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1 Introduction

In a control design problem, when the desired performance of the closed-loop system can be
expressed as the penalization of a cost function, then an optimization-based controller can be
implemented. One of the advantage of this control approach is that constraints of the system
can be considered. Among the optimization-based controllers, it is found the Model Predictive
Control (MPC). However, this control strategy is presented in an individual item for this pro-
posal, since this technique is wanted to be studied deeper than others. This controller is the most
important for the objectives in this thesis proposal since its characteristics make it not only an
optimization-based controller but also a predictive control strategy. In the same way, there are
optimization-based controller with game theory. This is the other principal topic that conforms
the global proposed idea and consequently it is presented separated as well.

Model Predictive Control (MPC) has had a significant impact on industry and it is certainly
one of the most implemented controllers in industrial applications [8]. It involves a prediction
model and an optimization problem to compute the control actions, becoming an efficient con-
troller that performs a pre-established and desired behavior. Other positive features of this
control strategy is that it can deal with multiple decision variables (MIMO controllers), and can
consider operational and physical constraints. However, one of the main issues of these con-
trollers in real-time applications is the computational burden to generate the control outputs.
This issue depends on how dynamics of the system are, how fast the dynamical behavior of the
system is, and how reduced the selected sampling time is. According to the fact that MPC can
manage a large number of variables in an easy way, this controller is appropriate to be applied in
large-scale complex systems where there are many states, control outputs, and constraints (e.g.,
energy systems, water systems, transport networks, among others).

In this regard, there are two particular critical points to face when designing an MPC and
which have been object of research in the last years. First, since the number of decision variables
and constraints in the optimization problem (for an established prediction horizon) is generally
large, then the problem is computationally costly to solve. Secondly, there are some imple-
mentation issues related to communication availability and reliability. In the traditional MPC
approach it is necessary to have the information of all system’s states in a centralized scheme in
order to compute the control outputs, which implies that it is necessary to send the decisions
to all actuators to complete the closed-loop control. In this sense, costs associated to commu-
nication channels and operational concerns such as delays, noise or the loss of packets must be
also considered. In order to mitigate computational burden, there are some immediate possible
solutions such as simplify the corresponding model for prediction, reduce the prediction horizon,
increase the sampling time to dispose of more time for computing the solution, or develop more
sophisticated solvers in order to reduce computational time. However, this versatility of MPC
might not be enough to solve this problem in certain design problems or in some complex sys-
tems. Another approach to solve this problem is the Non-centralized Model Predictive Control,
which allows to design a predictive control that operates in a decentralized or distributed way,
i.e., it is possible to have different decentralized or distributed elements in the system computing
different control actions based on local information. Moreover, when having different elements
computing control outputs, the computational costs are divided by having different hardware
processing the problem. On the other hand, when it is not required to have centralized informa-
tion, the reduction of communication channels is considerable which implies that the costs are
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1 INTRODUCTION

reduced and the reliability improves, having less elements that could suffer a fault.

In contrast, the non-centralizing task becomes challenging in cases where the network contains
coupled dynamics or coupled constraints. The former case implies to have a coupled prediction
model requiring information about the whole system in a centralized point, and also it implies to
have to compute all those variables in the optimization problem. Whereas the latter case implies
the consideration of the coupled constraint in the optimization problem, having to compute the
involved decision variables in the same solver algorithm. i.e., if there is a resource constraint
for all the control outputs, it is necessary to solve the problem in a centralized way or with a
centralized coordinator.

On the other hand game theory, originated from economic sciences, has spread throughout
other areas including control systems theory. The application of this theory in engineering has
emerged since this theory allows to model the interaction among different elements (agents),
which make individual local decisions pursuing a global and common objective where no agent
can improve its benefits (objective known as Nash equilibrium). Furthermore, evolutionary game
theory (originated from biology) describes the mentioned model of agents interacting, and also
considering a determined population structure, i.e., constraints in the interaction among agents.
From this point of view, this theory is suitable to design intelligent systems and controllers for
systems where there are local decision makers (local controllers) and achieving a global perfor-
mance and/or global goal under a specific structure, which is given by the topology of the system
(e.g., energy systems, water systems, transportation systems, etc). Game theory has become an
important and powerful tool for solving optimization problems (e.g., the Nash equilibrium cor-
responds to the extreme of a potential function satisfying the Karush-Kuhn-Tucker (KKT) first
order condition). Then some kind of optimization problems can be solved by finding a Nash
equilibrium for an appropriate designed game.

When designing a controller for a large-scale system, the structure of the system is relevant
since it determines the availability of information, the possible coupling in information or in dy-
namics, and constraints regarding information sharing. The structures can be taken into account
with evolutionary game theory and have been studied in [32]. The structures that a system de-
fine also play an important role in the evolution of the population. When the interaction among
agents is restricted to a structure, graph theory is used to describe the interaction subject to the
possible connections among elements.

The motivation in this doctoral thesis proposal is to work on these two different topics
(optimization-based control and evolutionary game theory), which are currently object of research
in the control systems area, and complement these theories each other to propose a solution for
non-centralized control systems design. There are two approaches to work with game theory that
will be studied in this thesis. In the first approach, game theory is used as the unique element
in the design of controllers. In this sense, game theory works as a tool for an optimization-based
control design. Moreover in the second approach, game theory is used to complement an existing
control strategy (e.g., coordinating different local elements of the controller, making dynamical
tuning in a multi-objective controller, designing observers, etc). In this case, game theory acts as
part of the optimization-based controller. This work proposes to study, develop and implement
optimization techniques based on evolutionary game theory, since this theory allows to model
a set of elements that have behavioral rules and that interact each other to achieve a global
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and common objective (e.g., the maximization/minimization of a cost function). In this way,
this theory could be adapted to solve engineering problems, in particular the large-scale complex
systems. Besides, by making an analogy, there might be an appropriate set up for populations to
be associated to partitions in a large-scale complex systems, and the fact elements act according
to individual rules can be developed to design non-centralized models (models in which these
decisions are computed by local controllers). Finally, the global objective is related to a cost
function satisfying a resource constraint.
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2 Background and Literature Review

The main interest of this work is to consider a centralized control problem as the one shown in
Figure 1, and then study different optimization tools to make it non-centralized. The design of
non-centralized controllers tries to divide the whole system into various sub-systems. Once this
division is achieved, then it is possible to decompose the main problem into sub-problems taking
advantage of how the system is, afterwards all these sub-problems are solved independently. Con-
sequently, each sub-problem solution is made by independent computational resources allowing
to achieve faster global computing in a specific sampling time.

System

Centralized
Control

Sub-system 1

Sub-system 2

Sub-system n

...

x1

u1

x2

u2

xn

un

Figure 1: Centralized configuration. The controller disposes of all the states of the system that
is composed by various sub-systems.

First, optimization-based control is presented and some optimization techniques to solve the
control design are mentioned. Although the MPC is part of the optimization-based controllers,
the MPC technique is presented independently since it can be solved with the techniques pre-
sented in the first part and because this technique is wanted to be studied deeper than others
since it also involves a prediction model. Then, the main structures for non-centralized (imple-
mented mainly in MPC) are presented, and the differences between decentralized and distributed
configuration in this topic are pointed out. A distributed scheme by using cooperative game the-
ory is shown. Afterwards, evolutionary game theory is introduced and how this theory can be
used in the solution of a constrained optimization problem and to design control systems.

2.1 Optimization-based control

The optimization-based control design, as its name suggests, is applied to systems whose desired
performance and behavior can be represented and defined by an optimization problem. Addi-
tionally, the optimization-based controllers allow to take into account constraints on the system.
Normally, the main objective in a control design is that the difference between the reference and
the system outputs tends to zero, however in applications there must be extra constraints besides
the final target, these constraints are given by a desired transitory behavior (e.g., smoothness or
velocity in response), economic criteria, etc.

Once the control problem is set up through an optimization problem, the method to solve the
problem is established. It is necessary to highlight that the nature of the system determines how
the optimization-based control could be solved. The method to solve the problem also depends
on how large the system is (how many variables are involved in the optimization problem), and
how fast dynamical behavior is since it must be taken into account the required computational
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times. For this specific thesis proposal, the considered systems are the large-scale complex sys-
tems, then the optimization-based controller technique is discussed next.

In the simplest case, the large-scale complex system is composed by decoupled dynamical sub-
systems and the control objective as the constraints are also decoupled. For this simple case, any
optimization strategy may be applied in the solution. In general, the large-scale complex system
is composed by several sub-systems with a dynamical coupled behavior. Moreover, the control
objective may involve variables from all the sub-systems, and constraints can also be coupled, i.e.,
decision variables from different sub-systems compose a same constraint. An additional aspect
that determines the appropriate method to design an optimization-based control is the topol-
ogy of the system. The topology of the system helps to determine the information dependency
and availability, i.e., the topology of the system also exhibits the information network constraints.

This review focuses on non-centralized proposals. For example, [39] gives wide perspective for
coordination among optimization-based controllers that might help in the construction of non-
centralized structures. In [6] optimal distributed gradient methods are presented to solve resource
allocation problems (a specific well studied control problem over networks). Optimization-based
controllers are designed by using different optimization tools, for instance, in [38] a dual decom-
position for the design of distributed controllers is shown. In [21] an iterative learning control is
discussed based on Pareto Optimization.

Predictive control

MPC has been recognized as a controller with a very good performance since MPC contains
an optimization problem that describes the desired operational system behavior. Additionally,
the theory of MPC for linear systems is already formally developed and topics such as stability,
feasibility and optimality are well studied [22][9][40]. However, there are some current opened
research areas for MPC. Among these research areas, this thesis proposal focuses on the issues
of MPC applied to large-scale complex systems, non-centralized MPC structures and alternative
optimization techniques in the solution of this control design. These three preciously mentioned
aspects are tightly related due to the fact that the decentralized or distributed control schemes
are commonly applied for large-scale complex systems (e.g., tuning, state estimation), which can
be expressed as a composition of several sub-systems. In the same way, the study of optimization
techniques allows to propose different schemes and helps in the development of decentralized con-
figurations. Moreover, the increasing number of contributions for non-centralized MPC schemes
shows the importance of this topic in the control and automatic systems field [44][25][31].

In general terms, MPC uses a mathematical model of the system to calculate control actions,
while optimizing a cost funciton. MPC strategy is composed by three fundamental elements: i)
a cost function; ii) a prediction model; and iii) a computational tool to solve the optimization
problem subject to certain physical and operational constraints [22] [9]. This control technique
requires of a model system, then its performance is highly dependent on how well the model
represents the real (commonly non-linear) system dynamics. Secondly, the performance of these
controllers depends also on the availability of fast computational resources. In this regard, when
designing MPC for large-scale complex systems, it is challenging to take into account a detail
model of the dynamics since the number of states and coupling among elements in the system
might make the model very complex. As consequence of this, the computing for the MPC be-
comes more demanding.
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2 BACKGROUND AND LITERATURE REVIEW

Non-centralized MPC Schemes

Regarding non-centralized MPC, there have been proposed some decentralized and distributed
structures in the literature. The main difference between the decentralized and distributed
schemes, is that for the decentralized structure there are not communication among the local
controllers as it is shown in Figure 2, whereas in the distributed structure it is possible to have
partial information from other local controllers (but not about the whole system) to establish
a coordination as it is shown in Figure 3. Moreover, there are some cases in which it is possi-
ble to consider partial groups of communication among different local controllers. In this case,
these kind of controllers form a quasi-decentralized structure. The reason is that these control
structures can not be considered as a decentralized controller due to the fact information sharing
is allowed, neither a distributed control due to the fact that there could be local controllers
with absent external information. In this task of distributing or decentralizing, the system to
control is considered as a system composed by various sub-system that can be treated by local
controllers. In a general way the inconvenient at this stage when dividing the system into several
sub-systems, is that the resulting scheme is not a control problem design in which each part is
independent, i.e., it is not possible to solve the whole control problem by solving each division
of it as an independent control problem. This is because when modeling a system as the com-
position of various sub-systems, the sub-systems could be coupled/overlapped in different ways.

System

Local
Control 1

Local
Control 2

Local
Control n

...

Sub-system 1

Sub-system 2

Sub-system n

...

x1

u1

x2

u2

xn

un

Figure 2: Decentralized configuration. Local controllers dispose of the states of a sub-system but
does not have access to information from others.

Another important consideration to take into account is the different types of possible
coupling that sub-systems and/or local controllers can have in order to make an MPC non-
centralized. This means, that the non-centralizing process could be achieved easily depending
on the dynamical structure of the system and/or the cost function established in the MPC. This
type of coupling is considered since some proposed solutions only work for specific characteristics
and assumptions. Therefore, it is wanted to study these possible situations to establish a clear
framework for this research. The possible coupling cases are the following ones:

1. Dynamical coupling: when a system is divided into various sub-systems, the resulting
dynamical model shows that there is a coupling among states and/or control actions of
different sub-systems. In this regard, the subsystems are not dynamically independent.
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Figure 3: Distributed configuration. Local controllers dispose of the states of a sub-system but
does not have access to information from others. Additionally, local controllers share partial
information with other local controllers.

2. Cost function coupling: when the desired behavior is described by a coupled cost function,
i.e., the states of more than a sub-system can not be separated in the cost function and
consequently it is not possible to divide the control objective into different local controllers.

3. Constraints coupling: when there is a constraint that involves elements from different sub-
systems and consequently information from the involved sub-systems has to be available
at the same optimization problem.

4. Combined coupling: when more than one of the previous cases are presented in the same
control problem.

Decentralized MPC

The structure for the decentralized MPC reported in [7] divides the system as various sub-
systems. Each sub-system has an MPC that considers an optimization problem in which the
variables are given by the actual sub-system parameters and the actual control action, whereas
all the other elements in the system (i.e., control actions calculated by other sub-system MPC in
the system or coupled states from other subsystem) are considered as external disturbances. Then
at this structure, the local controllers do not exchange information each other. This approach
allows the computation of the control actions with partial information, but it is not the optimal
solution for the whole system (i.e., the solution is different from an MPC in which all the elements
in the system are used to compute the control actions). When considering other elements of the
system as disturbances, it is not taken into account the effects from other control actions that
affect the behavior of the total system, and the actual sub-system behavior. However, this
decentralized controller is appropriate in cases where there is not coupled conditions among the
sub-systems or when the influence of exogenous inputs is weak. However, the case in which there
are a dynamical coupling, in which it is not suitable to consider other elements of the system as
external signals has been studied in [14].

Distributed MPC

The distributed control configuration are supposed to have a better performance with respect to
the decentralized control configurations. This is because in the distributed schemes, the elements
in the system can communicate partially each other, for which a coordination to achieve a better
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result is possible. In literature, the distributed structures have different classifications depending
on how communication among elements is, and how the order of information requirements is
(i.e., there are configurations in which the communication is made in both ways since sharing
information is required, and others in which it is only required to have a one direction com-
munication). Distributed schemes are also classified depending on the cost function that each
element in the system takes into account (i.e., when in a local controller the global cost function
is considered and cases where each local controller has a different cost function in comparison
with other local controllers cost function). First, the different topologies according to the com-
munication direction is treated, and then the different types of configurations depending on cost
functions is discussed.

Two main distributed control configurations according to required information for local con-
trollers coordination are [30]: i) the sequential (serial) configuration and ii) the parallel configu-
ration. Regarding the sequential configuration, a local controller solves its optimization problem
and gives information to a second local controller. This second local controller that uses the
received information and its inherited information to solve its optimization problem. Then this
information is shared to a third local controller and so on. For the parallel configuration, a couple
of local controllers required simultaneously information from the other one and they optimize
the problem in parallel. These different configurations, in the same way as the different types
of coupling, allow to determine an appropriate approach to design the controller and to clarify
a framework for a proposed design methodology. For example, since the distributed control
configuration proposes that local controllers for sub-systems know information from other local
controllers, it is natural that most of the applications in distributed MPC schemes are in parallel
configuration, i.e., information is shared and all local MPC controllers optimize at time.

On the other hand, there is a classification for the distributed schemes with respect to the cost
function with which the local controllers make the optimization process. In the first case, the cost
function that the local controllers use is the same global function, this case is called cooperative
distributed control scheme; in the second case, the cost function that each local controller uses is
a local function and different from others, this case is called non-cooperative distributed control
scheme [25]. At this point, and owing that this work also proposes the use of game theory, it is
significant to highlight that the concept of cooperation from the non-centralized control scheme
point of view is different from the game theoretical approach. When a distributed configuration
is cooperative or non-cooperative, then it is defined the way in which the cost functions are se-
lected. On the other hand, in the coalitional game theory context the cooperation has a different
meaning.

In this proposal, the concepts of cooperation and non-cooperation will be used in the
sense of the game theory context. Then, the way in which local controllers consider the
cost functions is defined explicitly by saying that the cost function is the global and the
same, or that functions are different and independent.

Distributed MPC schemes have been studied for some of the different types of coupling
introduced at the beginning of this section. For instance, in [16] a distributed MPC is proposed
with coupled states, and in [41] and [17] distributed MPC are proposed with coupling constraints
and decoupled dynamics. Finally, in [10] a distributed optimization-based for a hierarchical MPC
of large-scale systems with coupled dynamics and also coupled constraints has been proposed.
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MPC with Cooperative Games

The use of game theory in the solution of distributed MPC strategies is a relative recent topic
[13]. In [25] is shown that the cooperative game theory approach is appropriate to solve dis-
tributed MPC configurations where subsystems share the same cost function. In [24] is claim
that from the game theory, the useful approach is the cooperative game theory instead of the
non-cooperative game theory, since cooperation is needed to obtained a Pareto-optimal solution
instead of a Nash equilibrium.

Cooperative game theory [34] allows to model an interaction of players in which they can
cooperate each other by groups called coalitions. The general idea is to achieve the maximum
utility that the game can produced. For that, and as part of the Shapley axioms [34], each
player must receive a benefit according to what it contributes to the game and in this regard the
cooperative game theory allows to describe a solution in a fair way where more important players
receive more benefits. These concepts have been applied in the design of distributed MPC config-
urations since various local controllers for sub-systems can cooperate. There are other proposals
to work with game theory in the distributed MPC design. For instance, in [23] a reduced version
of a classical game called MIT beer game is used in order to design a distributed MPC. This
approach has been developed to find the optimal decision variables to maximize profit in supply
chains.

The main issue to work with cooperative game theory is that in order to compute the coali-
tions values and the Shapley value (indispensable in the cooperative game theory analysis), it is
necessary to make calculus for all the possible coalitions, different also from the order in which
this is formed. For this reason, calculus are combinatorial and the use of this theory in large-
scale complex system is not suitable. The computational burden to generate the solution in a
cooperative game, and the online algorithm to compute coalitions and Shapley value over time
varying conditions are still opened to be solved. As it has been shown in [24] and [23], systems
have to be of small-scale nature to apply these strategies.

2.2 Evolutionary Game Theory (EGT)

Evolutionary game theory is a branch of game theory that models, in a biological sense, the
strategic interaction that agents have in a population. Evolutionary game theory, documented
at first by Maynard Smith and George Price [27][45], allows to describe the agents’ behavior,
agents’ decisions and the evolution that a population has.

Suppose that the population is composed by a large and finite number of agents. It is
assumed that each agent is programmed to behave in a particular way (this behavior is repre-
sented by a strategy). Then, there is a set of n available strategies in the population denoted
by S = {1, ..., n}. The scalar xi is the proportion of agents in the population that chooses the
strategy i ∈ S. Moreover since xi is a proportion of agents, it holds that xi ≥ 0 and

∑
i∈S xi = 1,

representing all agents in the population. Then, the column vector containing the proportion of
agents selecting strategies is known as a state in the population denoted by x ∈ Rn, and the set of
possible population states is given by a simplex denoted by ∆ = {x ∈ Rn :

∑
i∈S xi = 1, xi ≥ 0}.

The tangent space associated to the simplex is defined as T∆ = {z ∈ Rn :
∑

i∈S zi = 0}. In the
agents interaction process each agent tries to improve its benefits or utilities given by a fitness
function that depends on the population state, i.e., the function fi : ∆ 7→ R returns the utility
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that the proportion of xi receives for selecting the strategy i ∈ S in the population. Finally,
F : ∆ 7→ Rn is the column vector of all fitness functions, and F̂i(x) = Fi(x) −∑j∈S xjFj(x) is
the comparison with the average fitness. The equilibrium of the population denoted by x∗ ∈ ∆ is
achieved when no agent in the population has an incentive to change strategy, i.e., that it is not
possible to obtain a better utility by changing strategy. Then a Nash equilibrium is achieved [29].

In [43], an analysis of the evolution of a population is formally described by using a well-
mixed population. A well-mixed population, is a population in which all agents playing different
strategies are well-mixed, i.e., if a portion of agents is selected from the population, that propor-
tion contains agents playing all strategies from S with the same probability. Consequently, when
an agent is chosen randomly from the population, the probability that the agent is selecting any
strategy from S is the same. This is studied as one possible population structure [32] in a graph.
The sequential description of the evolution process in a population is as follows:

1. An agent is selected randomly and receives a revision opportunity, i.e., receives the chance
to compare to another agent in the population in order to make a decision to improve its
benefits.

2. Once an agent has received this opportunity, then selects an opponent. At this point, when
it is considered a well-mixed population, the selected opponent could be any agent playing
any strategy S with the same probability.

3. The agent who has received the revision opportunity, compares itself with the opponent.
In this comparison, both fitness functions and proportion of agents playing both strategies
determine the result of the agent’s decision.

4. Agent has two possibilities, to select the current strategy or to change strategy to the
opponent’s one. This is an imitation process.

5. Process is repeated from step 1.

Population dynamics

In [43] a formal deduction of population dynamics from a well-mixed population (Table 1).

Table 1: Fundamental Population Dynamics

Dynamics Differential Equation

Replicator ẋi = xi

(
Fi(x)− ∑

j∈S
xjFj(x)

)
Logit Choice ẋi = exp(η−1πi)∑

k∈S exp(η−1πk)
− xi, η ∈ [0, 1]

BNN ẋi = [F̂i(x)]+ − xi
∑
k∈S

[F̂k(x)]+

Smith ẋi =
∑
j∈S

xj [Fi(x)− Fj(x)]+ − xi
∑
j∈S

[Fj(x)− Fi(x)]+

Projection ẋi = Fi(x)− 1
n

∑
j∈S

Fj(x)
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Among the classical fundamental population dynamics, the most studied ones are the replica-
tor dynamics [47], which have been proposed in [46]. The other fundamental dynamics converge
to the same equilibrium point and exhibits different properties, and different transitory events
which are object of research in this work.

Notice that since all the population dynamics are generated from a well-mixed population,
then the differential equations in Table 1 require full information, i.e., each portion of agents re-
quires information about the whole population to evolve. This fact makes the classical population
dynamics a centralized model.

Optimization with EGT

The main interest to work with the evolutionary game theory is related to its relationship with
the optimization theory, i.e., under some conditions over the functions that conform the game,
there are some properties that help in the solution of constrained optimization problems. This
conditions are related to a class of games know as full-potential games, in which the incentives
that agents have to make decisions can be represented by an unified continuous function. More-
over, another class of games that have been widely used in engineering applications is the stable
games. This feature implies, that the decisions that agents make, are made according to an
increment in the potential function.

The relationship between stable games [15] and full potential games [42] is that, the corre-
sponding full potential game for a concave potential function is stable. Moreover, it is known
that in a full potential game, the Nash equilibrium points correspond to the extreme points of
the potential function satisfying the Karush-Kuhn-Tucker first order condition, what is enough
to guarantee optimality if the potential function is concave [43].

Figure 4 illustrates the relationship between extreme points in a potential function with the
Nash equilibrium. Furthermore, it is shown that an optimization problem may be solved by
setting up a game and finding a Nash equilibrium. An interesting feature is that the solution is
unstable for the convex case, and stable for the concave case.

Control Design by using game theory

The game theory has been used in the modeling of interaction among elements making decisions.
A general and complete perspective of the game theory applied to solve engineering problems is
presented in [26]. The justification to design learning systems based on this theory is framed on
the characteristics that a Nash equilibrium has, i.e., when marginal values are equal then a Nash
equilibrium is achieved, and the fact that a Nash equilibrium corresponds to a extreme point of
a potential function.

Then, the interest to solve games with limited information has increased in the last years.
For instance, in [1] a method to achieve a distributed convergence to Nash equilibria by using
only local utility measurements has been proposed. Then, some works to solve constrained op-
timization problems using game theory were published. Among these work, [20] presents how
the design of a game should be in order to solve an optimization problem in a distributed way
and in [19] variation of the topology of a system is considered in which an optimization is being
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Figure 4: Potential function, and contour over the simplex in the population game. a) Convex
function and b) concave function.

executed with game theory. Moreover, evolutionary game theory has been used in the solution of
distributed optimization problems [36]. Once games can be designed and implemented to solve
optimization problems, the theory can be used in the control design as in [35]. In [4] an agru-
pation for the whole system is proposed and then a constrained optimization problem is solved
by using population dynamics, and [5] presents a respective distributed control design with this
method.

Classical population dynamics have been studied in [43] and in [11] it has been shown that
these population dynamics have passivity properties [18]. Furthermore, the population dynamics
characteristics of passivity has been used to demonstrate how these dynamics can control a
dynamical system in [37]. A different approach of only local information dependence in one of
the six fundamental population dynamics to design distributed controllers has been proposed in
[35].

Proposed approach

According to the state of the art, the problem of decentralizing and distributing optimization-
based controllers for large-scale complex systems is relevant within the control systems field.
This task is challenging in cases where there are coupling conditions. It has been shown that the
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2.2 Evolutionary Game Theory (EGT)

distributed optimization tools are significantly important to make an optimization-based con-
troller scheme non-centralized. On the other hand, cooperative game theory has been applied to
the design of this kind of systems.

It has been identified that:

1. It has been presented that the evolutionary game theory allows to solve an opti-
mization problem on-line. This proposal leads to design non-centralized controllers
by using games as an optimization tool and to explore the application of this tech-
nique in different non-centralized configurations that have not been studied from
a game theoretical perspective, e.g., decentralized sequential configuration.

2. It has been already proposed to design the utilities of a game to achieve a final
result. However, an open problem is to design utilities of a game or fitness func-
tions in a population game in order to obtain a desired transitory performance in
a controller.

3. Cooperative game theory has been already proposed in the non-centralized control
design to obtain a Pareto-optimal solution. However, this solution is not appro-
priate for large-scale complex systems and it is not an on-line solution. Then, it
has been identified that non-cooperative games can be used in the control design
in the full potential games framework. The state of the art has shown that this
approach solves optimization problems.

4. In general, different configurations for non-centralized control assume that the
states can be measured. Another issue to research is the estimation of states in
a non-centralized manner. Some works have treated this problem by consensus
theory [28][12]. This problem can also be set as an optimization problem and
consequently some solutions can be proposed by using game theory.

13



3 Objectives

3.1 General Objective

Design non-centralized optimization-based controllers for large-scale complex systems using dis-
tributed optimization methods, all of them based on evolutionary game theory (EGT).

3.2 Specific Objectives

1. Study the optimization methods proposed with population dynamics.

2. Determine the most suitable approach according to the General Objective of this thesis
proposal.

3. Select the most convenient control methodology taking into account the nature of the
systems treated in this thesis proposal.

4. Determine how the distributed optimization methods proposed in item 2 can be used in
the design of non-centralized controllers for large-scale complex systems.

5. Design EGT-based distributed observers for the implementation of output-feedback non-
centralized control topologies for large-scale complex systems.

6. Determine a methodology to design controllers based on the potential function in an EGT.

7. Study and/or propose a dynamical tuning for predictive controllers based on EGT.

14



4 Methodology

The methodology consists in deeply studying the evolutionary game theory and the population
dynamics as a powerful tool to solve constrained optimization problems to propose solution for
the non-centralized control scheme design, to complement an existing control for large-scale com-
plex systems, and to design non-centralized estimator. This theory allows to look for the optimal
point of a function in a dynamical way, i.e., that the cost function can vary over time. The evo-
lutionary game theory already solves this problem by the classical six fundamental population
dynamics in a centralized way. Broadly, it is wanted to study how these population dynamics
could be established in a distributed way to solve distributed optimization problems.

Then, evolutionary game theory can be used in the designed of distributed optimization-
based controllers and to complement already existing control strategies. Some complementary
elements that can be contributed by the game theory according to the proposed approach are
mentioned and explained next, 1 and determine a methodology for the research:

i) One of the fundamental elements that composes an MPC is the optimization problem
solver, this is the main issue to solve in this work.

ii) Then, once a distributed approach for the distributed population dynamics has been found,
it is necessary to study the non-centralized structures, cooperative and non-cooperative
problems (from the MPC perspective according to the cost functions), sequence or parallel,
and with different types of coupling.

iii) Afterwards, a proposal to combine the non-centralized configurations for optimization-
based controllers and evolutionary game theory can create a novel solution for large-scale
complex systems. This might imply to choose a certain case(s) with respect to the topology
of the system or type of coupling, the identification of this criteria is part of the expected
results from this research.

iv) As another complement, this work proposes to design non-centralize observer. This would
help in the MPC implementation since this control strategy has a high dependency with
the system model.

v) On the other hand, a multi-objective function in MPC is weighted by constant parameters.
However, it is wanted to study dynamical strategies to adjust weight parameters to achieve
a better performance in an MPC.

1these are some identified elements so far, which may be designed with game theory and that might help in the
non-centralized control performance; however, in the research process more elements with which game theory can
contribute may be detected

15



5 Working plan

• Task 1: Thesis proposal preparation.

• Task 2: The study of the main bibliography references related to evolutionary game theory
and optimization methods based on games.

• Task 3: The proposal of a methodology to solve optimization problem in a distributed
way inspired in population dynamics and some proposals already found in literature.

• Task 4: The study of the main bibliography references related to the most used non-
centralized controllers for large-scale complex systems.

• Task 5: A review of how the population dynamics can contribute in the design of non-
centralized controllers and make a linear implementation of it.

• Task 6: A methodology to design non-centralized controllers with game theory as com-
plement of a existing control strategy.

• Task 7: Selection of a case study and simulations of the methodology for the selected
system.

• Task 8: The study of the main bibliography references related to distributed proposals to
design observers.

• Task 9: A review of how the techniques of evolutionary game theory can be used in the
design of distributed observers.

• Task 10: A methodology to design non-centralized estimators using game theory.

• Task 11: Simulations that illustrate the performance of the estimator proposed design.

• Task 12: The study of the main bibliography references related to the design of utilities
and/or fitness functions for evolutionary game theory.

• Task 13: The study how the design of fitness functions (or potential functions) can be
used in the design of the transitory event of a control system (i.e., settle time, overshoot,
etc).

• Task 14: Design of controllers based on pole placement for linear plants by using game
theory.

• Task 15: The study of the main bibliography references of predictive control tuning.

• Task 16: The propose of a methodology that allows to make online tuning in a predictive
control.

• Task 17: The summary of the work and the writing of the final thesis document.

• Task 18: The writing of a paper with the last obtained results for the conference on
decision and control CDC.

• Task 19: The writing of a paper with the last obtained results for the American Control
Conference ACC.

16



• Task 20: The writing of a journal paper with topics accepted in conference events.

• Task 21: Academic/research stay and cooperation with other national or international
research groups.

• Task 22: Research stay with the co-advisor.

17



5 WORKING PLAN
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6 Preliminary results

According to the working plan, a review has been made with respect to optimization problems
by using full-potential games and different non-centralized configurations with the correspond-
ing possible coupling cases. Some ideas have been already tested and preliminary results are
presented. Results correspond to a parallel decentralized configuration with decoupled dynamics
and a coupled constraint, solved with distributed population dynamics.

6.1 Distributed Population Dynamics for Solving Distributed Optimization
Problems and Control

Taking as reference the classic six fundamental population dynamics and the mathematical de-
duction from a well-mixed population, the distributed population dynamics are proposed deduced
from a non-well-mixed population. These dynamics are presented in Table 3 and are proposed
in [3].

Table 3: Distributed population dynamics generated from a non-well-mixed population

Distributed Dynamics Differential Equation

Distributed Replicator Dynamics (DRD) ẋi = xi

(
Fi
∑
j∈Ni

xj −
∑
j∈Ni

xjFj

)
Distributed Smith Dynamics (DSD) ẋi =

∑
j∈Ni

xj [Fi − Fj ]+ − xi
∑
j∈Ni

[Fj − Fi]+
Distributed Projection Dynamics (DPD) ẋi = |Ni|Fi −

∑
j∈Ni

Fj

Distributed Logit Dynamics (DLD) ẋi =
∑
j∈Ni

xje
η−1Fi − xi

∑
j∈Ni

eη
−1Fj

In Table 3, Ni is the set of neighbors of the ith element in the game and makes possible to
require partial information from the whole system, i.e., formally Ni = {j : (i, j) ∈ E}. The fol-
lowing section presents a control application approach for a non-centralized control configuration
by using the distributed population dynamics.

Model-free Control example

The design of a simple MIMO distributed controller for the optimal transportation of drinking
water is proposed. This problem is composed by n coupled tanks as shown in Figure 5. The
arrows in the graphical representation show how flow directions are. Each tank has an outflow
given by an unknown demand considered as a disturbance that is denoted by di, and a controlled
inflow denoted by ui from a limited water source, i.e., that control outputs are subject to a
constraint given by

∑n
i=1 ui ≤ K, where K is the total available resource. It is assumed that

there are local controllers at valves to guarantee the desired inflow.

The dynamics for this system are as follows, dh1dt = u1 −
√
ρgh1 − d1, dhidt = ui +

√
ρghi−1 −√

ρghi − di, i = 2, ..., n − 1, and dhn
dt = un +

√
ρghn−1 − dn, where hi is the water level of the

ith tank, ρ is the density of the fluid and g the gravity. The proposed example considers the
case of 4 tanks and the control objective is to keep the water level of tanks at a safety value of
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6 PRELIMINARY RESULTS

u1

dnd2d1

Source

· · ·

· · ·

u2 un

Figure 5: Simple drinking water system with a unique resource and unknown demands

reference in order to satisfy the demand requirement. For this particular example, the reference
is set at 0.5 m. The unknown demand profile at each node during two days is shown in Figure
6a) (adapted from [33]).
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Figure 6: a) Demand profile during 2 days for a 4 tanks case, i.e., d1, d2, d3 and d4. b) System
states evolution for a controller with full information. c) System states evolution for a distributed
population dynamics based controller

Figure 6b) shows the control performance considering full information in the classical Smith
dynamics, i.e., that at each point of the network, the information related to all the system is
available to make decisions. Figure 6c) shows the performance of a distributed controller designed
based on DSD. The information graph considered for this example is a path graph, i.e., that the
ith tank only has information about the (i− 1)th and the (i+ 1)th tanks.

6.2 Non-centralized MPC with Decoupled Dynamics and a Resource Limited
Coupled Constraint

The decentralized MPC presented in this section is part of the work in [2]. Consider a large-
scale system composed by M controllable sub-systems, and whose communication topology is
given by an undirected non-complete connected graph denoted by G = (V, E), where V is the
set of vertices that represent the M sub-systems, and E = {(i, j) : i, j ∈ V} is the set of links
representing the available communication and/or information sharing among sub-systems. Each
controllable sub-system has a linear time-invariant discrete-time dynamics

xi(k + 1) = Aixi(k) +Biui(k), (1)

where k ∈ Z denotes the discrete time, i ∈ V = {1, ...,M} is the sub-system index, xi(k) ∈ Rni

denotes the states, ui(k) ∈ Rmi denotes the input of ith sub-system at time k, and the matrices
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6.2 Non-centralized MPC with Decoupled Dynamics and a Resource Limited Coupled
Constraint

Ai ∈ Rni×ni and Bi ∈ Rni×mi have constant elements.

The optimization problem for the MPC can be seen as:

min J(k) =
M∑
i=1

Hp∑
j=1

‖xi(k + j)− ri(k + j)‖2Qi
+

M∑
i=1

Hp−1∑
l=0

‖ui(k + l)‖2Ri
, (2a)

subject to xi(k + 1) = Aixi(k) +Biui(k) (2b)
xi ≤ xi(k) ≤ x̄i, ∀ i ∈ V, (2c)
ui ≤ ui(k) ≤ ūi, ∀ i ∈ V, (2d)
M∑
i=1

ui(k) ≤ K, (2e)

where the index i ∈ V denotes the sub-system, Qi ∈ Rni×ni is a positive semi-definite weight
matrix for states and Ri ∈ Rmi×mi is a positive definite weight matrix for the control actions.
The vector ri(k) is the reference for the ith sub-system. The vectors xi and x̄i determine the
minimum and maximum possible states of the ith sub-system respectively; and ui and ūi deter-
mine the minimum and maximum possible control actions respectively. The value of K ∈ Rm
determines the total available resource as an energy constraint for the whole system.

If the constraint (2e) is omitted, then the optimization problem (2) can be decoupled since
sub-systems dynamics are decoupled as well as constraints (2b),(2c), and (2d). Consequently, a
local MPC for the ith sub-system can be designed with a cost function given by

min Ji(k) =

Hp∑
j=1

‖xi(k + j)− ri(k + j)‖2Qi
+

Hp−1∑
l=0

‖ui(k + l)‖2Ri
, (3a)

subject to xi(k + 1) = Aixi(k) +Biui(k), (3b)
xi ≤ xi(k) ≤ x̄i, (3c)
ui ≤ ui(k) ≤ ūi. (3d)

In order to deal with the constraint (2e), a distributed full potential game with the distributed
Smith dynamics is proposed in order to make the traditional MPC a decentralized controller as
shown in Figure 7). Since (2e) is not an equality constraint, it is necessary to add a slack variable
denoted by pM+1 to the game, for which this slack variable is treated as a new node added to
the connected graph. Additionally, its fitness function is chosen as FM+1 = 0. The slack variable
allows to use less than the total available resource when it is convenient.

It is proposed a strictly concave full potential function for the distributed population dynamics
as follows2:

f(p) = −
M∑
i=1

wi(u
∗
i − pi)2,

where wi assigns a weight factor for each control action, e.g., if wi = ei,∀i ∈ S then more prior-
ity is assigned to those sub-systems with more error. Consequently, the fitness functions for the

2At this applications, the notation is changed. The proportion of agents playing strategy i ∈ S is denoted by
pi. This change is necessary in order to differentiate population states from the system’s states.
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x1p∗1u∗
1 Strategy 1

r1
Graph G

x1 MPC 1 Sub-system 1

x2p∗2u∗
2 Strategy 2

r2
x2 MPC 2 Sub-system 2

xMp∗Mu∗
M Strategy M

rM
xM MPC M Sub-system M

...
...

...

Figure 7: Non-centralized MPC with distributed population dynamics scheme to solve problem
in (2). Distributed topology defined by the connected non-complete graph G

game are given by F (p) = ∇f(p), i.e., Fi(pi) = −2wi(pi + ui). Note that this methodology does
not require full information about all control actions and/or all states of sub-systems since: i)
the graph G representing information interaction among sub-systems is a non-complete graph,
and ii) the proposed fitness functions are decoupled, i.e., Fi depends only on information of the
ith sub-system.

Each sub-system has a local MPC in which the optimization problem (3) is solved every
k ∈ Z, then there is a set of M controllers generating an optimal control action u∗i (k) for all
i ∈ S. This optimal control action (with respect to (3)) provides a fitness function Fi(pi) to the
Smith dynamics that calculates in a distributed way the final control action p∗i satisfying the
constraint (2e).

LOCAL MPC i

Distribut. CSP

Distributed
Smith Dynamics

Sub-system i

xi

u∗
i

pi(0)

p∗i

u∗
i , u

min
i , umax

i

Figure 8: Flow diagram of the proposed methodology.

Figure 8 shows the summary of the proposed non-centralized MPC with distributed Smith
dynamics. The distributed Smith dynamics requires u∗i , for all i ∈ S to set the fitness functions in
the game, and also requires the limits [umini , umaxi ] (limits between which the problem is feasible)
for all i ∈ S in order to guarantee that the set of final control actions p∗ belongs to the feasible
set.
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