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1 Introduction and motivation

Three of the most researched topics in mobile robotics are localization, mapping and path plan-
ning. We can define mapping as the problem of generating a representation of the environment
(a map) from the sensory output of a robot that is following a given trajectory. Localization is
the problem of estimating the pose of such robot within a given a map whilst executing a given
trajectory. And, path planning is the problem of computing a feasible trajectory from an initial
configuration to a final one, given a map and full certainty about the robot location within it.

The intersection of these three problems generates four new problems. Combining localization
and mapping, we define simultaneous localization and mapping as the problem of generating map
and localizing the robot in it while it is executing a given trajectory. Alternatively, the problem
of planning the trajectory that will localize better the robot given a map, i.e. the combination
of localization and path planning, is called active localization. Exploration, the combination
of mapping and path planning, is the problem of driving a (localized) robot to build a map of
an environment. Finally, we call the combination of all these problems as Active Simultaneous
Localization and Mapping (Active SLAM), and we define it as the problem of finding the best
path to drive a robot to build a map of a previously unknown environment and simultaneously
localizing itself in it.

The problem grows as time increases, receiving more sensor data, increasing the trajectory
of the robot to be estimated, enlarging the map, etc. Hence finding scalable solutions to the
combined problem poses big challenges.

Nevertheless, even though mapping, localization and planning are widely studied topics in
mobile robotics, they are not the ultimate tasks we want the robots to do. They should be back-
ground non-costly processes that provide the robot with basic capabilities to do more sofisticated
tasks such as fetching goods, guiding a human, surveying an area, etc.

Significant advances have been made in all these areas. We can find now state of the art
algorithms that accurately localize a robot in real time for a restricted number of domains,
but new application demands require for this to happen in systems with limited computational
power (cell phones, UAVs, embedded computing systems, etc.) So finding scalable solutions
to the problem is always a valid concern for researchers. This poses a compromise between
computation speed and accuracy; and to tackle the problem, some researchers opt to reduce the
problem size (dropping measurements, marginalizing states, subsampling, prunning the graph
of constraints, etc.), or renounce to build it from scratch (relinearizing part of the problem), all
these using most of the time heuristics. In this thesis we will derive principled ways to tackle
such variants of problem reduction using information metrics to evaluate the effect of them.

2 Objectives

The main objective of the thesis is to propose and formalize information gain metrics that can
be used to tackle the scalability concern for the SLAM and Active SLAM problems, the amount
of information at stake.

As explained before, in SLAM there will always be a compromise between computation time
and accuracy and several decisions will have to be taken in that sense. We will exploit various
information metrics to provide criteria to make those decisions. By measuring the amount of
information that is ignored or taken into account when relinearizing, pruning, subsampling or
even solving only parts of the problem will help us make principled decision to balance accuracy
with computational cost.

In the case of Active SLAM, the decision of which paths to take have a direct influence on
both the total travelled distance by the robot, hence time, and on the quality of the resulting
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map. The information gain on a path estimate and the ensuing map would allow us to evaluate
different path candidates and even give some clues on how to create the path candidate set.

Sumarizing, our objectives are to efficiently evaluate the information gain for the various
parts of the SLAM and Active SLAM problems:

• Develop and formalize information metric-based formulations to be used in existing state-
of-art SLAM methods to ease the time and space computational burden of the algorithms
(i.e. graph prunning to discard observations and/or variables from the problem; partial
relinearization and partial problem solving; etc.).

• Develop information gain-based Active SLAM methods, choosing the most infomative path
to efficiently and correctly map the environment.

3 Expected contribution

To accomplish the abovementioned objectives, we sill study the state of the art and provide a
comprehensive view on the use of information metrics for the solution of the SLAM and Active
SLAM problems, and contribute with novel alternatives.

For the case of SLAM, the ultimate goal is to make the problem tractable, using information
metrics to make decisions about the use of sensory data even before it is fed to any state esti-
mation or optimization machinery. Furthermore, the effect of missing sensory data (including
odometry) will be systematically analized with respect to the loss of accuracy.

In consequence, we expect to provide means for the systematic prunning of measurements
and variables; and an information-hierarchic representation of the problem that allow solving
only the most informative part using state-of-art SLAM methods, hence reducing computational
burden. The effect of relinearization (i.e. rebuilding the nonlinear problem at a new linearization
point) on the accuracy and computational cost of the solution will also be studied.

This introduces a new perspective to the problem, the time saved by those processes that
renounce to accuracy (prunning state variables or measurements) should be balanced with that
consumed by those processes that improve the accuracy of the solution (relinearization).

Furthermore, since Active SLAM is driven by opposing forces (the exploration vs. exploitation
paradigm), a joint metric that evaluates the combined effect of path and map entropy decrease
will be proposed.

This project is developed in the framewok of the FP7-SST EU project Cargo-ANTs, dedicated
to the autonomous navigation of trucks and AGVs in cargo ports and terminals. Hence, a SLAM
front-end, compatible with the latest SLAM back-end solutions that makes use of the proposed
solutions to scalability will be provided.

4 State of the art

Simultaneous localization and mapping

Several different approaches to solve the SLAM problem exist depending on the environment
representation choosen, on what is estimated , or on how the solution is computed.

Localizing the robot means estimating the current robot pose. For this reason, initial solutions
to the SLAM problem estimated some environment landmarks and only the current robot pose [6].
However, the concept of SLAM has evolved to include the full history of tobot poses in the
state, as well as the landmarks. This is kown as full SLAM [7]. And, when the landmarks are
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marginalized and only the robot poses are retained, we may refer to the Pose SLAM solution to
the problem [8].

These first SLAM methods [9, 10] used an Extended Kalman Filter (EKF) to solve the
problem. In the EKF the state x is estimated as a multi-variate Gaussian distribution p(x) ∼
N (x;µ,Σ), with its mean µ and its covariance Σ.

The filter updates the estimate of x with obervations zk from a variety of sensors. Observa-
tions1 come either from propioceptive or exteroceptive sensors and take the form

zk = hk(x) + vk, vk ∼ N (0,Σzk) (1)

being Σzk the measurement noise covariance of the k-th measurement, and the error between
the expected observation and the one actually measured is

ek(x) = hk(x)− zk. (2)

Whenever an observation zk produces a new variable (whether a new landmark or a new robot
pose) eq.2 cannot be computed, instead the problem is augmented with a new state variable xn,
which obviously requires augmenting the sizes of the mean vector µ and the covariance matrix
Σ. The new state estimate is computed2 propagating the sensor uncertainty with

µ←
[

µ
gk(µi, zk)

]
(3)

Σ←
[

Σ Σ:,iG
>
kx

Gkx
Σi,: Gkx

Σi,iG
>
kx

+ Gkz
ΣzkG>kz

]
(4)

where xn = gk(xi, zk) is the inverse sensor model of the observation zk. It returns the new state
variable xn given the observation zk and the pose at which was taken xi. Gkx and Gkz are the
Jacobians of gk(x, zk) with respect to x and zk, respectively, evaluated at µ.

Since state augmentation implies a multiplication of a covariance block-column by the Jaco-
bian Gkx

, its cost is linear with respect to the problem size O(n).
However, to update the filter with a new observation zk between existing variables of the

state, the state update is computed with

∆µ = ΣJkSk(zk − hk(µ)) (5)

∆Σ = −ΣJ>k S−1
k JkΣ (6)

being Jk the Jacobian of hk(x) with respect to x, evaluated at µ, and Sk the innovation matrix

Sk = JkΣJ>k + Σzk . (7)

Sk has the size of the variables involved in the observation, hence its inversion does not implie
a big cost as long as the size of the measurement is small. However, the multiplication of the
entire covariance matrix has quadratic cost with respect to the problem size O(n2), and in SLAM,
Σ encodes all metric correlations between variables, ultimately becoming fully correlated. For
this reason, the näıve solution of the EKF SLAM problem becomes computationally intractable
even for problems of moderate size.

1 To cope with the two-stage prediction and update steps of the traditional Kalman filter, observations are
typically divided in the literature as those coming from the motion model, and those coming from the measurement
model. However, motion can be rewritten analogoulsy as an observation.

2The left arrow is used to depict an update on the content of the state. The subindex denotes row and column
blocks. For instance, Σ3,3 refers to the marginal covariance block of the 3rd block of variables. For block column
or row, we use ’:’ meaning all blocks.
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To avoid that, one can resort to the Extended Information Filter (EIF) [11] which represent
the state using the information form p(x) ∼ N−1(x;η,Λ), where the information matrix Λ and
the information vector η are related with the mean µ and covariance Σ by

Λ = Σ−1, η = Λµ. (8)

Taking this representation, the information matrix becomse sparse because it only encodes
the conditionals between variables instead of correlations. Then, the filter update with a new
observation z becomes

∆η = J>k Σ−1
zk

(zk − hk(µ) + Jkµ) (9)

∆Λ = J>k Σ−1
zk

Jk (10)

Augmenting the problem is equivalent to updating after resizing the information matrix and
vector with zeros. However, despite that the computational cost of augmenting and updating the
state is near constant since Jk is full of zeros except for the variables involved in the observation,
the solution of the problem is not yet available. It is mandatory to have a solution of the mean
to evaluate Jacobians, and sometimes of the covariance of the estimation. Then, a state recovery
method is needed and the näıve implementation would have cubical cost O(n3) since it implies
inverting the information matrix (eq. 8), being even more expensive than the näıve EKF.

Ila et al. [8] used the EIF to estimate only the robot trajectory using the sensor data to
establish correspondences between robot poses. In such case, an efficient state recovery solution
provides the mean, the marginal covariances of all the poses, and the last covariance block column
with constant time after an augment step, and almost in linear time with respect to the state
size after an update step.

Both actions are critical in terms of computational cost. Adding a large number of robot
poses will significantly increase the computational cost of a future loop closure, and closing a
large number of loops implies also an important cost. In [8], the information gain is defined as the
entropy change of the state estimation, and it is used to make decisions about when to add new
robot poses to the state or when to close loops. Adding only those poses that add “significant
amounts” of information to the state and closing only the “sufficiently informative” loops allows
for a much smaller representation of the problem without renouncing to the main information of
it. It meant, solving the problem faster without significantly renouncing to the accuracy.

But whatever representation is used, filtering linearizes each observation over the mean µ
when it has arrived, and no relinearization is done even if the solution has importantly changed.
As a consequence, filtering is overconfident in measuring the error and can end up producing an
ill-defined covariance or information matrix.

The SLAM problem can be represented by a graph such as factor graph (fig. 1). Graph-based
SLAM methods are those that use graphs for representing and managing the problem. Several
graph-based SLAM methods tackle the problem as a non-linear least squares problem, i.e., as
the minimization of the squared Mahalanobis distance of the measurement error

∆µ∗ = arg min
∆µ

∑
k

‖ek(µ + ∆µ)‖2Σk
. (11)
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Figure 1: Factor graph example. White nodes represent the state variables x including the robot trajectory
(x1,x2,x3,x4,x5) and the set of landmarks (l1, l2, l3). Black nodes (factors) represent observations z, i.e. con-
straints, including odometry constraints (f3, f6, f9, f12), landmark observations (f2, f4, f5, f7, f8, f10, f11, f13)
and a prior for the first robot pose f1.

Linearizing the error,

ek(µ + ∆µ) = ek(µ)︸ ︷︷ ︸
ĕk

+
∂ek(x)

∂x

∣∣∣∣
µ

∆µ

= ĕk +
(∂hk(x)− z)

∂x

∣∣∣∣
µ

∆µ

= ĕk +
( ∂hk(x)

∂x

∣∣∣∣
µ

−
�

�
���

0
∂z

∂x

∣∣∣∣
µ

)
∆µ

= ĕk + Jk∆µ (12)

and Eq. 11 becomes
∆µ∗ = arg min

∆µ
‖A∆µ + b‖2, (13)

being A = [Σ
−>/2
1 J1 . . .Σ

−>/2
k Jk]> and b = [Σ

−>/2
1 ĕ1 . . .Σ

−>/2
k ĕk]>.

One important thing to point out is that A is sparse since every measurement depends only
on a few state variables and thus Jk is full of zeros except for the blocks corresponding to the
variables involved. From this point, two main approaches have been exploited to solve eq. 13.
The first approach [12–14] uses QR factorization of A

A = Q

[
R
0

]
(14)

where Q is a rotation matrix and R is an upper triangular matrix. Appliying the QR factoriza-
tion, we obtain a solution of eq. 13

R∆µ∗ = −d, where

[
d
c

]
= Q>b. (15)
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l1
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Figure 2: Bayes net after variable elimination of the factor graph in fig. 1 with the elimination order: l1, l2, l3,
x1, x2, x3, x4, x5. Each directed edge represents a conditional probability.

x5, x4

x2, x3 : x4

x2, l1 : x2, x3 l2 : x2, x3, x4

l3 : x4, x5

Figure 3: Bayes tree representation of the Bayes net fig. 2 introduced by Dellaert et al. in iSAM2. Built in the
reverse elimination order of the Bayes net discovering its cliques.

Therefore, the optimal solution for the update ∆µ∗ can be computed by back-substitution
with a computational cost quadratic to the size of the problem in the worst case (when R is
dense). However, given the sparsity of A, using some variable (column) ordering algorithms such
as COLAMD [15], the resulting matrix R can also be made sparse, significantly decreasing the
computational cost.

In [12], Dellaert et al. presented
√

SAM using QR factorization for solving the smoothing
problem. In

√
SAM, once a new observation arrives, all the errors are relinearized and new A

and b are built, then the QR factorization is made from scratch and the problem is solved by
back-substitution. The incremental version, iSAM [13], updates the matrix R and vector d while
new measurements arrive. It implies renouncing to the relinearization of the error of previously
added measurements and to the variable reordering, so batch relinearization (rebuilding of A
and b) and variable reordering is periodically done providing a new matrix R and a new vector
d for computing the solution.

Kaess et al. improved this incremental smoothing and mapping approach with iSAM2 [14]
making use of a new graph structure, the Bayes Tree. Performing variable elimination from
the factor graph (fig. 1) a Bayes net is obtained (fig. 2). This process is equivalent to the QR
factorization being the variable order equivalent to the elimination order. Finally, the Bayes Tree
(see figure 3) encodes the cliques of the Bayes net, storing all non-zero entries of the equivalent
R matrix. Methods to incrementally update the problem and relinearize specific variables within
the Bayes Tree were provided overperforming their previous method iSAM both in computational
time and accuracy of results.
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Besides QR factorization, the problem can be solved in an alternative way. Derivating the
problem in eq. 11 with respect to ∆µ and equalling it to zero, considering the linearized error
(eq. 12), we obtain

∆µ∗ = arg min
∆µ

‖Λ∆µ + ν‖2, (16)

with

Λ =
∑
k

J>k ΣkJk = A>A (17)

ν =
∑
k

J>k Σkĕk = A>b, (18)

which is equivalent to premultiplying Eq. 13 by A>. Then the solution of the problem, ∆µ∗ is
given by

Λ∆µ = −ν. (19)

This is the Gauss-Newton optimization step of the least squares approach of SLAM. It is
important to note that the information matrix Λ is the same as in the EIF, and thus, it is
symmetric and sparse.

Using the Cholesky factorization of Λ = R>R being R an upper triangular matrix 3 we
obtain

R>R∆µ = −ν, (20)

and using a forward-substitution and then a back-substitution, the solution is obtained

R>y = −ν (21)

R∆µ = y. (22)

For the same problem and variable ordering, we see that R is the same for the QR factorization
of A and for the Cholesky factorization of Λ since Λ = A>A = (QR)>QR = RQ>QR = R>R.
Then, also for the Cholesky factorization, the sparsity of R can be increased by variable ordering
in Λ.

Grisetti et al. presented a hierarchical optimization scheme called HOG-Man [16], solving
the Gauss-Newton optimization using the Cholesky factorization over the quaternion manifold.
In order not to recompute the solution of the whole problem each iteration, HOG-Man works
with some graphs representing the problem in different hierarchical levels. The entire problem is
level 0 and grouping the graph nodes depending on graph-distance, higher hierarchy graphs are
built. After solving the highest hierarchy graph, only lower graphs will be solved if the solution
changed more than a certain Euclidean distance threshold.

Polok et al. [17] analogoulsy to iSAM2, presented the incremental version of the Cholesky
factorization of Λ. After taking a new measurement, R is updated directly and variable ordering
and relinearization is also done partially when needed.

Altering eq. 19
(Λ + λI)∆µ = −ν, (23)

we obtain the Levenberg-Marquardt (LM) method. It controls the convergence of the optimiza-
tion by dynamically changing the damping factor λ at each iteration depending on how the error
changes. When a bigger error is obtained after solving, the damping factor λ is increased giving
a step closer to the gradient descent direction. On the contrary, for smaller error, the value of λ
is decreased, bringing the algorithm closer to the original Gauss-Newton in eq. 19.

3or equivalently, Λ = LL> being L a lower triangular matrix: L = R>
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Konolige et al. proposed Sparse Pose Adjuntment (SPA) [18], which implements a LM opti-
mization for solving 2D SLAM problems. Kummerle et al. presented g2o [19] also using LM for
solving more general SLAM problems. Specifically, g2o exploits the structure of the landmark-
based SLAM problem as in [20]. Consider that the robot poses xP and landmarks xL are ordered
in blocks, then eq. 23 can be rewritten as[

ΛPP + λI ΛPL

Λ>PP ΛLL + λI

] [
∆µP

∆µL

]
= −

[
νP

νL

]
(24)

and if we consider the two separate equations

(ΛPP + λI)∆µP + ΛPL∆µL = −νP (25)

Λ>PP ∆µP + (ΛLL + λI)∆µL = −νL, (26)

solving for µL in eq. 26 and substituing in eq. 25 we obtain a new smaller linear problem

(ΛPP + λI−ΛPL(ΛLL + λI)−1Λ>PL)∆µP = −νP + ΛPL(ΛLL + λI)−1νL. (27)

To build it, only the inversion of ΛLL + λI has to be computed and it only has linear cost,
since the information matrix part relating to the landmark variables ΛLL is block diagonal.
Then, solving this linear system can be done by Cholesky factorization of a matrix significantly
smaller than Λ + λI. Once ∆µP is obtained, ∆µL is taken from eq. 26 with no need to invert
more matrices.

The emergence of these least squares minimization solutions outperformed significantly the
accuracy and consistency of the filter-based methods by allowing the relinearization of the prob-
lem. Whatever method is used to solve it, the computational complexity is related with the
variable ordering. To improve the time consumption of batch solution of SLAM (linearizing,
factorizing and solving) incremental approaches update the problem with new measurements
renouncing to relinearize and/or reorder (hence rebuild) the entire problem.

Although
√

SAM, iSAM, iSAM2, g2o and incremental block Cholesky factorization do not
focus on that, the problem size (i.e. the amount of variables) and density (i.e. the amount of
observations) are equally important. Different alternatives are chosen in order to face it from
discarding to marginalizing.

One alternative to the increasing size of SLAM could be to consider a (temporal, spatial, etc)
window and discarding or marginalizing the landmarks and/or poses that rest out of this window.
This is the case of visual and visual-inertial odometry methods [21, 22]. While marginalizing
ends up causing dense information matrices, discarding landmarks implies renouncing to large
loop closures.

In Pose SLAM [8], some new observations and new robot poses are decided not to be added
to the problem according to their information content, defined as the full multi-variate Gaussian
distribution entropy change

Ik = ∆H(x) =
1

2
ln

|Λ|
|Λ + ∆Λ|

=
1

2
ln
|Sk|
|Σzk |

. (28)

While redundant odometries are marginalized while they are integrated, poorly-informative
loop closures are discarded. In contrast, in HOG-Man, the hierarchical structure allows to
mantain the size of the problem bounded. The upper graphs represent marginalzed subgraphs
and if the error is low enough, the optimization is done for the upper graph levels. However, all
observations are added to the lowest level graph.
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Several publications approached the problem of graph pruning and sparsifying for SLAM.
Kretzschmar and Stachniss [23] presented an information-theoretic compression method for pose
graph SLAM by selecting the most informative laser scans with respect to the map. They defined
the problem as finding the subset of measurements z? containing at most K measurements which
maximize the mutual information of the map m for that subset

z? = arg max
z?⊆z,|z|≤K

H(m|z)−H(m|z?). (29)

Then, the measurements left are approximately marginalized based in Chow-Liu trees [24] in
order to maintain sparsity. Johannsson et al. proposed a reduced pose graph that only grows
with the size of the environment mapped by marginalizing new poses close to previous poses.

Wang et al. [25] use Kullback-Liebler divergence (KLD) of the map m for a subset of poses
x? and the observations z? recorded at those poses

KLD =

∫
p(m|x, z) log

p(m|x, z)

p(m|x?, z?)
dm . (30)

They proposed two alternative mechanisms: keyframe selection and the pruning of previous pose
nodes, approximating the KLD of the original graph to that of the pruned graph.

Mazuran et al. [26] formulated sparsification as a convex minimization problem and proposed a
Chow-Liu tree-based sparsification of the graph. Chouldhary et al. [27] proposed an information-
based reduced landmark SLAM. Their method minimizes an objective function based on memory
consumption and the elimination of the least informative landmarks, defining the information of
a landmark as the estimation entropy change as in eq. 28.

To sumarize, three time-critical decisions in solving SLAM problems have been identified:
variable ordering, relinearization and problem size and sparsity. While the first is only related
to time consumption, the second and third relate also to its accuracy. Therefore the decisions,
regarding the inclusion of observations and the amount of relinearization, present a trade-off
between time consumption and accuracy of the results. A principled solution should weight both
consequences simultaneously.

The fastest state-of-art SLAM methods, iSAM2 and incremental Cholesky factorization, ap-
proach the relinearization in a different manner. While the second rebuilds the entire problem
when the solution falls further than a certain threshold from the linearization point, iSAM2
evaluates all nodes independently and only relinearizes some specific nodes while rebuilding part
of the problem at the incremental reordering routine. However, both methods use Euclidean
distance thresholds without taking into account the the quality of the estimate (i.e. its covari-
ance). For instance, improving 0.1m the estimation after a relinearization is worth depending on
how large the covariance of the estimation is. For large covariances, solving the problem with
new observations would bring more information and perhaps be more beneficial than spending
resources in relinearizing.

Relating to problem size and sparsity, several information-based methods exist for batch
and incremental pruning the graph. Many of them propose to marginalize or aproximately
marginalize graph nodes or constraints, however, no relinearization is possible for those nodes
once they are removed and correlation fill-in is produced. The use of hierarchical graphs could
be combined with the idea marginalization in order not to definitively discard or marginalize
nodes but instead to optimize at different levels of abstraction.

A coherent metric is needed in order to compare the contribution of relinearization vs. prun-
ning. This metric will allow us to make informed decisions on the trade-offs between computa-
tional cost and accuracy.
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Exploration and Active SLAM

As defined above, exploration is the problem of planning trajectories in order to map the environ-
ment. Most typical approaches to exploration are frontier-based methods, defining the frontier as
the boundary between free space and unknown space. Using an occupancy grid representation,
Yamauchi presented a seminal frontier-based exploration method [28] that drives the robot to
the nearest frontier. Since then, several frontier-based exploration methods implemented new
frontier selection policies depending on some utility and cost [29, 30], using greedy strategies
seeking coverage [31], or using potential fields to drive the robot to frontiers [32].

Some other methods seek coverage without driving the robot to frontiers. For instance,
Amigoni and Caglioti [33] evaluate a set of random reachable goals weighting the expected map
information gain and the distance to reach them. The integrated exploration method [34] takes
into account also the localization uncertainty.

A principled way to consider exploration and localization uncertainty at the same time is by
minimizing two independent terms, the map entropy and the path entropy. Feder et al. [35], pro-
pose a metric to evaluate uncertainty reduction as the sum of these two independent entropies,
but only for the last robot pose and a limited set of landmarks with a one step exploration hori-
zon. Bourgault et al. [36] alternatively propose a utility function that computes independently
the potential reduction of vehicle localization uncertainty from a feature-based map, and the
information gained over an occupancy grid. To consider joint map and path entropy reduction,
Vidal et al. [37] tackled the issue taking into account robot and map cross correlations for the
Visual SLAM EKF case. Torabi et al. [38] jointly computed the entropy reduction directly in
configuration space but for a limited number of configurations.

Whereas the effect of actions can be evaluated with respect to both map entropy reduction
or path entropy reduction, there is still the question on how to generate the action set to be
evaluated. Action evaluation is a costly endeavour, and most exploration methods are designed
to evaluate the effect of only limited set of heuristically chosen actions (path candidates) [39, 40].

Formally, the joint map m and path x entropy, given all motions and observations z4 is given
by the sum of the path entropy given z and the average over the entropy of the resultng map for
each of the paths in the path probability distribution

H(x,m|z) = H(x|z) +

∫
x

p(x|z)H(m|x, z)dx . (31)

In [39], a particle filter is used, and the weighted integral is approximated as a sum for all
weighted particles. In [40] instead, the joint entropy is approximated with

H(x,m|z) ≈ H(x|z) +H(m|µ, z) , (32)

where instead of averaging over all paths in the probatility distribution, the second term evaluates
the entropy of the map m given full confidence on the path mean path µ.

For an occupancy map with size cell l, its entropy can be computed as the scalar sum

H(m|z) = −l2
∑
c∈m

(pc log pc + (1− pc) log(1− pc)), (33)

where pc is the classification probability of cell c.
The path entropy H(x|z), i.e. the entropy of a multivariate Gaussian of size n is given by

H(x|z) = ln
(
(2πe)(n/2)|Σ|

)
. (34)

4As in the previous subsection, the motion commands u are conceptually equivalent to observations, and can
be combined with measurements in an aggregated vector z, hence simplifying the notation.
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(a) Occupancy map
with obstacles (black),
frontiers (white) and
free cells (light grey).

(b) Obstacle occlusion
mask in one ray direc-
tion.

(c) Map entropy de-
crease in one ray direc-
tion after variable reso-
lution update.

(d) Sum over entire sen-
sor spread for one robot
orientation.

Figure 4: Computation of map entropy change for one particular robot orientation.

Unfortunately, Σ in Eq. 34 can easily become ill-defined when two poses become fully correlated.
To compute an estimate, the entropy of the path could be approximated without taking into
account correlations between poses [40], by averaging over the N individual pose marginals

H(x|z) ≈ 1

N

N∑
i=1

ln((2πe)(dim/2)|Σii|). (35)

where dim is the dimension of the poses.
As said previously, in previous approaches [39, 40], only a heuristically chosen set of action

candidates were evaluated, frontier-based goals and loop closing or revisiting configurations in
the traversed path.

5 Preliminary work

The firsts results of our research on using information metrics in Active SLAM are reported
below.

Information gain over the configuration space

Departing from the work of Valencia et al [40], we explored a new approach [2, 5] to evaluate
the effect of not only a few path candidates, but of a dense sampling of all the possible robot
configurations of the known environment.

This means, computing a dense estimate of joint entropy reduction for the entire configuration
space. To do so, we compute directly the map and path entropy reduction estimates for each
possible robot configuration using frontier-visibility. Using the fact that sensor beams repeat
for many orientations at the same position, and using very efficient kernel convolutions, we
are able to compute these estimates very fast and densely. To illustrate the idea, fig. 4 shows
the steps of the visibility estimation process. By estimating the entropy decrease densely, i.e.,
for all robot configurations, we can now evaluate motion policies not only for a few candidate
configurations [28, 39, 40], but for the entire C-space (see Fig. 5.a). The method uses PoseSLAM
as its estimation backbone and hence performs path entropy reduction during state update when
poses are revisited.

In addition, instead of the joint entropy approximation used in [40], a new factor in the second
summand is added relating to the probability weights

H(x,m|z) ≈ H(x|z) + α(p(x|z))H(m|µ, z). (36)
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(a) (b)

Figure 5: (a) Dense joint entropy decrease and (b) Information-based potential field in two different instances of
time in the cave-like map.

This factor α(p(x|z)) has an intuitive meaning, exploratory trajectories that depart from
well localized priors produce more accurate maps than explorations that depart from uncertain
locations. In fact, sensor readings coming from robot poses with large marginal covariance may
spoil the map adding bad cell classifications, i.e., adding entropy. Our approach is to weight the
entire entropy reduction map with the inverse of the determinant of the marginal covariance at
the current configuration α(p(x|z)) = |Σnn|−1.

Exploratory trajectories that depart from uncertain configurations will be weighted giving
predominance to the path entropy reduction term and viceversa. In this way, we modulate the
importance of the exploratory and relocalization behavior as shown in [5], improving the strong
sensibility with respect to motion noise.

Two exploration strategies that make use of this densely computed entropy reduction estimate
in the whole C-space are provided. Both strategies have as objective to drive the robot to
minimize both map and path entropies, i.e., maximizing coverage while maintaining the robot
well localized. The first strategy converts the entropy decrease estimate to an information-based
potential field, and searches its minima using a gradient descent method. The second approach
chooses the maximum informative configurations as goals and plans a trajectory to them through
the free space with the aid of an RRT* tree.

Making use of harmonic functions, a potential field is obtained from the joint entropy decrease
estimation (see Fig. 5.b). Since the path planned is the result of a gradient descent over it, not
only the last pose of the path is a (local) minima (maxima in terms of information) but also the
path taken to reach such pose goes thru the most informative configurations.

Information gain over the action space

But evaluating joint map and path entropy decrease (i.e. information gain) estimates densely for
the entire configuration space finely discretized does not take into account the changes in entropy
induced during path execution and only the estimated change at the final robot configuration.
Not taking into account the effect of the whole path implies renouncing to optimality. It would
make more sense to evaluate the effect of the whole path and not just at the goals.

12



(a) dRRT*

(b) eRRT*

Figure 6: Two examples of the resulting path candidates using the two different cost functions proposed. Color
of branches represent the value of the information gain per meter travelled (Eq. 37) of the path that ends in the
corresponding node. Red paths indicate better candidates. In gray, the Pose SLAM nodes.

In our last work [4], we add to the equation the distance traveled, so that joint entropy
minimization is not independent of the path length. In this way we can compare path candidates
a = {un+1, . . . , uN} of different length when searching for the optimal entropy reduction action
set and also minimize the distance traveled. Consequently, we propose the minimization of the
joint entropy change divided by the length of the path candidate, maximizing information gain
per meter traveled

a∗ = argmin
H(x1:N ,mN |z1:N )−H(x1:n,mn|z1:n)

dist(a)
. (37)

The estimation should not overcount the joint entropy decrease of a path, i.e., a map cell
discovered in previous poses of the path candidate should not be accounted for twice. This
is taken into account in our computation of map entropy reduction. To that end, we extend
our previous work with an efficient method to accumulate joint entropy decrease estimation
over a travelled path. Using this estimation, two alternatives to search for path candidates
are presented. First, it is used to evaluate the path candidates generated by a standart RRT*
(dRRT*), and second, it is used also as a cost function of the RRT* algorithm in order to make
it grow looking for the optimal paths (eRRT*).

Figure 6 shows two examples of both alternatives. While dRRT* provides distance-optimal
paths to reach several free poses, eRRT* provides several information gain per meter travelled
optimal paths. The evaluation of all the candidates generated in terms of information gain per
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meter travelled are depicted in the same color scale showing that obviously the eRRT* action
set is better. However, the price to pay is about an order of magnitude higher with respect to
computational cost.

6 Work plan

We now present the various tasks that need to be carried out to accomplish the objectives of this
research plan, and an intended Gantt chart for their execution.

Task 1: Literature review

This task is meant to gain a general overview on the state-of-art of SLAM and Active SLAM.
The SLAM literature review will focus on least squares minimization methods, prunning and
sparsification, and information theory applied to those problems. Also, the latest hierarchical
SLAM representations will be reviewed. The Active SLAM literature review will include those
publications related to exploration strategies, information-based active SLAM and planning.

Task 2: SLAM front-end implementation: WOLF

Since the main objective of the thesis is not to implement a new SLAM back-end but instead, to
use information gain metrics with state-of-art SLAM back-ends; the implementation of a SLAM
front-end capable of managing several available SLAM back-ends is a principal task of the thesis.

Task 3: Information gain in SLAM

Task 3.1: Pruning measurements

This task entails the formulation of information gain metrics to evaluate the information content
of any given measurement, i.e, the contribution of such specific measurement to the solution of
the whole estimation problem. This metric will be used to discard those measurements that
least contribution to the solution of the problem making it more sparse, and hence with a lower
computational burden.

Task 3.2: Pruning variables

The quantification of the information content encoded in each SLAM variable, and in the cor-
relation between variables will be tackled in this task. Both robot poses and landmarks will be
taken into consideration. Identifying the most redundant variables, and marginalizing or remov-
ing them, will allow us to reduce the size of the problem, and hence the computational cost of
its solution.

Task 3.3: Information-hierarchical SLAM

Once information-theoretic decisions for the pruning of measurements and variables are in place,
we will develop a hierarchical approach in which these discardable measurements and variables
can be encoded in lower layers of the hierarchy. In this way, their contribution to the solution of
the problem is not completely lost, but instead deferred within the estimation pipeline.

This hierarchy will also allow us to gauge the level of information content to be included in
the problem, according to the computational resources that can be committed to its solution. In
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this way, suboptimal solutions with smaller computational cost can still be obtained focusing on
different parts of the problem hierarchy.

Task 3.4: Relinearization

In this task we will evaluate the effect of relinearization on the accuracy of the solution. On
one side we have filtering, with only one linerization step, which is known to be suboptimal.
On the other extreme we have iterative Gauss Newton providing a full nonlinear least squares
solution which has better accuracy but is significantly more expensive computationally, and all
heuristics and techniques in between described in the state of the art, which linearize only part
of the problem and upon demand. We will provide principled ways to balance this linearization
gauge together with the other time consuming tasks of variable and measurement pruning.

Task 3.5: Information gain rate

The above-mentioned techniques, observation dropping and variable pruning, produce faster
solutions of the problem at the expense of sub-optimality. In contrast, relinearization is an
expensive process that can increase the accuracy of the solution. Hence, the information content
that is lost in each of latter steps and the improvement in accuracy coming from the the former
can be related to the increase or decrease in speed in reaching a solution. We call this relations
information gain rate, and will provide formal ways to represent it and to exploit optimally in
the solution of SLAM and Active SLAM problems.

Task 4: Information gain in Active SLAM

Task 4.1: Estimating the information gain over configuration space

This task includes the development of an efficient method to densely approximate the map and
localization entropy change over the configuration space and some planning strategies to exploit
that.

Task 4.2: Estimating the information gain over action space

This task entails the development of an Active SLAM method approaching it as an action
selection problem. It allows to evaluate not only the final pose but all the intermediate poses of
all candidate paths.

It includes the modification of the efficient approximation of the localization and map entropy
change developed in the previous task to allow evaluating several path candidates to optimally
build the exploration set.

Task 5: Elaboration of the dissertation

The last task of this research is dedicated to the elaboration of the dissertation and the prepa-
ration of its public defense.
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LITERATURE REVIEW 1

SLAM FRONT-END IMPLEMENTATION: WOLF 2

INFORMATION GAIN IN SLAM 3

Pruning measurements 3.1

Pruning variables 3.2

Information-hierarchical SLAM 3.3

Relinearization 3.4

Information gain rate 3.5

INFORMATION GAIN IN ACTIVE SLAM 4

Estimating the Information gain over configuration space 4.1

Estimating the Information gain over action space 4.2

ELABORATION OF THE DISSERTATION 5

Figure 7: Work plan of the proposed work
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(a) Mobile robot Teo (b) AGV from VDL (c) Automated Volvo truck

Figure 8: The mobile robotic platforms where the algorithms developed in this project will be tested.

7 Resources

This research project will be developed in the context of the EU Cargo-ANTs project. To develop
it, all methods will be implemented in ROS and tested in Gazebo simulation, using real datasets
from project prior to their validation with real robots and in real scenarios.

Initial experiments will be performed using the TEO robot shown in fig. 8(a) (http://wiki.
iri.upc.edu/index.php/TEO), a rugged outdoor mobile robotic platform based on the Segway
RMP 400 unit and equipped with various 2D and 3D laser range finders, cameras, IMU and GPS.
As algorithms mature they will be migrated to the platforms of the EU Cargo-ANTs project,
the VDL AGV unit from TNO shown in fig. 8(b), and the Volvo automated truck from fig. 8(c).

8 Publications

Our preliminary work has given rise to the following publications.

Conferences

[1] J. Vallvé and J. Andrade-Cetto.“Mobile robot exploration with potential information fields”,
6th European Conf. Mobile Robots, Barcelona, Sep. 2013, pp. 222-227.

[2] J. Vallvé and J. Andrade-Cetto. “Dense entropy decrease estimation for mobile robot ex-
ploration”, IEEE Int. Conf. Robotics Autom., Hong Kong, May 2014, pp. 6083-6089.

[3] R. Valencia, J. Saarinen, H. Andreasson, J. Vallvé, J. Andrade-Cetto and A. Llilienthal.
“Localization in highly dynamic environments using dual-timescale NDT-MCL”, IEEE Int.
Conf. Robotics Autom., Hong Kong, May 2014, pp. 3956-3962.

[4] J. Vallvé and J. Andrade-Cetto. “Active Pose SLAM with RRT*”, IEEE Int. Conf.
Robotics Autom., Seattle, May 2015, to appear.

Journals

[5] J. Vallvé and J. Andrade-Cetto. “Potential information fields for mobile robot exploration”,
Robotics and Auton. Syst., vol. 69, pp. 68-79, 2015.
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