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Abstract— Outdoor camera networks are becoming ubiqui-
tous in critical urban areas of large cities around the world.
Although current applications of camera networks are mostly
limited to video surveillance, recent research projects are
exploiting advances on outdoor robotics technology to develop
systems that put together networks of cameras and mobile
robots in people assisting tasks. Such systems require the cre-
ation of robot navigation systems in urban areas with a precise
calibration of the distributed camera network. Despite camera
calibration has been an extensively studied topic, the calibration
(intrinsic and extrinsic) of large outdoor camera networks with
no overlapping view fields, and likely to suffer frequent recali-
bration, poses novel challenges in the development of practical
methods for user-assisted calibration that minimize intervention
times and maximize precision. In this paper we propose the
utilization of Laser Range Finder (LRF) data covering the
area of the camera network to support the calibration process
and develop a semi-automated methodology allowing quick and
precise calibration of large camera networks. The proposed
methods have been tested in a real urban environment and
have been applied to create direct mappings (homographies)
between image coordinates and world points in the ground
plane (walking areas) to support person and robot detection
and localization algorithms.

I. INTRODUCTION

Many urban areas and public buildings around the world
have currently large camera networks. Applications have
been focused mainly in security and surveillance but new
trends in robotics are extending their usage to support the
operation of mobile robotic devices in urban areas [1].
The camera network serves as a mean to detect, localize
and map environmental information in a globally coherent
frame of reference. Persons, robots and other targets must
be localized in a unique coordinate system even though they
are observed by distant cameras. This is a complex problem
since camera networks have few or no overlapping fields of
view. Additionally, being an outdoor system, it is constantly
susceptible to weather conditions, such as rain and wind,
and thus it is expected to have slight but visible positioning
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Fig. 1. Results of the proposed calibration system. The top row shows
a graphical user interface to select planar regions and the registration of
the laser range data on an image view. The bottom row shows recovered
orthographic views of the ground plane. The chess pattern shown is not used
for calibration, serves just to visually evaluate the quality of the ground-
plane rectifying homography.

changes from time to time. The calibration methodology
must therefore encompass simple self-adjusting mechanisms.

Recently, the development of powerful laser sensors com-
bined with Simultaneous Location and Mapping (SLAM)
methodologies [2], [3] allow the possibility to have available
high precision Laser Range Finder (LRF) data registered
over large areas. These large outdoor LRF datasets have
started recently to be acquired also for the purpose of
creating robot navigation systems in urban areas. The LRF
data is acquired over the complete area of the network
and, in particular, contains the areas corresponding to the
fields of view of the cameras. This paper exploits this novel
technologies proposing a methodology for calibrating an
outdoor distributed camera network using LRF data.

The paper contributes in the use of LRF as external
information to aid the calibration procedure of the distributed
camera network. Whenever cameras have no overlapping
view fields it is not possible to estimate the relative position
between cameras unless external data is used to refer the
camera calibration parameters to a global reference frame.
Since calibration inevitably requires some user intervention,
in large camera networks this can be a very tedious procedure
if one does not develop practical and semiautomated methods
that facilitate and speed up user input.

The idea of the approach is the following: in a first stage,
the LRF map is registered to an aerial view of the site
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Fig. 2. An aerial view of our experimental site, the Barcelona Robot Lab
(top), and the distribution of cameras in the network (bottom).

and the user sets up the position and nominal calibration
parameters of the cameras in the network. This allows user
selection of an initial camera field of view onto the LRF
area of interest likely to be observed by each camera. In a
second stage, lines extracted from the LRF area of interest
are represented in the nominally calibrated camera coordinate
system and are reprojected to the real-time cameras’ acquired
images. This allows the user to perceive the calibration
errors and input information to a non-linear optimization
procedure that refines both intrinsic and extrinsic calibration
parameters. The optimization process matches 3D lines to
image lines. The 3D lines are extracted by intersecting planes
on the segmented LRF set. A novel approach to 3D range
segmentation based on local variation is used [4]. To show
the applicability of the calibration results, homographies of
the walking areas are computed.

This work is associated with the European project Ubiq-
uitous Networked Robotics in Urban Settings (URUS), that
puts together networks of cameras and mobile robots in
people assisting tasks. Fig. 2 shows an aerial view of our
application scenario, the Barcelona Robot Lab. installed at
the UPC Campus Nord, as well as a floor plan of the outdoor
camera network.

The paper is organized as follows. First, related work
in the calibration of camera networks is presented. Then,
our method to extract 3D lines from available range data
sets is explained, and the proposed method to refine the
calibration parameters by matching these features with the
same features on images is shown. Experiments on a real
urban environment are depicted, and finally, conclusions and
future work are discussed.

II. RELATED WORK

Different techniques have been proposed to calibrate cam-
eras. Some require using patterns, either planar [5] or non-
planar [6], with known metric structure. However, for large
outdoor camera networks, calibration patterns of reasonable
sizes often project on images with very small resolution,
mainly because the cameras are located at a considerable
height with respect to the floor; consequently making pattern
segmentation difficult. In addition, a pattern-based indepen-
dent calibration of each camera would require a secondary
process to relate all camera coordinate systems to a global
reference frame, but establishing this relation with small to
null overlapping fields of view is nearly impossible. For
planar scenarios, a Direct Linear Transformation (DLT) [7]
suffices to estimate image to plane homographies [8]. Un-
fortunately, the planar scenario assumption is too restrictive,
especially in situations with unparallel locally planar surfaces
such as ramps and plazas, which often occur in real urban
environments, as in our case.

An interesting technique to calibrate the camera network,
without the need of a pattern, is with the aid of a bright
moving spot [9]. The technique assumes overlapping fields
of view to estimate the epipolar geometry of the camera
network, to extract homographies, estimate depth, and finally
compute the overall calibration of the camera network. In
our case the cameras’ fields of view seldom overlap, and the
visibility of the bright spot does not always hold at sunlight.
Another alternative is to place the led light on a moving
robot and to have a secondary robot equipped with a laser
sensor tracking the first one, relating their position estimates
to the camera network [10]. Another system that relies on
tracking a moving object to estimate the extrinsic parameters
is [11], which assumes a constant velocity model for the
target. In contrast to these approaches, we opt for a system
that does not rely explicitly on a moving platform to calibrate
the network.

For camera network systems that incorporate controlled
camera orientation changes (pan and tilt), and motorized
zoom, it is possible to use such motion capabilities to first
estimate the intrinsic parameters rotating and zooming fitting
parametric models to the optical flow, and then to estimate
extrinsic parameters aligning landmarks to image features.
Unfortunately, in our case, the cameras are not active.

We benefit instead from the availability of a dense LRF
dataset acquired during a 3D laser-based SLAM session with
our mobile robot mapping devices [12]. The set contains over
8 million points and maps the environment with accuracies
that vary from 5 cm to 20 cm approximately. This data
replaces the need for a tracked beam, a robot, or active
capabilities of the camera network, and is used as external
information to calibrate the camera network.

III. CALIBRATION METHODOLOGY

The calibration procedure, illustrated in Fig. 3, consists of
two main steps. In the first step, a nominal calibration of the
cameras is generated by registering the LRF data to an aerial
image of the experimental site, showing both in a graphical
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Fig. 3. Distributed camera network calibration methodology.

user interface, and prompting a user to coarsely specify the
camera location, orientation, height and field of view. These
initial parameters allow the cropping of the entire LRF into
regions of interest compatible with the field of view of each
camera as shown in Fig. 4.

The second stage aims at refining the cameras nominal
calibration by matching, in a semi-automatic manner, 3D
features to the corresponding 2D features in the cameras’
images. The LRF data corresponding to each cameras’ field
of view is segmented into a set of best fitting planes with
large support from the point clouds and then, straight lines
are computed from the intersection of perpendicular planes
from the set. The extracted 3D lines are then associated with
2D image lines and this information is fed to a non-linear
optimization procedure that improves both intrinsic and ex-
trinsic camera calibration parameters. Finally, homographies
of the walking areas are computed by selecting planar regions
in the LRF data. The final output of the whole calibration
procedure consists in a) the extrinsic camera parameters (the
relative position and orientation in the world frame), b) the
intrinsic parameters (focal distance, image center and aspect
ratio) and c) the homographies of the walking areas.

The first step of the calibration procedure needs to be
performed only once, during the camera network installation,
or when the network topology changes, i.e., cameras are
added/moved. The second step can be executed as frequently
as needed to keep the system calibrated despite small modi-
fication in camera orientation due to weather conditions and
maintenance operations.

A. LRF Registration and Nominal Calibration

The registration of the LRF data with an aerial view of
the environment is the first step in the calibration process.
To that end, a graphical user interface is developed in
which each camera region of interest in the LRF data is
selected. Fig. 4 shows the interface where the user coarsely
selects the position of a camera and its viewing direction
(indicated by the magenta line in the zoomed area). The
cameras are set with default intrinsic parameters. The LRF
data corresponding to the field of view of each camera can

Fig. 4. Registration of aerial view with the LRF data and visual selection
of camera location and orientation.

be visually adjusted by manually changing the intrinsic and
extrinsic parameters, but this process is only required if the
initialization is too erroneous.

The user interaction with the interface for nominal cali-
bration consists of the following steps:

1) pointing the camera location, p1 in the aerial view;
2) pointing a ground point, p2 assumed to be in the field

of view of the camera;
3) entering an elevation angle, θ ;
4) entering an horizontal field of view, φ and the aspect

ratio of the images.

Steps 3 and 4 will usually have default values, in order to
make as simple as possible the task to the user. For instance,
φ = 40o corresponds to a common 8 mm lens in a 1/4 in
CCD. Default values for θ depend on the location, but in
our case many cameras are at the level of the second floor
(about 6 meters high), imaging objects in the ground plane
closer than 20 meters, and thus we have a typical value of
θ = 17o.

With the parameters referred in steps 1 to 4, one can com-
pute completely a pin-hole (perspective), projection model:
p1 and p2 define the azimuth direction, the elevation is given
by the user, and the roll of the camera is assumed null (these
three parameters suffice to define the rotation matrix, R); p1,
p2 and θ define the projection center of the camera, t in
world coordinates; the field of view combined with the size
of an image, and assuming the principal point equal to the
image center, give the intrinsics matrix, K. Hence we obtain
the perspective projection model:

P(ϑ j) = K[R|t] (1)

where P denotes the projection matrix and ϑ j represents a
vector containing the listed parameters for camera j.

Note that radial distortion could be included also in the
model but in this work we assume that it has been estimated
independent from camera installation. That is, we assume
that the knowledge of the radial distortion allowed correcting
the images and thus obtaining novel images as if they were
acquired by a non distorting optical system.
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In the second stage of the calibration procedure, the
parameters collected in ϑ j will be refined by matching LRF
(3D) and image (2D) straight line features.

B. Improving the Calibration

In order to improve camera calibration from the nominal
parameters we could let an operator iteratively change the
calibration parameters to find the best visual match between
the LRF and its projection over the image. However this
is a time consuming process and, in large camera networks
it is cumbersome and tedious. Instead we propose a semi-
automatic way where relevant 3D lines are automatically
extracted from the LRF and the user just has to select points
in the corresponding image lines. In practice the method
works well with about half dozen lines selected for each
camera image.

This procedure is expected to be conducted right after the
nominal calibration, which gives just a rough approximation,
and whenever the camera’s position or orientation is changed,
due to weather (wind, rain, etc.) or maintenance operations
(repair, cleaning).

1) Extracting Lines: The computation of straight lines
from the LRF data relies on identifying and intersecting
planes. The method to segment planar regions is motivated
by Felzenszwalb’s algorithm to 2D image segmentation [13],
and extended to deal with non-uniformly sampled 3D range
data [4]. The algorithm sorts point to point distances for
each point’s k-nearest neighbors and then traverses the list of
sorted distances in increasing order, growing planar patches
by joining points that meet two matching criteria, i.e.,
distance constraints and orientation constraints. Thanks to
the use of union by rank and path compression [14], the
algorithm runs nearly in linear time with respect to the
number of points in the LRF dataset.

To avoid the bottleneck of finding each point’s nearest
neighbors, an efficient library for the computation of approx-
imate nearest neighbors is used instead [15]. Then, a plane
is fit to each set of neighboring points [16] minimizing the
sum

ε = ∑(pT
i n̂−d)2

for all neighbors to that point pi. The term n̂ is the resulting
surface patch normal of the best fit plane, given as the
eigenvector associated to the smallest eigenvalue of

(

Q−
q qT

N2

)

n̂−λ n̂ = 0 (2)

with

ε = n̂T
(

∑ pi pT
i

)

︸ ︷︷ ︸

Q

n̂−2d
(

∑ pT
i

)

︸ ︷︷ ︸

q

n̂+N2d2

Once local surface normals and planar patches are com-
puted for each point in the LRF dataset, segments are merged
by growing a forest of trees based on curvature and mean
distance. Curvature is computed from the angle between the
normals of two neighboring regions, and for the regions to

merge, they must be below a user selected threshold tc,

|cos−1(nT
1 n2)| < tc . (3)

For two segments passing the curvature criteria, they can
be joined if their distance is below a user selected threshold
td ,

k1d1+k2d2
k1+k2

< td

with

d1 = (p1 − p2).n2

d2 = (p2 − p1).n1

and k1 and k2 are the number of points each segment holds.

Once a set of segments is obtained, their intersecting lines
are computed, and the ones with sufficient support from their
generating planes, and with good orthogonality conditions
are selected for projection onto the images.

2) Optimization Procedure: Given the nominal calibra-
tion, the 3D straight lines extracted from the LRF data can
now be projected in the image and guide the user to select
the corresponding 2D image lines. This 3D-2D association
allows improving the nominal calibration by minimizing a
cost function containing the camera projection matrix P.

Let mi = [ui vi]T denote points that belong to an image line
and Mi = [Xi Yi Zi 1]T i = 1, ..,n denote the corresponding
3D points on the matching line in the LRF data . The cost
function is defined as:

ϑ̂ j = argmin
ϑ j

∑
i

∥
∥mi −h(P(ϑ j) ·Mi)

∥
∥

2
(4)

where h is a de-homogenization function, P(ϑ j) is the
projection matrix of the j-th camera as defined in (1), and
ϑ j are the calibration parameters, namely focal length and
principal point, plus the extrinsic parameters for position
and orientation. The optimization is solved using Levenberg-
Marquardt nonlinear optimization.

C. Computing Homographies

Once the calibration parameters have been improved in
each camera, this information is used to compute homo-
graphies of planar patches in the ground floor. The idea
is to have a practical way to transfer 2D image to 3D
world coordinates of targets detected in the images. The
algorithm to compute the homographies is the Direct Linear
Transformation (DLT) that associates LRF data points in
the planes of interest to image points. The patches selected
to be represented by homographies are the ones where
it is likely to have people walking and where robots are
expected to provide services to people. The user selects
polygonal regions corresponding to the desired patches and
the 3D LRF points inside these patches are used to compute
the approximating 3D planes. Notice that this step is only
possible having a sufficiently precise projection matrix P

so that 3D patches are correctly associated to the selected
image regions, otherwise erroneous planar approximations
are likely to be computed.
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Fig. 5. Nominal calibration of cameras A6-8 and B6-2. Original images
(first row), projection of the LRF data to the image plane (second row) and
superposition of the projected LRF data over the image (third row). Note
the significant registration error in the second column (camera B6-2). This
error will be corrected during the optimization process.

IV. EXPERIMENTS

In order to test the validity of the proposed calibration
methodology we have performed tests at three levels: (i) LRF
registration and nominal calibration, (ii) optimization of the
calibration, based on improving the LRF data through image
registration, (iii) application of the calibration to obtain an
orthographic view of the ground plane. As described in the
introduction, the experiments were performed in the outdoor
non-overlapped camera network of the Barcelona Robot Lab.
(see Fig. 2).

Using the registration of the global LRF data with the
aerial view, one obtains a first calibration of a camera by
pointing in the aerial view two points and using some
nominal parameters. Fig. 5 shows two such calibrations,
for cameras A6-8 and B6-2. The figure shows the original
image taken from each of the cameras, the LRF data in
the field of view of the camera, and the 3D LRF data
projected over the image. See in part 1 of the accompanying
video a demonstration of the nominal calibration phase
complemented with some manual improvement.

Given such initial calibration of the cameras, one can
now run the optimization procedure described in Sec. III B.
Fig. 6 a shows the segmented planes and lines out of the
LRF data within the field of view of camera B6-2. Each color
represents a segmented plane. The parameters that were used
in this example to segment the data were: kn = 25 neigh-
bors, and distance and curvature thresholds of td = 0.5 and

tc = 0.8, respectively. Furthermore, only lines in intersecting
orthogonal planes in the interval [π

2 − 0.03, π
2 + 0.03] were

considered. Frames b and c, show the lines superimposed on
the image, before and after optimization, and frame d shows
the LRF data projected on the image. Parts 2.1 and 2.2 of the
accompanying video show more views of the detected planes
and lines, and a sequence of iterations of the optimization
procedure.

Once we have the calibration of the cameras, we can
relate 3D LRF date to its image counterpart, and vice-versa.
One typical application is to observe orthographically the
ground plane, i.e. obtaining a bird’s eye view by computing
an homography as discussed in Sec. III C. Fig. 1, shows
the input data, points selected in the LRF (top-left) and
their corresponding image points (top-right). The bottom
row shows the resulting image and a zoom region on it.
Note that as expected, the chess pattern placed in the floor
for evaluating the results, is dewarped correctly (perspective
effect removed). See also part 3 of the accompanying video
detailing the process of selecting a region of interest of the
ground plane and obtaining an orthographic view of the
selected area.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed a methodology for cali-
brating outdoor distributed camera networks having small or
inexistent overlapping fields of view between the cameras.
The methodology is based on matching image data with LRF
data acquired and registered along the complete area of the
network using SLAM methodologies. In a first stage the user
obtains the nominal calibration by using default intrinsic
parameters for the cameras and indicating their positions
and orientations on an aerial view aligned with the LRF
data. Next, the calibration of each camera is improved by
a semi-automatic optimization procedure detecting lines in
the LRF and matching them with image lines. The lines are
detected in the LRF by automatically segmenting out planar
regions and finding such plane intersections. The optimiza-
tion procedure minimizes the distances between points in the
lines found in the LRF data and their corresponding points
in image lines.

Experiments performed in a real outdoor camera net-
work show that the methodology effectively allows calibrat-
ing camera networks. In particular the obtained calibration
proved to have enough precision to allow the computation
of dewarping homographies to observe orthographically the
ground plane. In more general terms, the LRF data of the area
mapped, actually acquired for robot navigation tasks, was
shown to have as a by-product useful calibration information
for the camera network.

Future work will focus on a deeper evaluation of the
precision and accuracy of the proposed methodology. In
addition, alternative primitives available both on the LRF
and image data, will be explored to build not only geometric
but also algebraic cost functionals, which may mitigate the
complexity and further automate the complete calibration
process.
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(a) Plane intersections. (b) Projection on images before optimization.

(c) Projection on images after optimization. (d) Final projection of the segmented LRF data.

Fig. 6. Improving the calibration. Input data is formed by planes and lines (a). The optimization approximates the projected laser lines (red) to the image
lines (yellow) (b, c). Cloud of LRF data points projected in the image after the optimization (d).
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