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Abstract

Performing -Learning in continuous state-action spaces is a problem still unsolved for many
complex applications. The @) function may be rather complex and can not be expected to fit
into a predefined parametric model. In addition, the function approximation must be able to
cope with the high non-stationarity of the estimated ¢ values, the on-line nature of the learning
with a strongly biased sampling to convergence regions, and the large amount of generalization
required for a feasible implementation. To cope with these problems local, non-parametric
function approximations seem more suitable than global parametric ones. A kind of function
approximation that is gaining special interest in the field of machine learning are those based on
densities. Estimating densities provides more information than simple function approximations
which can be used to deal with the Reinforcement Learning problems. For instance, density
estimation permits to know the actual distribution of the ¢ values for any given state-action, and
provides information about how many data has been collected in different regions of the domain.
In this work we propose a Q-Learning approach for continuous state-action spaces based on joint
density estimations. The density distribution is represented with a Gaussian Mixture Model
using an on-line version of the Expectation-Maximization algorithm. We propose a method that
handles the biased sampling problem with good performance. Experiments performed on a test
problem show remarkable improvements over previous published results.
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1 Introduction

Reinforcement learning (RL) in continuous domains requires some form of function approxi-
mation to represent the Value function or the @) function, depending on the approach. For
non-trivial problems, these functions may be rather complex and can not be expected to fit
into a predefined parametric model, especially if the user has not enough a priori knowledge
about how such functions should look like. In addition, due to the recursive nature of the
value function estimation in reinforcement learning, the function approximation method must
be able to cope with non-stationarity, since the value attributed to a state depends on the values
assigned to other states, which vary with time as learning takes place. Even more, Reinforce-
ment Learning takes place along trajectories in the state-action space that are dictated by the
dynamics of the system and the trade-off between exploitation and exploration. This causes
the sampling of the state-action space to be highly biased, a fact that may pose difficulties to
some function approximation methods. To deal with these difficulties, local, non-parametric
function approximation models like, e.g., radial basis functions, seem more suitable than global
parametric approximations.

A kind of function approximation methods that are receiving increasing interest in the field
of machine learning are those based on density estimations [2]. Density estimations keep all
the information contained in the data, and despite being more demanding than simple function
approximation (due to the fact that they embody more information), their use for function
approximation has been advocated by different authors [6, 8]. One reason is that simple and
well understood tools like the Expectation-Maximization (EM) algorithm [3] can be used to
obtain accurate estimations of the density function. Besides this, there are two properties of
density estimations that can be useful for RL: First, they allow representing arbitrary multimodal
probability distributions of the values taken by the output variable. Second, density estimations
provide information about how many data has been collected in different regions of the domain,
what can be used to estimate the confidence with which the approximation can be locally
credited. This last aspect is important in RL, as this information can be used, for instance, as
the basis on which to solve the trade-off between exploitation and exploration.

In the present work, we use a Gaussian Mixture Model [2] to estimate the probability density
function in the joint space of state, action, and ¢ value to approximate the g-distribution of a
continuous state-action RL problem. To estimate densities in RL we need an on-line version
of the EM algorithm. We adapt the on-line EM algorithm for Normalized Gaussian Networks
(NGnet) of [11] to the Gaussian Mixture Model case. Afterward, we identify a weakness of
this approach, which becomes relevant when sampling is biased, as is the case in RL, and we
introduce a forgetting factor that is dependent on the activation of each mixture component,
achieving a more local updating of the density estimation. We performed experiments on a
test problem and compare our results with those obtained by [10], showing the improvement in
performance of our approach.

The rest of the paper is organized as follows: Section 2 introduces the basics of RL and
establishes the bases for its formulation with GMM. Section 3 introduces the concepts of GMM
for multivariate density estimation, and the EM algorithm in its batch version. In Section 4 we
define the on-line EM algorithm for the GMM. In Section 5 we present our RL approach using
density estimation of the Q-value function, involving action evaluation and action selection.
Section 6 describes an example application to show the feasibility of the approach. We conclude
in Section 7 with a discussion of the proposed approach.
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2 The Reinforcement Learning Problem

Reinforcement learning is a learning paradigm in which an agent must improve its performance
by selecting actions that maximize the accumulation of rewards provided by the environment
[13]. At each time step, the agent observes the state s; and chooses an action a; according to
its policy u(s). The environment changes to state s;+1 in response to this action, and produces
an instantaneous reward r;. One of the most popular algorithms used in RL is Q-Learning
[14], which uses an action-value function Q(s,a) to evaluate the expectation of the maximum
future cumulative reward that will be obtained from various executions of an action a in a
situation s. Q-learning uses a sampled version of the Bellman optimality equations [1] to estimate
instantaneous ¢ values,

q(s,a) = r(s,a) + ymax Q(s', ') (1)

where 7 (s, a) is the immediate reward obtained from executing action a in situation s, max Q(s’, a’)
CLI

is the maximum estimated reward in the next observed situation s’, and ~ is a discount factor,
with values in [0,1], that regulates the importance of future rewards. At a given stage of the
learning, the temporary policy can be derived from the learned g-values as,

u(s) = max Q(s,a) (2)

In an actor/critic architecture, as that used in [10], the policy is also learned and stored in a
separate function. Actions are dictated by the policy explicitly represented by the actor, and not
computed from the maximization in 2. Despite this computational advantage, the learning of an
actor may slow down convergence, since then the learning of the Q-function becomes on-policy
instead of off-policy, and both functions, actor and critic, must adapt to each other to reach
convergence. In our implementation we avoid the use of an actor, and thus we must face the
problem of maximizing the Q(s, a) function in (2).

The basic formulation of Q-learning assumes discrete state-action spaces and the Q-function
is stored in a tabular representation. For continuous domains a function approximation is
required to represent the Q-function and generalize between similar situations. In next sections
we present our proposal for function approximation using densities estimations.

3 The Gaussian Mixture Model

In this work we select a mixture of multivariate Gaussians, known as Gaussian Mixture Model
2], for the density representation,

K
p(xilf) =Y iN(x|6) (3)
i=1

where «; is the prior probability of Gaussian i, P(i), of generating any sample x;, usually
denoted as the mixing parameter. 6; = {u;,> ;} are the parameters of Gaussian ¢, and 6 =
Hor, 11,1}, - {ok, ik, Dk }} is the whole set of parameters for the mixture. By allowing the
adaption of the number K of Gaussians in the mixture, a rich class of density distributions can
be approximated. The parameters of the model can be estimated using a maximum-likelihood
estimator (MLE). Given a set of samples X, the likelihood function is given by,

N

LIX; 0] = [ [ p(x[0) (4)

t=1
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The maximum-likelihood estimation of the model parameters is the one that maximizes the
likelihood (4) for the data set X. Direct computation of the MLE requires complete information
about which mixture component generated which instance. Since this information is missing
the EM algorithm, described in the next section, is usually employed.

3.1 The Expectation-Maximization algorithm

The Expectation-Maximization algorithm (EM) [3] permits to estimate the parameters that
maximize the likelihood function 4 with some missing variables. The EM method first produces
an estimation of the expected values of the missing variables using initial values of the parameters
to be estimated, and then computes the MLE of the parameters given the expected values of
the missing variables. The former procedure is denoted as the E step while the later is the
the M step. This process is repeated iteratively until a convergence criterion is fulfilled. The
convergence criterion could be either related to a threshold for the variation of the likelihood
function 4 or a threshold for the variation of the estimated parameters 6 [7].

In this section we briefly describe how EM is applied for the case of GMM parameters
estimation. The process starts with an initialization of the mean vectors and covariances matrices
of the Gaussians. The E step consists in the calculation of the probability P(i|x;) for each
component i of generating instance x; that we denote by wy ;,

wy; = P(ijxy) = KP(i)p(Xt|i) _ N (xe|pis Do)

S PGWel) 5 agN ey, S))
J=1 J=1

()

wheret =1,.., N and ¢ = 1, .., K. The maximization step consists in computing the MLE using
the estimated wy ;. It can be shown [5] that, for the case of a GMM, the mixing parameters, the
means, and the covariances are given by,

1 N
= ; Wi (6)

N

Z Wt i Xt
_t=1
Iu"l - N
Z Wt i
t=1

M=

wy i (xe — i) (x¢ — i)’
Ei _ t=1 (8)

N
Z Wt i
t=1

4 On-line EM

Estimating a probability density distribution by means of the EM algorithm involves the iteration
of E and M steps on the complete set of available data, that is, the mode of operation of EM
is in batch. However, in RL, sample data are not all available at once: they arrive sequentially,
following some exploration/exploitation strategy based on the current model estimation. This
prevents the use of the raw EM algorithm, and requires an on-line version of it. Some on-line,
or sequential, EM algorithms have been proposed for the Gaussians Mixture Model [9, 12].

In [11] an on-line EM algorithm for the NGnet is presented. Here we adopt a similar approach,
but adapted to the case of GMM. It consists in performing an E step and a M step after
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the observation of each individual sample. The E step does not differ from the batch version
(equation 5), though it is only computed for the new sample. For the M step, the parameters of
all mixture components are updated with the new sample. For this, we first define the following
time-discounted weighted sums,

Wi = ([ 9)
Xei = [ (10)
(XX)ee = [[(x—pa)(x— )], (11)

where, . .
(i =D < 11 As) (frwez) (12)

where A\, which ranges in [0,1], is a time dependent discount factor introduced for forgetting
the effect of old, less accurate values. !

The interpretation of W;; is the number of samples assigned to unit ¢ with discount. X ; is
the discounted accumulation of the samples provided to Gaussian ¢ which is used to derive its
mean vector p;. (XX);; is the accumulation of the squared distances of the observed samples
with respect to p;, used to calculate the covariance matrix >3;.

When a new sample x; arrives, these accumulators are updated with the step-wise incremen-
tal formula,

[[f]]t,i =N\ [[f]]t—l,i + friwei (13)
Then, the GMM estimators can be obtained as,
Wi
at,i = e (14)
> Wi
j=1
Xt
;= b 15
Hei = (15)
(X X))
Y= J 16
t, W (16)

4.1 Dealing with Biased Sampling

In the incremental formula (13) the factor )A; is used to progressively replace (forget) old data
by new arrived ones in a smooth way. This is the desired effect when data are presented in a
statistically unbiased way, so that all past entries are equally forgotten at the arrival of each
new datum. However, in RL data are presented along the system trajectory, and is particularly
biased toward the good-valued regions due to the exploitation requirement. That is, convergence
regions are highly sampled compared to others, increasing their densities, but this is at the
expense of forgetting data and lowering density in the entire domain. This is undesirable since,
statistics in regions with low ¢ values, and hence sparsely sampled, will get their data forgotten.
To avoid this we modified the updating formula (13) in this way,

[[f”t,i = /\?m [[f]]t—l,i + ft,iwt,i (17)

n [11] time-discounted weighted means, instead of sums, are defined by normalizing the sums (12) with a
T T -1
factor nr = <Z II )\S) . However, in the expressions of the estimators, all these nr cancel out, and we can
t=1s=t+1
skip its calculation.
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With this updating formula the amount of updating performed is not only variable in time but
also in space, according to the local nature of the Gaussians approximation. The power wy;
prevents an unbalanced updating of the parameters of the Gaussians which are not responsible
of generating the observed values.

5 (@-Learning using Density Estimations

In this section we present the Q-Learning approach using density estimation with a GMM. For
the formulation of RL an instance x; corresponds to a sample in the RL joint space, x; = (s, a, q).

5.1 Action Selection

Action selection is made according to the policy defined by eq (2), where the Q(s, a) is obtained
from the current density estimation as we describe next. Given the GMM,

p(s,a,q) ZO‘Z S, a, q| i, i) (18)

where the covariances 3; and means p; can be decomposed as,

The probability distribution for ¢, p(qls, a
be obtained in the following way,

K
=1
where,
-1
Ml(q|S7 a) = qu + 2g7(57a) (2587(1)(57(1)) ((57 a) - /'LZ(S’a)> (22)
o2(q) = B0 — B () T gl )
. (s,a) 2(s,a)(s,a)
Bi(s,a) = Kazp(s, alp; ", B ) (24)
Z Oéjp(s, amjs,a)’ Eg's,a)(S,a))
j=1

from (21) we can obtain the conditional mean and covariance, u(qls,a) and o2(g|s,a) respec-

tively,
K

plals,a) =D Bi(s, a)ui(gls, a) (25)

i=1
o*(qls, a) Zﬂz s, a) + (nigls, a) — p(qls, a)?) (26)

To select an action we use the pohcy function (2) where the maximum is taken form a finite set
of action values, a,, , regularly sampled along its range. The Q(s,a,) is obtained stochastically
from a normal distribution with mean (25) and variance (26). This provides an adaptive form
of exploration that increases the probability of executing exploratory actions when predictions
are less certain.
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5.2 Statistic Updating

To update the density model with the new experience we must provide the sample x; =

(St, at, qr+1(s,a)), where the gi+1(s,a) is given by (1). This equation involves again the esti-

mation of the maximum value max Q(s,a). We proceed in the similar way as in action selection
a

by computing @ for a finite number of a,,, but in this case, we just take as Q(s, a) the expected
value given by (25). The same procedure is used to define the policy when exploitation without
exploration is desired.

5.3 Active Unit Generation

The approximation capabilities of a GMM depend on the number K of Gaussians of the mixture.
Since we can not determine the most appropriate number beforehand, the number of Gaussians
need to be regulated on-line.

The conditions under which a new Gaussian is generated are the following. First, when the
estimation error (of the ¢ values) is larger than value ¢, and second, when the density of samples
in the experienced instance is below a threshold p. This implies that a Gaussian is generated in
regions devoided of samples only when the generalization performed is insufficient. Criteria for
Gaussian generation are then expressed as,

K
p(s,a,q) = > aiN(s, a, qlpi, Ti) < p (27)
=1

for the density evaluation, and,

(q(s,a) — p(gls,a))* > 6 (28)

for the maximum allowed estimation error.
Whenever both criteria are fulfilled a Gaussian is generated with parameters given by,

WK+1 =1 (29)
/LK+1(S,CL,Q) = (Staataq(saa)t-‘rl) (30)
Sxi1 = C diagldy, ... dp, da, dg} (31)

where d; is the total range of the variable ¢ and is D the dimensionality of the state space. C' is
a positive value to regulate the dispersion of the new Gaussian.

It is convenient to initialize the covariances to cover a local region of the sampled point in
consonance of the local nature of the approximation.

6 Experiments

To evaluate the method we select a benchmark application of an inverted pendulum with limited
torque [4] also employed in the work of [10]. The task consists in swinging the pendulum until
the upright position is reached and held. The optimal policy for this control is not trivial as the
limited torque forces the controller to swing the pendulum several times until the kinetic energy
of the pendulum is larger than the load torque so the upright position can be reached.

The state space is two-dimensional and is configured by the angular position # and angular
velocity § variables, s = (0,9), where 6 ranges in the interval [—m,n]. Thus, the density is
estimated in a four-dimensional joint space x=(6, 9, a,q). As the reward signal we simply take
the height of the tip of the pendulum h = cos(f) which ranges in the interval [—1, 1], and the
discount coefficient v in equation 1 is set to 0.99.



Section 6 Experiments 7

Average in 10 runs of the accumulated reward per espisode Average in 10 runs of the accumulated reward per espisode
700 700 T

xBTS Ao A A
=l e
© &
b B

300 20 40 60 80 100 120 300, 20 40
Episodes

rt/0.01
r,t/0.01

X 60 80 100 120
Episodes

(a) with A (b) with A;**

re 1: Average of the accumulated reward per episode performed over 10 experiments. (a) Updating using \;. (b) Updating t

The setting of our system consists in the following. We provide the system with 20 initial
Gaussians. The elements of the mean p; of the mixture component ¢ are selected randomly,
except for the g variable that is initialized to the maximum possible value to favor exploration
of unvisited regions. The initial covariance matrices ¥; are diagonal and the variance for each
variable is set to the range of the variable. This is actually a wide covariance that provides a
coarse estimation of ¢ at the initial stages of learning. Finally, the initial number of samples
for each Gaussian i, W;, is set to 0.1. This small value makes the component ¢ to have little
influence in the inference while there is no, or little, updating.

The discount coefficient A for the cumulative values calculations (section 4) takes values from
the equation,

A =1—1/(at+b) (32)

where b regulates the initial value of A (when ¢=0) and a determines its growth rate toward 1.
In our experiments we set a to 0.001 and b to 10 so as to permit a flexible adaptation to the
non-stationarities mainly at the beginning of the learning process.

We compare the performance of our approach with the method proposed in [10] as it is
the most related to our approach. As in [10] we performed the experiments using episodes
of 7 seconds with a simulation interval of 0.01 seconds. After each episode the pendulum is
randomly placed inside an arch centered in the upright position. The length of the arch is
steadily incremented with each episode.

Figure 1 shows a comparison between the on-line EM using the conventional discount factor
A, and the new updating proposal )\iut’i. The variable evaluated is the average of the total
accumulated reward per episode for 10 experiments of 120 episodes each, exploiting the policy
learned so far. Results show that the new proposal achieves convergence much faster, and with
a more stable steady state of the learning process. The spikes present in figure 1 (a) are caused
by the discount factor A; which is equally applied in all regions of the domain. This produces
a “forgetting” of the experiences made so far in regions far from the sampled situation without
any replacement with new information. This effect is greatly reduced when the factor )\;Ut’i is
used, as shown in figure 1(b).

To compare with the work of [10] we compute the average number episodes and the number
Gaussians needed to attain convergence. In the case of updating with A\, convergence occurs
at about 44 episodes with a mean number of Gaussians of 27. In the second case, with an
updating using )\;ﬂt’i, the convergence takes place in an early stage with only 20 episodes, with
a number of Gaussians of 35. In [10], the reported number of episodes to reach convergence is
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Figure 2: A stroboscopic sequence obtained from placing the pendulum in the downright position.

40, and the number of components of the NGnet needed to approximate the critic is 108 (for
a fair comparison, components of the actor are not considered). For informative sake, our best
results in the 10 runs using updating with )\lut’i converged in 4 espisodes with 21 Gaussians.

To illustrate the performance of the control reached we present in figure 2 a control from
the difficult position of the pendulum hanging down. In general, for all the experiments, the
pendulum could reach and held the upright position from almost any initial place from the very
first stage of the convergence.

7 Conclusions

We proposed a new approach for Q-Learning in continuous state-action spaces using a multi-
variate density model, which exploits some of the properties of density estimations to deal with
the problems inherent to RL. In particular, we have shown how a Gaussian Mixture Model can
be used to estimate a probability density function of the experiences obtained in a continuous
reinforcement learning problem, and how it can be used for the approximation of the @) function.
For the estimation of the Gaussian Mixture Model we adapted the on-line version of the EM
originally developed by [11] for the NGnet, in order to apply it to the GMM, and integrated it
into the learning algorithm.

Experiments performed with the updating using the non-activation-dependent forgetting
factor, A, on a test problem show that our results are well comparable to those obtained by [10].
Furthermore, we noticed the perturbing effects that biased sampling, intrinsic to reinforcement
learning, produces in the convergence of the approximation of the ¢ function, and we proposed
an activation-dependent-forgetting factor, )\;v “* that mitigates this effect. With this modified
factor, we obtained results that significantly improve the previous ones.

Since now, we have just tested our approach on deterministic environments, where the use
of a density estimation is not fully exploited. We expect to obtain further benefits from this
approach, when applying it to non deterministic domains, where the @ distribution may be
multimodal, so that it can not be represented by simple function approximation. We would
continue exploring how to take more advantages of the rich information contained in density
estimations for the problem of RL, like investigating new strategies for exploration-exploitation
based on density of samples in the domain.
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