidance
have been developed. Often, dynamic obstacles are handled only in a lo-
cally reactive manner, as static (non-moving). Some works that do account
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for vehicle dynamic include the Curvature Velocity Method [52]; the Dy-
namic Window Approach [21]; or randomized kinodynamic planning using
rapidly-exploring Random Trees [34]. Other algorithms consider obstacles
moving over time [32, 41]. Finally, several approaches consider both vehicle
dynamics and dynamic obstacles [18, 46]. While all of these algorithms may
be used to generate varying degrees of safe and effective obstacle avoidance,
none of them explicitly account for the pre-established social conventions
that people use when moving around each other.

On top of this, urban pedestrian areas present additional challenges to
the robotics community, such as narrow passages, ramps, holes, steps and
staircases, as well as the ubiquitous presence of pedestrians, bicycles and
other unmapped dynamic obstacles. This leads to new challenges in percep-
tion, estimation and control [35, 3], calling for additional research in robot
navigation technologies.

A number of methods have been developed to allow robots to navigate
around people in specific, typically non-generalizable tasks. Some of these
tasks include standing in line [43]; tending toward the right side of a hall-
way, particularly when passing people [45]; and approaching people to join
conversational groups [2]. Museum tour guide robots are often given the
capability to detect and attempt to handle people who are blocking their
paths [7, 44, 56]. In [48], a robotic wheelchair that can follow a person was
presented, but this method does not account for the social cues that the
human might use in a certain situation, nor does it allow for any sponta-
neous social interaction. Some researchers have begun researching how a
robot might adapt its speed when traveling besides a person, but they have
obtained mixed results, even in controlled laboratory settings [54].

Safety and reliability are key factors to the successful introduction of
robots into human environments. In most studies, safety is assured by pre-
venting humans from approaching the robots. But said methods are ren-
dered ineffective whenever the robot is designated to directly assist a human
individual. In [1], the notion of safety is studied in detail with respect to all
relevant aspects of Human-Robot Interaction.

4.3 Robot social-awareness navigation in an accompany task

In recent years, human-robot interaction has become a very active research
field, nevertheless, there is not extensive research on motion planning in the
presence of humans. Some methods have been developed to allow robots
to navigate around people while performing specific tasks. Some of these
tasks include tending toward the right side of a hallway [45] and standing
in line [43]. Museum tour guide robots are often given the capability to
detect and attempt to deal with people who are blocking their paths on a
case-by-case basis, [7].

Several groups have begun to address questions relating to plan com-
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plete paths around people, rather than relying on solely reactive behaviors.
In [51], a method for a robot to change its velocity near people has been
developed. While this method begins to address ideas of planning around
people, it does not directly consider social conventions. In contrast, in [53],
the HumanAware Motion Planner considers both the safety and reliability
of the robots movement and human comfort, it attempts to keep the robot
in front of people and visible at all times. However, the paths that the plan-
ner generates may be very unnatural due to its attempts to stay visible to
people.

In most works, unlike the present thesis project, safety is assured by not
allowing humans to approach robots. However, this method cannot be used
if the robot has to assist a human. In [1], the notion of safety is studied in
detail with all of its aspects in Human Robot Interaction.

Two different aspects of human’s safety have been studied in [65]: “phys-
ical” safety and “mental” safety. With this distinction, the notion of safety
includes physical aspects and psychological effects of the robots motions on
humans. Physical safety is necessary for the human-robot interaction. Nor-
mally, physical safety is assured by avoiding collisions with humans and by
minimizing the intensity of the impact in case of a collision.

Introducing the science of “proxemics”, Hall demonstrates how man’s
use of space can affect personal business relations, cross-cultural exchanges,
city planning and urban renewal [27]. A robot should comply to similar
conventions [20]. In human robot interaction, the spatial formation around
a robot has been studied in relation to initiating interaction [42]. A classi-
fication of people’s motion towards a robot was presented in [5]. In [55], a
robot that chooses a target person based on distance was developed.

Another approach that deals not only with safety but also implicitly
with comfort issues is the work on velocity along a planned trajectory [39].
In this research, the robot adapts its trajectory and its speed in order to
guarantee that no collision will occur in a dynamic environment. Although
the human is not considered explicitly, this method guarantees a motion
without collision by taking into account the dynamics of the environment.

Moreover, an increasing area of interest in the HRI field, is the develop-
ment of autonomous companion robots [10]. Furthermore, researchers are
making efforts on performing human-robot interaction in a more natural
way. A robot companion should detect the human operator and conduct
his/her commands [26].

Human-robot interaction research in the field of companion robots is still
new in comparison to traditional service robotics, such as robots serving food
in hospitals or providing specific security services. Therefore, prior research
in this particular field is relatively minimal [62].

Vaughan introduced a complete robot system which controlled the be-
havior of another intelligent system with the presence of variability, uncer-
tainty and noise [60]. The robots used in the Sheepdog Project demonstrated
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the ability to gather a flock of ducks and carry out maneuvers to safely de-
liver them to a predetermined point. The use of ducks instead of sheep made
it possible to conduct the experiment in a controlled environment. More im-
portantly, the behavior of flocks of ducks is considered by shepherds to be
similar to that of sheep; in fact, ducks are sometimes used to train sheep-
dogs due to their relatively slow movements. A generalized model of group
behavior was designed in order to identify animal-robot interaction. The hy-
pothesis posited that if the model accurately captures the basis of behavior,
then the system controlling the model should be able to control behavior in
the real world. Another works on this direction include [24, 25, 22, 23]

Most of the current research predominantly studies robots that partic-
ipate in social-human interactions as companions [29]. Many studies have
investigated people’s attitudes towards robots and their perception of robots.
In [9], it was shown that a seated person prefers to be approached by a robot
in a fetch-and-carry task from the front left or right direction rather than
frontally or from behind. Further research showed that there are other medi-
ating factors, which can impact this preference, such as a persons experience
with robots [33], gender [9] or in which part of the room she was standing or
sitting [61]. Satake et al. [50] proposed an approach model for robots which
should initiate interaction in a shopping mall.

In [47], a new perspective to the different uses and identities of a compan-
ion robot has been brought, moreover it also describes the advantages and
disadvantages of this type of companion. The “Robotic Butler/Maid” was
able to perform domestic task, but also caused difficulties in relationships
at home by being too efficient and making people feel redundant. In [10], a
human-centered approach was adopted in order to look into people’s percep-
tions and their desires for a companion robot. If social robots are going to
be used in office and domestic environments, where they will have to interact
with different individuals, they will have to be able to survive and perform
tasks in dynamic, unpredictable environments and they must act safely and
efficiently. The presence of human beings creates new problems for motion
planning and control, as their security and comfort must be considered.
The principal goal of the motion planner is to take human movements into
account in order to ensure their safety.

5 Human motion intentionality prediction

We proposed a new human motion intentionality indicator [17], denomi-
nated Bayesian Human Motion Intentionality Prediction (BHMIP), which is
a geometric-based long-term predictor. The new prediction indicator should
be capable of quantifying the human motion intentionality (HMI) implicit
on a trajectory with respect to the current position and orientation. This
intentionality indicator should capture the probability that a human tra-
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jectory reaches a destination point dm, which is a clear indicator for the
inherent intentionality. To achieve this, we define the variable φnm, which is
the angle between the current orientation of the target n and the vector to
the destination point dm, a relative measure of the orientation with respect
to a destination (see Fig. 1-Left: for clarification).

dm

ϕnm(t)

xn(t),θn(t)

Xn(t)

xn(t-1)

d2

ϕ1

xn(t)

d1

ϕ2

P(xn(t)|d1,xn(t-1))

xn(t-1)

P(xn(t)|d2,xn(t-1))

Figure 1: Left: The angle φnm is defined as the angle described by the
orientation vector of the target n at time t and the xn(t) → dm vector.
Right: Different probability functions shifted depending on their respective
destinations.

As it can be seen in Fig. 1, φnm(t) is the angle defined by the first
derivative of the current trajectory and the xn(t) → dm vector. By doing
this, φnm(t) becomes a measure relative to a destination, while θ(t) is a
global measure of the target orientation. This difference will allow us to
obtain a good characterization of the human motion intentionality.

We model the probability P (xn(t)|xn(t−1), dm) as a Gaussian function.
In Fig. 1-Right: is depicted an example of this probability function to two
destinations centered at the position xn(t).

Using the Bayes theorem we can compute the posterior probability that
the destination dm, given the current and previous positions of the trajectory
Xn(t):

P (dm|Xn(t)) =
P (Xn(t)|dm)P (dm)

P (Xn(t))
(1)

where P (dm) is the prior probability to reach the destination dm and the
joint probability P (Xn(t)|dm) can be formulated as:

P (Xn(t)|dm) = P (xn(1)|dm)

t∏

τ=2

P (xn(τ)|dm,xn(τ−1)) (2)

By replacing Eq. (2) into the Eq. (1), we can obtain a compact formu-
lation of the BHMIP.

A comparison of the BHMIP is done with other well known methods
for long-term prediction using the Edinburgh Informatics Forum pedestrian

8



database [40] and the Freiburg People Tracker database [38]. For a more
detailed discussion of the BHMIP intentionality predictor and the validation
of the model, see [17].

6 Extended social force model and navigation

We propose a novel robot social navigation for both indoor and outdoor
environments, where robots are expected to interact naturally in typically
human environments. In order to model the social interactions, we use the
Social Force Model (SFM) introduced by Helbing [28] or Zanlungo [63], but
these models only take into account a person to person interaction. We
propose to extend the SFM to a consider robot to person interactions. In
general, the formulation of the social forces is as follows:

Fint
i =

∑

j∈P

f int
i,j +

∑

o∈O

f int
i,o + f int

i,r (3)

where, P is the set of people moving in the environment where the human
interacts and O is the set of obstacles. In addition, repulsive effects from
the influences of other people, obstacles and robot in the environment are
described by an interaction force F int

i . This force prevents humans from
walking along their intended direction, moreover, it is modeled as a sum-
mation of forces either introduced by people pi, by static obstacles in the
environment o or the robot r. A diagram of the social forces correspond-
ing to the person pi is plotted in Fig. 2-Left:. The blue arrow represents
the force aiming to a destination and the orange arrows represent each of
the different kinds of interaction forces: person-person, object-person and
robot-person. The summation of all the forces is represented as the black
arrow Fi.

 

Figure 2: Left: Diagram of the social forces corresponding to the person pi.
Right: Simulation environment to obtain the θ parameters.

We propose a novel approach to the robot navigation issue, understood as
an instantaneous reaction to sensory information, driven by the social-forces
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centered at the robot. More precisely, we aim to obtain a short-term goal-
driven robot navigation ruled by the SFM. The combination of the social
forces, which include goal and interacting forces, describes the resultant force
governing the robot movement:

Fr = α f
goal
r,dest + γ F per

r + δ F obs
r (4)

Once calculated the resultant social-force, the robot behaves consequently
to these external stimuli and propagates its state according to this force
value. The method requires a new metric, inspired in the classical definition
of mechanical work: the social work to evaluate the navigation performance
in a social manner. In Fig. 2-Right: we can observe an example of a social-
navigation in a reduced urban environment and a set of virtual persons.
The outcome of each simulations depends on its inner parameters, and thus
we require a great number of them to obtain a good estimation of the θ

parameters by minimizing the social work carried out. Real experiments in
the BRL were also performed, for more information, see [14].

7 Robot social-awareness navigation in an accom-

pany task

The robot companion task is treated as a specific application of the social
navigation

In contrast to the social navigation, two different goals appear. Firstly,
a force makes the robot drive towards the predicted destination f

goal
r,dest.

Furthermore, the robot must approach the person who accompanies, and
hence a second goal pushes the robot to move closer to the person pi, f

goal
r,i .

The trade off of these forces in addition to the interacting forces, describes
the resultant force governing the robot movement:

Fr = α f
goal
r,dest + β f

goal
r,i + γ F per

r + δ F obs
r (5)

The set of parameters {α, β, γ, δ} is obtained, firstly by optimizing the
robot companion behavior extensively in thousands of simulations and after
by using an interactive learning approach with set of volunteers in a real
scenario.

We additionally formulate a performance metric that has the maximum
performance in the area of human’s field of view and where the interaction
between the robot and the human is maximal. Additionally, the area corre-
sponding to the back of the person is considered as a partial success, since
this area is less tolerable by humans. Finally, in the area described further
than three meters there is no interaction, and therefore its performance is
zero. Real experiments were carried out intensively, as can be seen in Fig. 3.
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Figure 3: Real-life experiments: Some examples of the conducted real ex-
periments. Top: Dabo accompanying a person to a desired goal. Bottom:
The same scene using the system interface.
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9 Working plan

The working plan includes past work and the expected future work, with
the aim of fulfilling the initial objectives. A number of seven tasks are
defined, most of them are self contained and only two of them are divided
into subtasks.

A brief description of each task is provided, but it is only intended to be
an orientation of the work required and the objectives of each task.

Task 1: Literature review

The literature review is an important task, that makes reference to the
reading and understanding of other works and publications related to the
different topics included in this thesis project. Accordingly, the lecture of
other works or papers is recursive throughout the thesis work, although
during certain periods of time, this tasks is carried out more intensively.
The literature review includes topics such as human motion prediction, robot
navigation, robot companion, which are the core research areas proposed in
this thesis project.

Task 2: Human motion intentionality prediction

This section is divided in two subsections, which are different approaches to
solve the same problem.

Task 2.1: Minimum curvature prediction

This task obtains a prediction algorithm making use of the curvature of
trajectories in order to obtain a motion prediction. It includes the formula-
tion of the predictor and the validation of the approach using a well-known
database.

Task 2.2: BHMIP prediction

The Bayesian human motion intentionality prediction is based on orienta-
tion features of the pedestrians and their relative positions in a certain scene,
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as explained in Sec. 5. This task includes the formulation of the approach,
a validation of the approach using two well-known databases and a imple-
mentation of the method, as a C++ library for real experimentation in other
tasks.

Task 3: Human motion trajectory prediction

This task seeks to obtain a formulation of the propagation of the trajectories,
given the intentionality information obtained in the previous task, and ad-
ditionally a C++ library implementation. A validation using two well-known
databases and experimentation in real scenes is required.

Task 4: Extended social force model

The Social forces model task is understood as the study, in general, of the
interaction that takes places in a urban environment between persons. We
aim to extend this model to take into account robot-person interactions.
This task additionally includes the implementation of a complete social vir-
tual scene, corresponding to the social-forces obtained, into a C++ library
and a simulated environment called “scene simulation”. This task addi-
tionally requires experimentation in real conditions to validate the extended
interaction model that we seek to obtain.

Task 5: Social robot navigation

In this task we require to integrate into a unified robot navigation framework,
most of the developed tools developed in this thesis, whic are described above
in the previous tasks. This integration entails a more “intelligent” behavior
than other classical robot navigation approaches.

Task 5.1: Reactive social navigation

A first approach to the social navigation is proposed as a simplified reactive
scheme. This task consists of the formulation of the robot navigation, a new
metric, inspired in the classical definition of mechanical work: the social
work to evaluate the navigation performance in a social manner. Simula-
tions using the “scene simulation” gives an initial estimation of the system
parameters, and afterward we need an implementation for our real robots
Tibi and Dabo (Sec. 10) aside from experimentation in a real environment
like the BRL.

Task 5.2: Social navigation planning

The second iteration of the social robot navigation, in which instead of a
reactive scheme, we obtain the robot trajectory considering a finite time
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horizon and prediction information. The task requirements, similar to task
5.1, consists of a formulation of the problem, an implementation in C++,
prior optimization in the “scene simulation”, and validation in real urban
environments like the BRL for the Tibi and Dabo robots.

Task 5.3: Smoothed navigation

The third iteration of the social navigation, where we specially consider
cinematic restrictions of the robotic platform and a smoothing of the robot
trajectory. The task requirements are the same as tasks 5.1 and 5.2.

Task 6: Robot social-awareness navigation in an accompany

task

The robot companion task, briefly described in Sec. 7, consists of a formula-
tion of the problem, in terms of social forces, a performance metric in order
to measure the approach. Additionally, we require an implementation in C++

of the method, a prior optimization in the “scene simulation” accompanying
a person, an interactive learning with persons in a real environment and a
validation in real urban environments like the BRL for the Tibi and Dabo
robots.

Task 7: Elaboration of the PhD thesis document and defense

The last task of the thesis project consists of the elaboration of the final
document and the preparation of the public defense of the thesis.
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Literature review 1

Human motion intentionality prediction 2

Minimum curvature prediction 2.1

BHMIP prediction 2.2

Human motion trajectory prediction 3

Extended social force model 4

Social robot navigation 5

Reactive social navigation 5.1

Social navigation planning 5.2

Smoothed navigation 5.3

Robot companion task 6

Elaboration of PhD thesis document 7

Figure 4: Work plan of the proposed work
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Figure 5: Left. Mobile Dabo robot platform used in the experiments.
Right. Barcelona Robot Lab, North campus of the UPC on the Left and
the FME Lab, South Campus of the UPC on the Right.

10 Resources

In order to conduct all the experiments and to test the approach presented,
we have used two twin mobile service robots developed for the URUS project
[58], called Tibi and Dabo (Fig. 5-Left), designed to work in urban pedestrian
areas and interact with people.

They are based on a two-wheeled Segway RMP200 platform, which
works as an inverted pendulum in constant balancing, can rotate on the
spot (nonholonomic), and has wheel encoders providing odometry and incli-
nometers providing pitch and roll data. To perceive the environment they
are equipped with two Hokuyo UTM-30LX 2D laser range sensors used to
detect obstacles and people, giving scans over a local horizontal plane at
40cm from the ground, facing forward and backward. A stereo Bumblebee
camera located in the eyes is used for computer vision purposes.

As social robots, Tibi and Dabo are meant to interact with people. They
have several interaction elements to perform more friendly interactions, as
a touchable screen, speaker, movable arms and head, and LED illuminated
face expressions. Power is supplied by two sets of batteries, one for the
segway platform and one for the computers and sensors, giving about a 5h
full working autonomy. Two onboard computers (Intel Core 2 Quad CPU @
2.66 and 3.00 GHz) manage all the running processes and sensor signals, and
a laptop is used for external monitoring. The systems run Ubuntu-Linux
and use a middleware called ROS, a software developmental environment
for robot system integration that provides a useful and large set of libraries
and tools. Fig. 5-Left shows one of the robots and some of its components.

The experimental areas where the experiments were conducted are the
BRL (Barcelona Robot Lab) and the FME (Facultat de Matemàtiques i
Estad́ıstica) lab, both outdoor urban environments located respectively at
the North and South Campus of the Universitat Politècnica de Catalunya
(UPC),

The BRL (Fig. 5-Right) is a large section of the campus that was outfitted
as an experimental area, covering over 10.000 m2, including six buildings
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and a square, with multiple ramps, staircases and typical obstacles such
as bulletin boards, bicycle stands, trashcans or flower pots. The FME lab
(Fig. 5-Right) consists of a tree area and a pavement area separated each
other by stairs.

11 References

References

[1] R. Alami, A. Albu-Schaeffer, A. Bicchi, R. Bischoff, R. Chatila,
A. De Luca, A. De Santis, G. Giralt, J. Guiochet, G. Hirzinger, et al.
Safe and dependable physical human-robot interaction in anthropic do-
mains: State of the art and challenges. In Workshop on pHRI -Physical
Human-Robot Interaction in Anthropic Domains, IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. Citeseer, 2006.

[2] P. Althaus, H. Ishiguro, T. Kanda, T. Miyashita, and H.I. Christensen.
Navigation for human-robot interaction tasks. In Proceedings of the
IEEE International Conference on Robotics and Automation, volume 2,
pages 1894–1900, 2004.

[3] A. Bauer, K. Klasing, G. Lidoris, Q. Mühlbauer, F. Rohrmüller, S. Sos-
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A. Sisbot, R. Alami, and T. Siméon. How may i serve you?: a robot
companion approaching a seated person in a helping context. In Pro-
ceedings of the 1st ACM SIGCHI/SIGART conference on Human-robot
interaction, pages 172–179. ACM, 2006.

[10] K. Dautenhahn, S. Woods, C. Kaouri, M.L. Walters, K.L. Koay, and
I. Werry. What is a robot companion-friend, assistant or butler? In
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 1192–1197, 2005.

[11] H. Dee and D. Hogg. Detecting inexplicable behaviour. British Machine
Vision Conference, 477:486, 2004.

[12] G. Ferrer, A. Garrell, F. Herrero, and A. Sanfeliu. Robot companion:
A social-awareness navigation approach using human motion prediction
and social forces. IEEE Transactions on Robotics, 2013, submitted.

[13] G. Ferrer, A. Garrell, and A. Sanfeliu. Robot companion: A social-force
based approach with human awareness-navigation in crowded environ-
ments. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2013, submitted.

[14] G. Ferrer, A. Garrell, and A. Sanfeliu. Social-awareness robot nav-
igation in urban environments. In European Conference on Mobile
Robotics, ECMR., 2013, submitted.

[15] G. Ferrer, A. Garrell, M. Villamizar, I. Huerta, and A. Sanfeliu. Robot
interactive learning through human assistance. In Multimodal Interac-
tion in Image and Video Applications, pages 185–203. Springer, 2013.

[16] G. Ferrer and A. Sanfeliu. Comparative analysis of human motion
trajectory prediction using minimum variance curvature. In Proc. of
the 6th Int. Conf. on HRI, pages 135–136, Lausanne, Switzerland, 2011.
ACM.

[17] G. Ferrer and A. Sanfeliu. Bayesian human motion intentionality pre-
diction in urban environments. Pattern Recognition Letters, to appear.

[18] A.F. Foka and P.E. Trahanias. Predictive control of robot velocity
to avoid obstacles in dynamic environments. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems,
volume 1, pages 370–375, 2003.

18



[19] AF Foka and PE Trahanias. Probabilistic Autonomous Robot Naviga-
tion in Dynamic Environments with Human Motion Prediction. Inter-
national Journal of Social Robotics, 2(1):79–94, 2010.

[20] T. Fong, I. Nourbakhsh, and K. Dautenhahn. A survey of socially
interactive robots. Robotics and autonomous systems, 42(3):143–166,
2003.

[21] D. Fox, W. Burgard, and S. Thrun. The dynamic window approach
to collision avoidance. Robotics & Automation Magazine, 4(1):23–33,
1997.

[22] Anaıs Garrell and Alberto Sanfeliu. Local optimization of coopera-
tive robot movements for guiding and regrouping people in a guiding
mission. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ
International Conference on, pages 3294–3299. IEEE, 2010.

[23] Anaıs Garrell and Alberto Sanfeliu. Model validation: robot behav-
ior in people guidance mission using dtm model and estimation of hu-
man motion behavior. In Intelligent Robots and Systems (IROS), 2010
IEEE/RSJ International Conference on, pages 5836–5841. IEEE, 2010.

[24] Anais Garrell and Alberto Sanfeliu. Cooperative social robots to ac-
company groups of people. IJRR, 2012.
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