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Abstract

In this thesis, a multi-layer decentralized model predictive control (ML-DMPC)
strategy is proposed to be researched for its application to large-scale net-
worked systems (LSNS). The approach aims to exploit the periodic nature of
the system disturbance and the availability of both static and dynamic models
of the LSNS. The topology of the controller will be structured in two layers.
First, an upper layer will be in charge of achieving the global objectives from
a set O of control objectives given for the LSNS. This layer will work with a
sampling time ∆t1, corresponding to the disturbance period. Second, a lower
layer, with a sampling time ∆t2, ∆t1 > ∆t2, will be in charge of computing
the references for the system actuators in order to satisfy the local objec-
tives from the set of control objectives O. A system partitioning will allow
to establish a hierarchical flow of information between a set C of controllers
designed based on model predictive control (MPC). Therefore, the whole pro-
posed ML-DMPC strategy will result in a centralized optimization problem for
considering the global control objectives, followed of a decentralized scheme
for reaching the local control objectives. Each decentralized local MPC con-
troller will be designed with robustness to measured stochastic disturbances
and actuator health degradation, and with self-tuning capabilities. This con-
trol design aims to improve both the performance and the overall reliability of
the LSNS. In addition to formalize the synthesis of the ML-DMPC controller,
this thesis aims to analyse conditions for feasibility and stability guarantees.
The proposed ML-DMPC approach will be applied to a real case study: the
water transport network of Barcelona (Spain), in order to assess the results in
terms of system modularity, computational burden and sub-optimality of the
system performance in comparison with a centralized MPC (CMPC) strategy.
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1 Introduction

1.1 Motivation

Large-scale networked systems (LSNS) are very common in the modern societies to transport for
example, water, electricity, gas, oil, among others. Thus, their optimal management is a subject
of increasing interest due to its social, economic and environmental impact. The leading control
technique for the management of LSNS is model predictive control (MPC) [1, 16], which is a
suitable approach to deal with challenging multi-criteria problems of real dynamical systems due
its systematic and practical formulation, see [9, 2]. Nevertheless, the ever growing complexity
of mathematical models (dimensionality, information structure constraints, uncertainty), turns
these problems costly or even intractable to solve in practice, specially when controlling LSNS
seeking the best operational policies, where centralized MPC algorithms are not prepared enough
to face the important computational burden when design aspects (i.e. prediction horizons,
weights, and system topology size) have to be continually redefined. Therefore, newer and more
efficient methods will be investigated in this thesis, exploiting the structural properties of the
plant in order to obtain suitable design and control strategies, to develop decision-support tools
for the management of LSNS.

Traditional MPC procedures assume that all available information is centralized. In fact, a global
dynamical model of the system must be available for control design. Moreover, all measurements
must be collected in one location to estimate all states and compute all control actions. However,
when considering LSNS, these assumptions usually fail to hold, either because gathering all
measurements in one location is not feasible, or because the computational needs of a centralized
strategy are too demanding for a real-time implementation. This fact might lead to a lack
of scalability. Subsequently, a model change would require the re-tuning of the centralized
controller. Thus, the cost of setting up and maintaining the monolithic solution of the control
problem is prohibitive. A way of circumventing these issues might be by looking into either
decentralized or distributed MPC techniques, where networked local MPC controllers are in
charge of controlling a part of the entire system.

The work to be performed in this thesis is focused on decentralized model predictive control
(DMPC), where a LSNS is decomposed into smaller subsystems that are controlled using local
MPC schemes. This partitioning decreases the computational effort but also degrades the per-
formance since the coordination of all the control actions is lost. Thus, a communication and
supervisory strategy will be proposed in this thesis to arrange the tasks of the subsystems to
provide a feasible solution to the overall system, driven towards the performance of a centralized
controller. In addition, to achieve a flexible an reliable controller, it will be also explored the
current MPC tuning strategies for weight adaptation, in order to prioritize the multi-criteria
optimization problems behind the predictive controllers according to global and local manage-
ment goals. It is proposed also to identify and isolate the parts that can be solved off-line or
can even be explicitly computed. The rest of the control law will be computed on-line, given its
dependence of the measurements and/or changing information. All together will allow to define
multi-layer and decentralized MPC laws with less computational burden, fact that in turn allows
to modify design parameters without affecting the performance of the closed-loop control law.
The desired control specifications will be expressed through different performance indexes asso-
ciated to common objectives such as reductions in control energy and economic costs, assurance
of network functionality, among many others.
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1.2 State of the Art

1.2 State of the Art

LSNS are formed by the interconnection of several subsystems, whose different spatial, temporal
and functional characteristics could make them significantly heterogeneous. The optimal man-
agement of such systems with a centralized control structure may be a cumbersome task due
to the required inherent computational complexity, due to robustness and reliability problems
and due to communication limitations. Therefore, many control structures have been researched
and reported in literature over the last forty years, i.e., completely decentralized structures, dis-
tributed control systems with exchange of information among local controllers and coordinated
or hierarchical multi-layer structures. For a survey on the state of the art on the aforesaid MPC
architectures the reader is referred to [4, 5, 10, 19, 21] and references therein.

In a pure decentralized control architecture the input and output variables of a given system are
decomposed and grouped into disjoint sets for which local regulators are designed to operate
in a completely independent fashion. While centralized MPC leads to a plant-wide optimum,
it is computationally intensive, it is relatively difficult to implement, tune, and maintain, and
it is characterized by poor fault tolerance. Decentralized MPC is flexible, reliable, and easy
to implement and maintain, but it leads to solutions that are not plant-wide optimum. On
the other hand, a distributed control architecture improves the global performance by allowing
communication between local controllers to achieve a consensus that leads to an approxima-
tion of the centralized solution. Nevertheless, the distributed scheme is affected by the quality
and the reliability of the communication process, and by the negotiation algorithm that the
local controllers follow. LSNS require control laws whose computation is efficient, and whose
implementation entails a minimal amount of information exchange between the subsystems,
therefore, current research is oriented toward designing robust and computationally feasible
coordinated/hierarchical schemes that work toward combining the advantages of both the cen-
tralized and decentralized control strategies while addressing their drawbacks. The decentralized
structure of the system is maintained, but the performance is driven toward that of a centralized
scheme. The coordinator or higher-layers of the control scheme coordinates the actions of the
individual decentralized MPCs, relaying information among the various individual controllers
to account for the interaction effects that exist between the different subsystems of the complex
LSNS.

1.3 Thesis Objectives

Despite the wide literature in the context of decentralized control, hierarchical multilayer sys-
tems and the related MPC approaches, systematic design methods guaranteeing well-assessed
properties are still lacking and only ad-hoc solutions tailored on some specific industrial prob-
lems have emerged. Therefore, this thesis primary aims to formalize an answer to the early
question stated by [10]:

Given a time interval over which a two-level system’s performance is to be observed and during
which there are n time instants at which the coordinator can influence the decentralized local
controllers, what should the coordinator’s strategy be so that, after each coordination instant, the
coordinator’s action results in an improved overall performance, or, in the absence of adversities,
the overall performance improves monotonically over the given time interval.
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To do so, the following objectives are proposed:

• Objective 1: Develop a formal mathematical framework for the design of constrained ML-
DMPC controllers for LSNS.

• Objective 2: Design a non-iterative and tractable algorithm to coordinate the decentralized
controllers of the ML-DMPC architecture.

• Objective 3: Analyse conditions to guarantee feasibility and stability of the proposed
ML-DMPC approach.

• Objective 4: Incorporate exogenous and endogenous uncertainties in order to design robust
ML-DMPC controllers.

• Objective 5: Design a tuning methodology for the decentralized MPC controllers.

• Objective 6: Validate the proposed control strategy using a simulator of the drinking water
network of Barcelona as case study.

2 Working Plan

In this section, a research schedule is proposed for this doctoral research. The estimated duration
of the pending research is 24 months. During this period, the whole work will be split into several
small tasks to fulfil the stated objectives. The tasks are listed below and the working plan is
shown in Table 1.

• Task 1: Conceptualization, i.e., identify the structural concepts which will be the subject
of the mathematical studies, set the scope of the framework to be developed and provide
a conceptual foundation for the problem of coordination in multi-layer and decentralized
control architectures for LSNS.

• Task 2: Formalization, i.e., analyse how the results presented in [15] can be generalized and
in which direction, taking into account the impact that the specificity of the framework
has on a particular conclusion. Through a mathematical investigation of certain aspects
of LSNS where hierarchies may arise in the decision-making process, this task aims to
abstract, to define, and to formalize (within a control systems theory framework and in
reference to structural properties of systems) the decentralized predictive control strategy
proposed in this thesis.

• Task 3: Coordination analysis. This task aims to study deeper the current coordination
strategy presented in [15] in order to enhance or generalize it, taking into account selected
partitioning schemes and the coupled constraints and shared limited resources that arise
with decentralization.

• Task 4: Feasibility analysis.

• Task 5: Derivation of conditions for stability guarantees.

• Task 6: Incorporation of mechanisms to guarantee robustness to exogenous uncertainty.

• Task 7: Incorporation of mechanisms to guarantee robustness to endogenous uncertainty.
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• Task 8: Adaptation, i.e., develop tuning strategies for the control scheme, specially for
the local controllers, capable of varying weights and/or thresholds in accordance to the
variation of disturbances and/or actuator degradation.

• Task 9: Validation of the proposed control strategy with a real case study: the drinking
water network of Barcelona.

• Task 10: Summarizing of intermediate results and writing of papers to be submitted to
conferences and/or journals of high-impact.

• Task 11: Writing of the PhD thesis document.

• Task 12: Research stage and cooperation with other national or international research
groups.

Table 1: Timetable proposal for the pending research period
2013 2014

Jan-Mar Apr-Jun Jul-Sep Oct-Dec Jan-Mar Apr-Jun Jul-Sep Oct-Dec

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

Task 7

Task 8

Task 9

Task10

Task11

Task12

3 Background

3.1 Fundamentals of Model Predictive Control

3.1.1 General Considerations

Model Predictive Control (MPC) stands for a family of methods that select control actions based
on optimisation problems. It is one of the most successful control technologies applied in a wide
variety of application areas due to its capability to explicitly incorporate constraints and define
multiple performance objectives within a single control problem.
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3.1 Fundamentals of Model Predictive Control

The tractability of an MPC problem, specially when dealing with LSNS, is defined by the
nature of the elements that are involved in the predictive and optimisation strategy. The use of
a cost function allows to describe the desired behaviour of the system and is generally defined
under two purposes: stability and performance. It serves also to specify preferences in a multi-
objective optimal control problem. This element is application-dependant but there exist within
the MPC literature common cost functions which are convex and results in a easy to solve
problem. Common choices are based on linear (i.e., ‖ · ‖1, and ‖ · ‖∞) and quadratic norm
costs (i.e., ‖ · ‖2), which are usually weighted. The explicit handling of constraints is the key
strength of MPC. It can be found in different applications the following types of constraints:
linear (used to upper/lower bound variables), convex quadratic (used to bound a variable to lie
within an elipsoid), probabilistic (used to deal with uncertainty and to reduce conservatism of
worst-case approaches), second order cones, switched constraints (used when the inclusion of the
constraint depends on meeting a predefined condition), non-linear constraints (compromises any
other type of constraint and are very difficult to handle when solving the optimisation problem).
The most critical element in the MPC framework is the dynamic model of the system, since the
robustness and performance of the controller depends on the model which can be deterministic
or stochastic, linear or non-linear, continuous or discrete or hybrid. Further details on MPC
theory, design and applications can be found in [2], [9], among others.

3.1.2 General MPC Problem Setting

A generic MPC framework is given by the following optimal control problem:
Problem 1 (Generic MPC problem).

J∗ , min
u(k:k+Np−1)

Vf (x(k +Np)) +

Np−1∑

i=0

li(x(k + i),u(k + i)), Cost function (1)

subject to

x(k + i+ 1) = f(x(k + i),u(k + i)), Dynamics (2)

(x(k + i),u(k + i)) ∈ X× U, Constraints (3)

x(k +Np) ∈ Xf , Terminal constraint (4)

where k ∈ Z≥0 is the current time instant, Np ∈ Z+ is the prediction horizon, i ∈ Z
Np−1
0 is the

prediction time step ahead of the current time instant, x ∈ R
nx is the system state, u ∈ R

nu is
the control input, and f : R

nx × R
nu → R

nx is the arbitrary system state evolution function.
Moreover, li : R

nx × R
nu → R≥0 is the stage cost, Vf : Rnx → R≥0 is the terminal cost, and

X ⊂ R
nx and U ⊂ R

nu are compact sets containing the origin and representing the set of feasible
states and the set of admissible control actions, respectively. When Np = ∞, the MPC law
solves a infinite horizon optimal control problem, while with Np < ∞, the MPC law solves a
finite horizon optimal control problem. �

At each time instant, MPC uses a system model and all currently available information (present
and past) to predict the system future evolution over a given prediction horizon and solve an
open-loop optimisation problem to calculate a sequence of future control actions that must satisfy
system constraints to achieve the desired performance; only the first control move is applied.
At the next time step, the overall procedure is repeated over a shifted prediction horizon using
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3.2 Modeling Framework for Multi-Layer Decentralized Control

updated system measurements to compensate for modelling errors and/or disturbances. This
scheme is referred as receding horizon strategy and it is summarised in Algorithm 1.

Algorithm 1 Receding Horizon Strategy

1: measure the state x(k) at time k
2: compute u−→

∗(x(k)) , [u∗(k), . . . ,u∗(k +Hp − 1)] by solving Problem 1 with horizon Np

3: apply the first element uMPC(k) , u∗(k) to the system
4: proceed to time step k + 1
5: go to 1.

Remark 1. Although perfect state measurement is generally assumed available, the generic
strategy and the approaches developed in this thesis can be used in practice with an estimate
of the state obtained by an observer or any state estimator. ♦

Remark 2. The basic MPC strategy uses open-loop predictions and computes input control
sequences, but it is also possible to use closed-loop predictions and optimise over control laws,
i.e., affine functions of previous states or disturbances if measured. ♦

3.2 Modeling Framework for Multi-Layer Decentralized Control

This thesis adopts the modeling framework presented in [15]. The fundamentals of such control-
oriented model used to design decentralized controllers for LSNS are extracted and stated below.
The control system architecture of a LSNS may be defined in two levels as shown in Figure 1.
The upper level consists in a supervisory controller that is in charge of the global control of
the networked system, establishing references for regulatory controllers (of PID type) at the
lower level. Regulatory controllers hide the non-linear behavior of the system to the supervisory
controller. This fact may allow the supervisory level to use a control-oriented model.

Management Objectives

Operational Constraints

Supervisory

Control Level

Regulatory

Control Level

Large-Scale Networked System

Sink Flow

Forecasts

LSNS

Measurements

Figure 1: Control architecture for a LSNS

In a general way, a proper control-oriented model of a given system is defined such that it captures
its main behavior, being as simple as possible in order to save computational burden when such
model is used for control design purposes. This thesis considers the use of the control-oriented
model with a model-based optimization-based control strategy with constraints. This latter
implies not only dynamic and static equations in the mathematical expression of the behavior
of the system, but also inequality constraints may be added. In general, these inequalities are
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3.2 Modeling Framework for Multi-Layer Decentralized Control

associated to bounds in the operational ranges of the physical variables of the system (inputs,
states, and outputs). However, some of those inequality constraints may also relate system
variables between them together with system disturbances.

The framework of control-oriented modeling of LSNS that is adopted in this thesis relies on the
concept of flow between or through the constitutive elements of the system. In this framework,
the flow is understood in the sense of movement of the raw material related to the use or function
of the networked system. In order to have a model structure where the flow concept has sense,
it is necessary to define a set of basic elements to be associated with the physical LSNS.

Storage Element: As its name indicates, this element represents the fact of storing the mate-
rial/data flow, what implies a volume given in discrete time by the difference equation

x(k + 1) = x(k) + ∆t (qin(k) − qout(k)), (5)

where x denotes the stored flow volume, qin and qout denote the net inflow and outflow,
respectively; ∆t is the considered sampling time and index k ∈ Z≥0 represents the discrete
time instant. Notice that (5) adds the dynamic nature to the control-oriented model of
the whole LSNS. Moreover, this element is not defined to store infinity quantity of flow,
what implies a working regime bounded by the storing constraints

xmin ≤ x(k) ≤ xmax, ∀ k, (6)

where xmin and xmax are the minimum and maximum volume that the element is able to
store, respectively.

Node Element: This element, also called junction, corresponds to a point where flows are
either propagated or merged. Propagation means that the node has one inflow and some
outflows. Merging means that two or more inflows are merged into a larger outflow. Thus,
two types of nodes may be considered:

• Nodes with one inflow and multiple outputs (splitting nodes), i.e.,

qin(k) =
∑

i

qout,i(k). (7)

• Nodes with multiple inputs and one output (merging nodes), i.e.,

∑

j

qin,j(k) = qout(k). (8)

Mixed nodes can be described from the basic ones described above, i.e., complex nodes
with several inflows and outflows may be defined. Notice that this element would add
static relations to the control-oriented model of the whole LSNS. However, some LSNS do
not show the behavior modeled by nodes, hence static relations are not always present in
the control-oriented model.

Flow source: This element provides the raw material that flows through the network. It may
be considered either:

7



3.2 Modeling Framework for Multi-Layer Decentralized Control

• as an exogenous inflow to the networked system. In that case, constraints such as

qmin,Λi
≤ qΛi

(k) ≤ qmax,Λi
(9)

might be considered, where qΛi
denotes the inflow from the i-th source; qmin,Λi

and
qmax,Λi

correspond to minimum and maximum inflow, respectively. For simplicity
and compactness of the control-oriented model, constraints in (9) are associated to
flow handling elements (described below) directly connected to sources;

• or as an external storage element, what implies an expression for its volume xΛ(k)
such as in (5), with the associated constraint such as in (6).

Sink: In this framework, a sink is the element where the flow goes to. From a general point of
view, sinks are related to the measured disturbances of the system since they ask for flow
according to a given profile. The networked system should be managed in such a way that
those elements receive the flow they request.

Link: This element, also called arc, represents the general way of connecting two elements which
share a flow, e.g., a source with a node, an storage element with a sink, etc. The flow
through these elements can be constrained by the range

qmin ≤ q(k) ≤ qmax, ∀ k, (10)

where qmin and qmax are the minimum and maximum flow through a link, respectively.

Flow Handling Element: In this framework, this element manipulates flow either between
storage elements or between a storage element and a node, and viceversa. Hence, flow
handling elements are links where the flow is manipulated. Handling elements between
storage elements and sinks as well as between nodes and sinks are not considered since the
flow handled has to be equal to the flow requested from the sink and, therefore, there is no
place for different options. Notice that the flow through these elements is also constrained
following (10).

Remark 3. Regarding storage elements, when their outflow is not manipulated, its expression
corresponds with

qout(k) = h(x(k)), (11)

where h should be determined according to the nature of the particular case study. Notice
that this relation can be made more accurate (but also more complex) if h is considered to be
nonlinear, thus yielding nonlinear constrained control-oriented model. This latter can be seen
considering (11) and rewriting the right-hand side of (10) as

q(k) ≤ min{qmax, h(x(k))}, ∀ k. (12)

Moreover, in the scenario where xmin 6= 0 and the outflow of the storage element is manipulated,
the left-hand side of (10) should be rewritten as

min{qmin, h(x(k))} ≤ q(k), ∀ k, (13)

which also implies a non-convex constraint within the control-oriented model of the LSNS. ♦
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3.2 Modeling Framework for Multi-Layer Decentralized Control

3.2.1 Control-oriented Model

Consider a given LSNS being represented as the interconnection of nx storage elements, nu

flow handling elements, nd sinks and nq intersection nodes. The nα sources are considered as
inflows. Stating the volume in storage elements as the state variable x ∈ R

nx, the flow through
the handling elements as the manipulated inputs u ∈ R

nu, and the demanded flow as additive
measured disturbances d ∈ R

nd , an LSNS may be abstracted and described by the following
set of linear (or linearised) discrete difference-algebraic equations (DAE) for all time instant
k ∈ Z≥0:

x(k + 1) = Ax(k) +Bu(k) +Bdd(k), (14a)

0 = Exx(k) +Euu(k) +Edd(k), (14b)

where the difference equations in (14a) describe the dynamics of storage elements, and the
algebraic equations in (14b) describe the static relations (i.e., mass balance at intersection nodes)
in the network. Moreover, A, B, Bd, Ex, Eu, Ed, are time-invariant matrices of suitable
dimensions dictated by the network topology. Notice that Ex = 0 when outflows from storage
elements are manipulated. In general, states and control inputs are subject to constraints of the
form

xmin ≤ x(k) ≤ xmax, ∀k, (15a)

umin ≤ u(k) ≤ umax, ∀k, (15b)

where xmin ∈ R
nx and xmax ∈ R

nx denote the vectors of minimum and maximum volumes,
respectively, while umin ∈ R

nu and umax ∈ R
nu denote the vectors of minimum and maximum

flows through flow handling elements, respectively.
Remark 4. Notice that manipulated flows may be defined as bidirectional flows. This means
that minimum flows of these manipulated links may be negative. In order to cope with this
situation, a bidirectional link can be replaced with two separate unidirectional links with null
minimum flow, associated with each direction of the original link. Although this approach
simplifies the control setup, it might add complexity to the optimization problem related to the
optimization-based controller since the number of optimization variables gets higher. ♦

3.2.2 Model Decomposition

Once the control-oriented model is stated, it is important to determine the objective of perform-
ing the partition of the networked system no matter what control strategy is followed. In this
aspect, the availability of centralized information is fundamental. This thesis considers a graph-
theory-based algorithm proposed in [12] for the automatic partitioning of LSNS into subsystems.
The algorithm transforms the dynamical model of the given system into a graph representation.
Once the equivalent graph has been obtained, the problem of graph partitioning is then solved.
The resultant partitions are composed of a set of non-overlapping subgraphs such that their
sizes, in terms of number of vertices, are similar and the number of edges connecting them is
minimal. To achieve this goal the algorithm applies a set of procedures based on identifying the
highly connected subgraphs with balanced number of internal and external connections. Some
additional pre-filtering and post-filtering routines are also needed to be included to reduce the
number of obtained subsystems.

9



3.2 Modeling Framework for Multi-Layer Decentralized Control

Thus, the overall system (14) is assumed to be decomposed in M , |N | subsystems collected
in the set N , which are not overlapped, output decentralized and input coupled (therefore,
Ex = 0). The model of the i-th subsystem is stated below for i ∈ {1, . . . ,M} as

xi(k + 1) = Aixi(k) +Biui(k) +Bd,idi(k) +Bsh,iµi(k), (16a)

0 = Eiui(k) +Ed,iEi(k) +Esh,iµi(k), (16b)

where xi ∈ R
nxi , ui ∈ R

nui and di ∈ R
ndi are the local states, inputs and disturbances of the

subsystem Si, respectively, and µi ∈ R
nµi is the vector of shared inputs between Si and other

subsystems. Moreover, Bsh,i and Esh,i are matrices whose dimensions depend on the number of
shared inputs of Si. The decomposition should assure that

∑
i nxi

= nx,
∑

i nui
= nu,

∑
i ndi =

nd and
∑

i nqi = nq. Matrices Ai, Bi, Bd,i, Eu,i, and Ed,i are dictated by each subsystem
topology. In the same way, the previously defined overall constraints (15) are partitioned for
each i-th subsystem as

xmin,i ≤ xi(k) ≤ xmax,i, ∀k, (17a)

umin,i ≤ ui(k) ≤ umax,i, ∀k. (17b)

Moreover, it may occur that the nα flow sources of the LSNS determine the amount ofM since the
sinks (and therefore storage elements and nodes) related to each subsystem Sj, j ∈ {1, . . . , nα}
are only supplied by a unique source. Therefore, this topological dependency determines subsys-
tems around a flow source, resulting to be a natural criterion for performing system decomposi-
tion. Thus, as seen in Figure 2, the initial LSNS might be decomposed in two stages. In the first
stage, subsystems tied with flow sources are determined. From now on, these subsystems are
called anchored subsystems (AS). It can be seen that there will be as many anchored subsystems
as number of sources in the network. Remaining elements are associated in a resultant subsystem
namely S̃, where storage elements might be fed from two or more flow sources. In the second
stage, subsystems S̃ is now decomposed by following the algorithm proposed in [12]. Notice
that, at this point, the shared connections of S̃ that correspond to inflows, my be considered
as pseudo-sources of S̃. Therefore, depending on the management/control objectives related to
the LSNS, it is possible to add some additional criteria to each AS outflow (or S̃ inflow). These
criteria can be associated to a weighting factor ω, which is related to each pseudo-source of S̃
and would be determined within the design of the control strategy for the LSNS (see Section 4
below). Notice that a second set of pesudo-sources would appear after performing the decom-
position of S̃, but their treatment can follow the same procedure considered for the first set of
pseudo-sources.

3.2.3 MPC Problem Formulation

From the LSNS model in (14), let u(k : k + Np − 1) be the sequence of control input over a
fixed-time prediction horizon Np. Hence, the following problem is proposed.
Problem 2. An MPC controller design is based on the solution of the open-loop multi-objective
optimization problem (OOP)

min
u
∗(k:k+Np−1)

J(k) ,

|O|∑

m=1

γmJm(u(k : k +Np − 1),x(k + 1 : k +Np)), (18a)
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Figure 2: Scheme of LSNS partitioning (nα = 3)

subject to system model (14), system constraints (15) over Np, and a set of nc operative con-
straints given by management policies of the system and condensed on the form

G1x(k + 1 : k +Np) +G2u(k : k +Np − 1) +G3d(k : k +Np − 1) ≤ g, (18b)

where J(·) : Rnu(Np−1)×nxNp 7→ R in (18a) is the cost function collecting all control objectives
of the set O and γm are positive scalar weights to prioritize the m-th control objective Om ∈ O,
particularly represented by Jm within the whole cost function. Moreover, G1 ∈ R

ncNp×nxNp ,
G2 ∈ R

ncNp×nu(Np−1), G3 ∈ R
ncNp×nd(Np−1), and g ∈ R

ncNp . �

Assuming that Problem 2 is feasible, i.e., there is an optimal solution given by the sequence of
control inputs u∗(k : k +Np − 1) 6= ∅, and then the receding horizon philosophy sets

uMPC(x(k)) , u∗(k), (19)

and disregards the computed inputs from k + 1 to k +Np − 1, with the whole process repeated
at the next time instant k ∈ Z≥0. Expression (19) is known in the MPC literature as the MPC
law [9].

Besides, the decomposition of the original problem leads to design an MPC controller Ci ∈ C,
with i = {1, . . . ,M}, for each of the M subsystems. This fact also leads to split the cost function
(18a). Therefore, each subsystem considers the local cost function

Ji(k) =

|O|∑

m=1

γm,iJm,i(ui(k : k +Np − 1),xi(k + 1 : k +Np)), (20)

where m = {1, . . . , |O|}, and γm,i are scalar weights that prioritize local objectives within each
subsystem. In the same way, operational constraints may be properly split along the subsystems
and expressed as

G1,ixi(k + 1 : k +Np) +G2,iui(k : k +Np − 1) +G3,idi(k : k +Np − 1) ≤ gi. (21)

11



4 Multi-Layer Decentralized Model Predictive Control

(ML-DMPC)

The content of this section have been recently presented in [15] and is presented here as a basis
for the theoretical formalization that this thesis aims to develop in the context of ML-DMPC of
LSNS.

4.1 Preliminary Assumptions

Once the control-oriented model is obtained and decomposed into subsystems, the natural step
forward consists in designing the decentralized control strategy considering the given manage-
ment policies and constraints. Before getting through the proposed methodology for designing
such controllers based on predictive control, the following assumptions regarding the LSNS and
its management are stated.
Assumption 1. All sinks can be supplied by at least one flow source through at least one flow
path1.
Assumption 2. All sinks show a periodic flow request, whose period is T = ∆t1.
Assumption 3. The set O of control objectives is defined as

O = Ol ∪ Og, (22)

where Ol corresponds with the set of local control objectives and Og with the set of global control
objectives. Moreover, ml , |Ol|, mg , |Og|, and hence ml +mg = |O|.

Assumption 3 introduces the diversity on the nature of the control objectives of the LSNS. This
fact determines the way the decentralized controller is designed since the fulfillment of a global
objective from a local point of view should imply information from all the LSNS, fact that is
avoided when the system partitioning is performed. Therefore, it is necessary to figure out how
to transform the formulation of a global objective in a centralized control scheme towards the
statement of a set of decentralized controllers C considering all the control objectives in O in a
suitable way.

First of all, in order to develop this idea, the cost function related to the centralized MPC
(CMPC) in Problem 2 can be rewritten as

J(k) =

mg∑

j=1

γjJj(u(k : k +Np − 1),x(k + 1 : k +Np))

+

ml∑

m=1

γmJm(u(k : k +Np − 1),x(k + 1 : k +Np)). (23)

The approach proposed in this thesis consists in designing a decentralized MPC scheme, where
each controller Ci ⊂ C considers a newer version of (20) taking into account the structure of

1A flow path is formed by a finite set of links, which may connect sources, nodes, sinks, and storage elements.
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4.2 Upper Optimization Layer

(23). Hence, the cost function related to each Ci is written as

Ji(k) =

mg∑

j=1

γ̂j,iĴj,i(ui(k : k +Np − 1),xi(k + 1 : k +Np))

+

ml∑

m=1

γm,iJm,i(ui(k : k +Np − 1),xi(k + 1 : k +Np)), (24)

where Ĵj,i(·) corresponds to the j-th global control objective properly expressed in order to
reflect its influence in the local controller. Moreover, γ̂j,i is a weight that prioritizes the global
objectives that must be filled within the optimization problem.

Thus, the design of the entire control topology gives rise to a twofold optimization problem
behind the general MPC topology. This twofold problem consists of two layers operating at
different time scales: an upper layer works with a sampling time ∆t1, corresponding to the
disturbance period. This layer is in charge of achieving the global objectives from a set O of
control objectives given for the networked system. On the other hand, a lower layer, with a
sampling time ∆t2, ∆t1 > ∆t2, is in charge of computing the references for the system actuators
in order to satisfy the local objectives from the set of control objectives O.

4.2 Upper Optimization Layer

This layer is designed to take into account the global control objectives in a proper way, i.e.,
considering information of the entire system in order to fulfill them. This layer is in charge of
computing weights ω related to pseudo-sources and discussed in Section 3.2.2 (see Figure 2).
These weights ω will determine the prioritization weights γ̂j,i in (24) for the controller design at
each subsystem Si. Therefore, to compute the set of ω, a CMPC problem is stated by considering:
(i) a static model of the whole LSNS, and (ii) a cost function that only takes into account the
global control objectives associated to the system. Regarding the system static model, the upper
optimization layer works with a sampling time ∆t1, corresponding to the periodicity in the flow
requested by sinks. Thus, when looking at the volume evolution of storage elements, they show
the parallel behavior as the flow to the sinks, i.e., volumes also show a periodic behavior with
period ∆t1. For this reason, when modeling the network at sampling time ∆t1, it can be assumed
that volumes do not change, i.e., the dynamics of storage elements (5) are modified considering
x(k + 1) = x(k). Hence, storage elements behave as nodes and the network dynamic model
(5) becomes a static model (set of algebraic equations). Having this model and the functional

Jup(k) =

mg∑

j=1

γjJj(u(k : k +Np − 1),x(k + 1 : k +Np)), (25)

Problem 2 is properly formulated in order to obtain the desired weights ω and, indeed, any
weight for any arc of any path within the LSNS. To mathematically and systematically find all
flow paths in an LSNS, its structure is used by means of node-arc incidence matrices, which
represent both the flow balances and the graph structure [3].

13



4.3 Lower Optimization Layer

4.3 Lower Optimization Layer

Having a decentralized predictive controller Ci ∈ C for each subsystem Si ∈ N with a cost func-
tion as in (24), the shared inputs for all subsystems in N are written as µij , whose directionality
is defined from Si to Sj , i 6= j. Additionally, µij not only contain values of each component
at time step k but also all values over Np

2. The fact of having available this complementary
information of the shared variables allows to use predicted values of manipulated flows instead
of starting a negotiation procedure between subsystems in order to find their value (following
the distributed control philosophy). Besides, the implementation of the hierarchical DMPC ap-
proach requires that subsystem models are modified to coordinate with other subsystems. To
introduce such modification, the following concept is introduced.
Definition 1 (Virtual sink). Consider two subsystems S1 and S2, which share a set of manip-
ulated flows µ12. According to the notation employed here, those flows go from S1 to S2. If
the solution sequence of optimization subproblems — defined by the pre-established hierarchical
order — determines that µ12 is computed by C1, then flows in µ12 are considered as virtual
sinks in C2 since their values are now imposed in the same way as the flow to sinks. �

The pure hierarchical control scheme determines a sequence of information propagation among
the subsystems, where top-down communication is available from upper to lower layer of the
hierarchy (see [20]). Note that, despite the subsystem coupling (given by the shared links), the
main feature of the pure hierarchical control approach relies on the unidirectionality of the infor-
mation flow between controllers. However, it may happen that some shared links have defined
their flow direction such as bottom-up communications within the hierarchy, which breaks the
mentioned unidirectional flow between DMPC controllers. This fact implies that the standard
hierarchical control scheme for partitioned LSNS cannot be straight applied. To solve this sit-
uation and to design a DMPC strategy, a hierarchical-like DMPC approach, proposed by [11],
has been considered and conveniently implemented over the partitioned system. This strategy
follows the hierarchical control philosophy and the sequential way of solving the optimization
subproblems of the corresponding MPC controllers but also considering the appearance of bidi-
rectional information flows.

The hierarchy defined by the approach of [11] implies that the controller Ci will be allocated in
a different layer according to the flow request of its corresponding subsystem Si. Considering
the simple topology in Figure 2, this fact means that the controller CS̃ will be at the top of the
hierarchy, while controllers Ca, Cb, and Cc will share the bottom layer. All controllers work with
a sampling time ∆t2 and the computational time spend by the scheme corresponds with the sum
of maximum times of each hierarchical layer of controllers (e.g., τtotal = τC

S̃
+max(τCa , τCb

, τCc)
for the scheme in Figure 2, where τ denotes the computational time). Special considerations
should be done for the treatment of bidirectional shared flows [13, 11].

4.4 Interaction of Layers

The sharing of information between layers depends on the nature and features of each applica-
tion. In general, the computational time that the upper layer spends is quite low with respect

2This thesis considers Nu = Np, where Nu denotes the control horizon. In the case that Nu < Np, it is still
necessary to know the values for shared variables from Nu until Np, no matter the way they are considered (e.g.,
keeping constant their value at time instant Nu, make them null, etc.).
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to the computational time of the lower layer. This fact is due to the difference in the nature of
the models handled by each layer and the interactions given by the DMPC controllers as well
as their amount and disposition within the defined hierarchy. Once the optimization problem
related to the upper layer is solved, the resultant parameters are properly updated for each
optimization problem behind each Ci ∈ C. This updating is performed with a periodicity ∆t1.
Algorithm 2 collects the main steps of the proposed ML-DMPC approach.

Algorithm 2 ML-DMPC Approach

1: k=0
2: loop
3: set x(k)
4: (ω, γ̃) ⇐ solve Problem 1 with (25)
5: while k

∆t1
/∈ Z

6: uMPC,i ⇐ solve Problem 1 with (24) and using ω, γ̃
7: end loop
8: end loop

5 Preliminary Results

5.1 Case-study Description

Preliminary simulation-based results of the control approach proposed in this thesis have been
recently reported in [15]. The results are obtained for a real case study of a large-scale system,
specifically: the Barcelona DWN. This network supplies potable water to the Metropolitan Area
of Barcelona (Catalunya, Spain). In general the water network operates as a pull interconnected
system driven by endogenous and exogenous flow demands; different hydraulic elements are used
to collect, store, distribute and serve drinking water to the associated population. For further
details about this network, the reader is refered to [14].

5.1.1 System Management Criteria

The operational goals in the management of the Barcelona DWN are of three kinds: economic,
safety, smoothness, and are respectively stated as follows:

1. To provide a reliable water supply in the most economic way, minimizing water production
and transport costs,

2. To guarantee the availability of enough water in each reservoir to satisfy its underlying
demand, keeping a safety stock to face uncertainties and avoid stock-outs.

3. To operate the network under smooth control actions.
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5.2 ML-DMPC Setup

These objectives are assessed by minimizing the following performance indices 3:

JE(k) , |(α1 +α2(k))
Tu(k)|, (26a)

JS(k) , ‖ξ(k)‖2, (26b)

JU (k) , ‖∆u(k)‖2, (26c)

where JE ∈ R≥0 represents the economic cost of network operation taking into account water
production cost α1 ∈ R

nu and water pumping cost α2 ∈ R
nu which change every time instant

k according to the variable electric tariff; JS ∈ R≥0 is a performance index which penalizes
the amount of volume ξ , min {0,x − xs} ∈ R

nx that goes down from xs, a predefined safety
volume threshold; JU ∈ R≥0 represents the penalization of control signal variations ∆u(k) ,

u(k)−u(k− 1) to extend actuator life and assure a smooth operation; and ‖ · ‖ is the Euclidean
norm, i.e., ‖z‖ =

√
zTz. More details about the management criteria of this case study can be

found in [14].

5.1.2 Control-oriented Modelling

Consider a DWN being represented as the interconnection of nx tanks, nu actuators (pumps and
valves), nd sectored demands and nq intersection nodes; according to Section 3.2, this system
can be generally described in state-space form by (14), where x ∈ R

nx is the state vector of
water stock volumes in m3, u ∈ R

nu is the vector of manipulated flows in m3/s, and d ∈ R
nd

corresponds to the vector of disturbances (sectored water demands) in m3/s. In the particular
case of the Barcelona DWN, the outflows from storage elements are manipulated, hence, Ex = 0
in (14b).

The states and control inputs are subject to (15); this polytopic hard constraints are due to the
physical limits in tanks (minimum and maximum volume capacities) and the operational limits
in actuators (minimum and maximum flow capacities). For safety and service reliability, in the
Barcelona DWN states are also subject to soft constraints

x(k) ≥ xs(k)− ξ(k) ≥ 0, ∀k, (27)

where xs ∈ R
nx is a vector of safety volume thresholds in m3, estimated empirically, above

which is desired to keep the reservoirs to avoid stock-outs, and ξ ∈ R
nx represents the amount

of volume in m3 that goes down from the desired safety thresholds.

The Barcelona DWN model contains a total amount of 63 tanks and 114 manipulated actua-
tors. Moreover, the network has 88 demand sectors and 17 pipes intersection nodes. Both the
demand episodes and the network calibration/simulation set-up are provided by AGBAR. See
the aforementioned references for further details of DWN modeling and specific insights related
to this case study.

5.2 ML-DMPC Setup

This section presents the results of applying the proposed ML-DMPC approach to the partitioned
model of the Barcelona DWN developed in [13]. Thus, the overall system is assumed to be

3The performance indices considered for the case study may vary or generalized with the corresponding ma-
nipulation to include other control objectives.
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5.2 ML-DMPC Setup

67

Figure 3: Partition of the Barcelona DWN

composed of six subsystems which are non-overlapped, output-decentralized and input-coupled
(see Figure 5.2). The model of each subsystem is obtained for i ∈ {1, . . . , 6} following Section
3.2.2 and expressed by (16). In the same way, the hard constraints of the overall DWN are
partitioned and expressed by (17), while for each i-th subsystem the safety constraints are
expressed by

xi(k) ≥ xs,i(k)− ξi(k) ≥ 0, ∀k. (28)

The decomposition of the original problem also leads to split the cost function. Therefore, each
subsystem will be solving, at each time step, the following local multi-objective optimization
problem:

J∗
i (k) = min

u
∗

i (k:k+Np−1)
ρi (γ1JE,i + γ2JS,i + γ3JU,i) , (29)

where JE,i ,
∑Nc−1

l=0 (α1,i+α2,i(k+l))ui(k+l) is the economic objective, JS,i ,
∑Np

l=1 ‖ξi(k+l)‖2
is the safety objective, JU,i ,

∑Nc−1
l=0 ‖∆ui(k + l)‖2 is the smoothness objective, Np, Nc ∈ Z≥0

are the prediction and control horizon respectively, ρi is a positive scalar weight to prioritize
subsystems, γ1, γ2, and γ3 are positive scalar weights to prioritize each objective in the aggregate
local cost function, l is the time step within the receding horizon, and ui, ξi and ∆ui are the
i-th subsystem local variables previously defined. It can be noticed in Figure 4, in a more
compact way, the resulting subsystems and the important couplings between them including
their direction. Instead of neglecting the effect of this shared links as classic pure decentralized
control schemes do, the multi-layer hierarchical coordination described in Section 4 is applied
here.
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Figure 4: Network subsystems Si and their sets of shared connections µij

The results obtained by applying the ML-DMPC are contrasted with those of applying a CMPC
approach and a non-multiayer DMPC strategy proposed in [13]. For this case study, the multi-
layer optimization scheme follows Section 4, resulting in a bi-layer problem which is set up as
follows:

• First, the upper layer works with a daily time scale and it is in charge of achieving the
optimal water source selection. This layer, namedDaily Centralized Control is a centralized
optimization problem with time step ∆t = 24h, which minimizes the cost function (26a)
subject to a daily model of the DWN represented by x(k + 1) = x(k), due to the periodic
behavior of states at this sampling time, and to constraints (15) and (27). The objective
of this upper layer is to determine and fix in an appropriate way the unitary costs of the
critical shared variables that act as sources in the partitioned model, in order to enforce
the global economic objective by sequentially coordinating subsystems, allowing them to
solve their own problems and achieving the solution of the original system.

• Second, the lower layer works with an hourly time scale to cope with the DMPC of
the original problem. This layer, named Hourly Decentralized MPC Control follows the
hierarchical coordination scheme proposed in Section 4 to perform the minimization of
the local cost functions (29) subject to (16), (17), and (28), in order to obtain the control
policies to operate the DWN and achieve the desired performance. In this hourly layer,
following the criterion of the DWN management company, each local MPC controller works
with common prediction and control horizons Np = Nc = 24h. The weights of the cost
function (29) are ρ1:6 = 1, γ1 = 100, γ2 = 10 and γ3 = 0.005. See [13] for details on the
hierarchical DMPC solution sequence.

The results are obtained for 72 hours (July 24-26, 2007). Simulations have been carried out

using Matlab R© 7.1 (R14SP3). The computer used to run the simulations is a PC IntelR© Core
TM

2 running at 2.4GHz with 4GB of RAM. The tuning of design parameters has been done in
a way that the highest priority objective is the economic cost, which should be minimized
while maintaining adequate levels of safety volume and control action smoothness. In order to
implement the ML-DMPC approach, the demand forecasting algorithms presented in [18, 14]
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5.3 Simulation and Preliminary results

are used to calculate the disturbance vector involved in each control problem. For more details
about the twofold-layer optimization problem applied to the Barcelona DWN, the reader is
referred to [17].

5.3 Simulation and Preliminary results

The results of the CMPC, DMPC and ML-DMPC strategies applied to the Barcelona DWN
are summarized in Table 2 in terms of computational burden and of economic cost as a global
management performance indicator. For each MPC approach, the computation time (in seconds)
and the water, electric and total cost in economic units (e.u.), is detailed. It can be noticed that
an increment of nearly 30% of the total costs of operation occurs when using the non-multilayer
hierarchical DMPC strategy with respect to the CMPC baseline. Despite the lower electric
costs, the loss of performance in the overall cost is due to the specialized behavior of local MPC
controllers to solve their own optimization problems without knowing the real water supply
cost of using shared resources with the neighbors. In contrast, the ML-DMPC outperforms the
DMPC results by including the bi-level optimization which allows to propagate the water cost
of sources related with neighbors subsystems to the shared links thanks to the daily centralized
control layer. With this ML-DMPC approach the level of sub-optimality is very low comparing
with the CMPC strategy, i.e., total costs are very similar, but the computational burden is
reduced. For this particular application, the computation time of the three approaches is able to
satisfy the real-time constraint since the control sampling time is 1h. Thus, the main motivation
for using ML-DMPC is the scalability and easy adaptability of the sub-models if network changes,
as well as the modularity of the control policy that leads to face some malfunction/fault without
stopping the overall supervisory MPC strategy.

Table 2: Performance comparisons

Index CMPC DMPC ML-DMPC

Water Cost 93.01 205.55 97.11
Electric Cost 90.31 34.58 87.53
Total Cost 183.33 240.13 184.65
CPU time 1143 537 540

Due the difference of price between water sources and the impact of electric costs on the overall
economic performance, the CMPC and ML-DMPC strategies decide to use more water from
the Llobregat source despite the consequent pumping of more water through the network (see
Figures 6), but achieving a lower total cost, while the hierarchical DMPC decides to exploit in
each subsystem their own water source (which could be expensive) and minimize the pumping
operation cost. Figure 5 shows in detail the evolution of water cost and electric cost, respectively.
These results confirm the improvement obtained by including an upper layer optimization to
coordinate the local MPCs and face the lack of communication when solving their problems in
a tractable way.

5.4 Other results and contributions

Even in a multi-layer decentralized architecture, local MPC controllers have to be properly
designed. Therefore, in addition to the work presented in [15], three approaches have been
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Figure 5: Economic costs of the three MPC strategies
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Figure 6: Total flow per water source in the Barcelona DWN

developed for the design of local controllers in the aforementioned case study by the author
and the advisors of this proposal. First, a reliability-based MPC (RB-MPC) consisting in a
two-layer finite horizon optimization problem that integrates, within the MPC framework, the
online computation of dynamic safety stocks and the online management of actuator health
degradation is proposed in [8]. Second, a chance-constrained MPC (CC-MPC) to cope with
additive stochastic disturbances and to incorporate an explicit risk management mechanism that
leads to a robust controller with less conservatism than common set theory-based approaches is
proposed in [6]. Third, a learning-based MPC (LB-MPC) is proposed in [7] to add self-tuning
capabilities to the local MPC controllers, allowing for adaptation and improvement of system
performance.
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