
78 IEEE TRANSACTIONS ON ROBOTICS, VOL. 26, NO. 1, FEBRUARY 2010

Information-Based Compact Pose SLAM
Viorela Ila, Josep M. Porta, and Juan Andrade-Cetto, Member, IEEE

Abstract—Pose SLAM is the variant of simultaneous localization
and map building (SLAM) is the variant of SLAM, in which only
the robot trajectory is estimated and where landmarks are only
used to produce relative constraints between robot poses. To reduce
the computational cost of the information filter form of Pose SLAM
and, at the same time, to delay inconsistency as much as possible,
we introduce an approach that takes into account only highly infor-
mative loop-closure links and nonredundant poses. This approach
includes constant time procedures to compute the distance between
poses, the expected information gain for each potential link, and the
exact marginal covariances while moving in open loop, as well as a
procedure to recover the state after a loop closure that, in practical
situations, scales linearly in terms of both time and memory. Using
these procedures, the robot operates most of the time in open loop,
and the cost of the loop closure is amortized over long trajectories.
This way, the computational bottleneck shifts to data association,
which is the search over the set of previously visited poses to de-
termine good candidates for sensor registration. To speed up data
association, we introduce a method to search for neighboring poses
whose complexity ranges from logarithmic in the usual case to
linear in degenerate situations. The method is based on organiz-
ing the pose information in a balanced tree whose internal levels
are defined using interval arithmetic. The proposed Pose-SLAM
approach is validated through simulations, real mapping sessions,
and experiments using standard SLAM data sets.

Index Terms—Information filter, information gain, inter-
val arithmetic, Pose SLAM, state recovery, tree-based data
association.

I. INTRODUCTION

THE USE of information-based representations is one of the
keys to obtaining a computationally efficient on-line so-

lution to simultaneous localization and map building (SLAM)
[1]–[4]. When estimating both the last robot pose and a map

Manuscript received April 9, 2009; revised July 29, 2009. First published
November 10, 2009; current version published February 9, 2010. This pa-
per was recommended for publication by Associate Editor C. Stachniss and
Editor W. K. Chung upon evaluation of the reviewers’ comments. This work
was supported by Project DPI-2007-60858, Project DPI-2008-06022, Project
Multimodal Interaction in Pattern Recognition and Computer Vision Consolider-
Ingenio 2010, and by the European Union Ubiquitous Networking Robotics in
Urban Settings under Project IST-FP6-STREP-045062. The work of V. Ila was
supported in part by the Spanish Ministry of Science and Innovation under a
Juan de la Cierva Postdoctoral Fellowship.

V. Ila is with the Institut de Robòtica i Informàtica Industrial, Spanish Na-
tional Research Council, Barcelona 08028, Spain, and also with the College of
Computing, Georgia Institute of Technology, Atlanta, GA 30332 USA (e-mail:
vila@iri.upc.edu).

J. M. Porta and J. Andrade-Cetto are with the Institut de Robòtica i Informàtica
Industrial, Spanish National Research Council, Barcelona 08028, Spain (e-mail:
porta@iri.upc.edu; cetto@iri.upc.edu).

The paper has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors. The material includes videos
of the mapping sessions presented in the paper as well as the MATLAB code
for the simulated experiments. This size is 22 MB. Contact vila@iri.upc.edu for
further questions about this work.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TRO.2009.2034435

of features, the ensuing information matrix turns out to be ap-
proximately sparse with very small matrix entries for distant
landmarks [1]. Exactly sparse information matrices can be ob-
tained by estimating the entire robot path along with the map,
which is an approach typically referred to as full SLAM [4]–[6].
Exact sparsity can also be achieved using a small set of active
landmarks to relocate the robot from scratch at every itera-
tion [7], by decoupling the estimation problem maintaining the
map only [8] or, as in Pose SLAM, by maintaining only the
robot trajectory [2], [3], [9]. This last variant of SLAM relies
on the idea that landmark locations can be easily retrieved once
the robot path has been properly estimated [10]. Thus, in Pose
SLAM, landmarks are used only to derive relative measurements
linking pairs of poses.

When working with sensors that are able to identify many
landmarks per pose, Pose SLAM produces more compact maps
than the other exactly sparse approaches, resulting in better per-
formance. However, Pose SLAM also presents some drawbacks:
Adding all the robot poses to the map has the cost of a representa-
tion that grows independently of the size of the area to map, and
adding all possible links reduces the sparsity of the information
matrix, slowing down the execution. Furthermore, when using
a linearized approach, the accumulation of linearization errors
introduced by each new link produces overconfident estimates,
which lead to filter inconsistency [11], [12].

In this paper, we introduce a principled on-line approach for
Pose SLAM, which only keeps nonredundant poses and highly
informative links (see Fig. 1). This is achieved by computing
two measures: the distance between a given pair of poses and
the mutual information gain when linking two poses. In this
paper, we show that, in Pose SLAM, the exact form of these two
measures can be computed in constant time. When compared
with the existing approaches [2], the proposed system produces
a more compact map that translates into a significant reduction
of the computational cost and a delay of the filter inconsistency,
maintaining the quality of the estimation for longer mapping
sequences.

By applying the proposed strategy, the robot closes only few
loops and it operates in open loop for long periods, which is fea-
sible using recent odometric techniques [13], [14]. The proposed
Pose-SLAM method, which is presented in this paper, includes a
novel-state-recovery procedure at loop closure that takes advan-
tage of the inherent sparsity of the information matrix scaling
linearly both in time and memory. This computational cost is
further amortized over the period where the robot operates in
open loop, for which we introduce a factorization of the cross
covariance that allows the state to be updated in constant time.
Thus, the proposed state-recovery strategy outperforms state-of-
the-art approaches that take linear time for very sparse matrices
(i.e., when the robot operates in open loop) but are worst-case
quadratic when many loops are closed [2], [15].

1552-3098/$26.00 © 2009 IEEE

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on February 8, 2010 at 06:31 from IEEE Xplore. Restrictions apply.

ILA et al.: INFORMATION-BASED COMPACT POSE SLAM 79

Fig. 1. Simulations that exemplify the effects of limiting the number of poses
(in red) and linked poses (in green) in Pose SLAM. (a) Incorporating all poses
and all links to the filter. (b) Incorporating all poses but only highly informative
links. (c) Incorporating only relevant poses and highly informative links.

With the proposed technique, the bottleneck for real-time
execution is not state recovery but data association, that is,
detecting poses close to the current one for which feature match-
ing is likely. Exploiting the proposed factorization of the cross
covariance, we introduce a tree-based method for data associ-
ation using interval arithmetic to encode the internal nodes of
the tree. The main advantage of the proposed method is that it
improves the search up to logarithmic time. Moreover, by taking
into account the cross covariances from the very beginning, it
also avoids false positives, which are typically present in exist-
ing tree-based data-association techniques [16]. This offers the
possibility to use Pose SLAM to map large-scale environments.

The rest of the paper is structured as follows. In Section II, a
succinct related work review is presented. Section III describes

basic preliminaries and our notation for Pose SLAM. The fol-
lowing three sections present the main novelties of the proposed
approach: the procedures to identify relevant poses and links
(Section IV), the efficient state recovery (Section V), and the
tree-based data association method (Section VI). Section VII
summarizes the Pose-SLAM algorithm introduced in this paper
and Section VIII evaluates it using synthetic and real data sets.
Concluding remarks are given in Section IX.

II. RELATED WORK

Solutions to the SLAM problem have evolved over the years,
both with respect to the type of state representation, as well as
with respect to the estimation tools used. Seminal solutions for-
mulate the problem as the probabilistic estimation of the robot
pose and the location of static landmarks in the environment,
jointly modeled as a multivariate Gaussian, and the extended
Kalman filter (EKF) became the estimation tool of choice [17],
[18]. However, maintaining the fully correlated covariance ma-
trix of the robot pose and the map of features has memory
and computational complexity that scales quadratically with the
number of features, limiting the approach to relatively small
environments.

On the other hand, information-based representations use the
inverse of the covariance matrix to sparsely encode correlations.
In the case of Pose SLAM, the information matrix scales with
the number of poses and it has non-null entries only for those
pairs of poses directly related by a relative motion constraint.
Therefore, the matrix is basically tridiagonal (consecutive poses
in the trajectory are always related), and off-diagonal blocks
appear when there is a link closing a loop. The advantage of
a representation that grows with every new pose is that the
resulting information matrix is inherently sparse. The problem
is that, in a naive implementation of Pose SLAM, the state grows
indefinitely, independent of the size of the area to map.

Heuristic strategies can be found in the Pose-SLAM liter-
ature to either reduce the size of the state representation by
keeping only one pose every few meters [9], [19] or to re-
strict the number of links to a number linearly dependent on
the number of poses [2]. In the context of active SLAM, prin-
cipled information-based measures have been used to select
actions so that the subsequent observations maximally reduce
uncertainty of the map [20], [21]. In landmark-based SLAM,
information-based approaches have also been proposed to re-
duce the state size and to delay inconsistency incorporating
only highly informative observations to the filter [22], [23]. Fol-
lowing the same reasoning, our previous paper [3] pointed out
that, in Pose SLAM, the computational complexity can be re-
duced, and inconsistency can be delayed, by considering only
highly informative links between nearby poses. Whereas, in our
previous work, we approximated the distance between poses
and the information gain for links, in this paper, we propose
a method to compute these two measures in exact form. The
two measures require the computation of the joint marginals
between the current robot pose and the previous poses along the
trajectory, which is something that is not directly available in
information-based representations.

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on February 8, 2010 at 06:31 from IEEE Xplore. Restrictions apply.

80 IEEE TRANSACTIONS ON ROBOTICS, VOL. 26, NO. 1, FEBRUARY 2010

Information-based approaches are perfectly suited for off-line
maximum likelihood estimation. In this case, data association is
usually taken for granted, joint marginals are not necessary, and
the estimate only includes the state mean, which is iteratively
approximated representing the relative displacement between
poses as quadratic constraints [19], [24]–[26] or by factoriz-
ing the sparse information matrix [6]. On-line approaches to
Pose SLAM rely either on variants of the batch methods [4] or
on filtering [2], [3]. In all on-line approaches, joint marginals
are needed for prior-based data association. These can be ap-
proximated in linear time using belief propagation [27], [28],
in logarithmic time by subsampling poses and performing re-
laxation over multiple spatial resolutions [25] or in constant
time by considering only first-order relations via Markov blan-
kets [1] or by implementing partial state updates [29]. However,
overconfident approximation of joint marginals may produce
false negatives during data association, losing the opportunity
to significantly compensate the accumulated estimation error.
On the other hand, optimistic approximations of joint marginals
produce false positives [30], [31] that increase the number of
attempts for sensor registration, which in general is costly and
subject to perceptual aliasing. Thus, exact cross covariances are
preferred for accurate data association. These can be recovered
by augmenting the sparse system of equations needed for state
recovery [2], by exploiting the sparseness of factorized forms
of the information matrix with QR [4], or by Cholesky factor-
izations [32]. However, these algorithms have on average linear
computational complexity when moving in open loop (i.e., for
band tridiagonal matrices) and are worst-case quadratic for ma-
trices encoding many loops.

Loops are detected during data association by matching sen-
sor readings. Data association is typically implemented as a
linear scan over all previous poses, either by directly search-
ing for feature matches in a sensor database, independent of
the filter estimates [33], or by first using filter information to
constrain the search for sensory matches only to few neighbor-
ing poses [2], [3]. For consistent estimates, the second option
is more efficient and less affected by perceptual aliasing. With
a linear time complexity to recover joint marginals, it did not
make sense to implement a search for neighboring poses better
than the basic linear scan. However, exploiting the cross covari-
ance factorization presented in this paper, it now makes sense to
improve the data-association process. One possibility would be
to use a KD-tree [16] or a grid structure [34] to speed up nearest
neighbor search. If covariances cannot be assumed bounded,
tree-based techniques outperform grid-based ones both in terms
of memory and execution time. In both approaches, however,
poses are considered in marginal form, disregarding cross co-
variances and producing conservative estimates that result in
false positives.

III. POSE-SLAM PRELIMINARIES

In the on-line form of Pose SLAM [2], [3], the objective is to
incrementally compute an estimate of the robot trajectory xn =
[x�0 , . . . , x�n]�, with each xi a random vector corresponding
to the ith robot pose. The robot trajectory is updated with a

set zn of independent observations on the relative displacement
between the current robot pose and previous poses along the
path. Using a Bayesian factorization

p(xn |xn−1 , zn) ∝ p(xn |xn−1) p(zn |xn). (1)

The set zn can be split in two disjoint groups, i.e., a set of
observations between the current robot pose and the immediate
previous one un and a set of observations linking the current
pose with any other pose, except for the previous one yn . The
probabilistic model then becomes

p(xn |xn−1 , zn) ∝ p(xn |xn−1) p(un ,yn |xn)

∝ p(xn |xn−1) p(un |xn) p(yn |xn)

and by using (1) for the observations on consecutive poses

p(xn |xn−1 , zn) ∝ p(xn |xn−1 ,un) p(yn |xn).

The aforementioned state transition probability is factorized
on the typical SLAM operations of augmenting the state
p(xn |xn−1 ,un) and updating it p(yn |xn).

Simultaneous observations coming from different sensors are
considered independent and can be fused before using them to
update the filter. As a consequence, we can assume the set un to
include a single element un and the current pose n to be linked
to a previous pose i with only a single constraint yi

n , if avail-
able. Moreover, assuming Gaussian probability distributions
p(xi) ∼ N (xi ;µi,Σii), p(un) ∼ N (un ;µu ,Σu), and p(yi

n) ∼
N (yi

n ;µy ,Σy), the state estimation can be parametrized using
the information from p(x) ∼ N−1(x;η,Λ), where the infor-
mation vector η and the information matrix Λ are related to the
mean µ and covariance Σ by the equivalences µ = Σ η and
Σ = Λ−1 , respectively.

A. State Augmentation

The observation un is used to augment the state with a new
pose. The state transition model is given by

xn = f(xn−1 , un)

≈ f(µn−1 , µu) + Fn (xn−1 − µn−1) + Wn (un − µu)

with Fn and Wn the Jacobians of f with respect to xn−1 and un

evaluated at µn−1 and µu , respectively. With Q = WnΣuW�
n ,

the state parameterized in information form is augmented as

ηn =

η1:n−2

ηn−1 − Fn
�Q−1 (f(µn−1 , µu) − Fn µn−1)

Q−1 (f(µn−1 , µu) − Fn µn−1)

 (2)

and

Λn =

Λ1:n−2,1:n−2 Λ1:n−2,n−1 0

Λn−1,1:n−2 Λn−1 n−1 + F�
nQ−1Fn −F�

nQ−1

0 −Q−1Fn Q−1

(3)
where ηn−1 and Λn−1 n−1 are used to denote the blocks of
ηn−1 and Λn−1 corresponding to the (n − 1)th pose, and η1:n−2
and Λ1:n−2,1:n−2 indicate those ranging from the first to the
(n − 2)th pose.

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on February 8, 2010 at 06:31 from IEEE Xplore. Restrictions apply.

ILA et al.: INFORMATION-BASED COMPACT POSE SLAM 81

In the basic form of Pose SLAM [2], the state is augmented
every time the robot moves, even when revisiting areas. Finally,
observe that only if the mean state is available, the operations
in (2) and (3) can be computed in constant time.

B. State Update

Each set of measures yn = {yi
n , . . . , yk

n} constrains the rel-
ative position of the last pose with respect to some other poses
from the robot trajectory, forming loops. The measurement
model for each of these constraints is

yi
n = h(xi, xn) + vn

≈ h(µi, µn) + H(xn − µn) + vn

where h gives the displacement from xi to xn in the frame of
reference of xi , and H is

H = [0, . . .0 Hi 0, . . . 0 Hn] (4)

with Hi and Hn are the Jacobians of h with respect to xi and
xn , and vn is the zero mean measurement noise with covariance
Σy .

The information from observation yi
n is fed to the filter by

adding the following increments:

∆η = H�Σ−1
y

(
yi

n − h
(
µi, µn

)
+ Hµn

)

and

∆Λ = H�Σ−1
y H (5)

to ηn and Λn , respectively.
In the basic form of Pose SLAM, the state update is applied

for every loop-closure constraint obtained from sensor readings.
Due to sensor limitations, only poses that are relatively close are
linked, and therefore, the basic form of Pose SLAM produces
an inherently sparse information matrix, even if the robot retra-
verses previously mapped areas. Only in degenerate situations
that can be easily detected and avoided, the information matrix
can get fully populated, e.g., when the robot nearly stands still
and all poses in the trajectory are within the sensor range and
can be linked with the current pose.

Note that each state update changes the entire state estimate.
Therefore, the next filtering step requires to recover the mean
(to evaluate Jacobians) and the covariance (to perform data as-
sociation), which is costly in information form. In the following
sections, we show how to exploit the filter information to reduce
the number of updates and how to make them more efficient by
reducing the size of the state.

IV. IDENTIFYING RELEVANT POSES AND INFORMATIVE LINKS

The strategy, we propose in order to obtain a compact and
efficient Pose SLAM is based on adding only nonredundant
poses and highly informative links. A new pose is considered
redundant when it is too close to another pose already in the
trajectory, and not much information is gained by linking this
new pose to the map. However, if the new pose allows the
establishment of an informative link, both the link and the pose
are added to the map. The result is a uniform distribution of

poses in the information space and not in the Euclidean space,
as proposed by existing approaches [9], [19].

Next, we describe how to compute the distance between poses
and the information gain when a link is to be established.

A. Distance Between Two Poses

The relative displacement d from the current robot pose xn

to any other previous pose in the trajectory xi can be estimated
as a Gaussian with parameters

µd = h(µi, µn)

Σd = [Hi Hn]
[

Σii Σin

Σ�
in Σnn

]
[Hi Hn]�

where Σin is the cross correlation between the ith and the
current pose.

We marginalize the distribution on the displacement for each
one of its dimensions r to get a 1-D Gaussian distribution
N (µr , σ

2
r) that allows to compute the probability of pose xi

being closer than vr to pose xn along dimension r

pr =
∫ +vr

−vr

N
(
µr , σ

2
r

)

=
1
2

(
erf

(
vr − µr

σr

√
2

)
− erf

(
−vr − µr

σr

√
2

))
. (6)

If, for all dimensions, pr is above a given threshold s, then pose
xi is considered close enough to the current robot pose xn . If no
pose is close to xn , it is included in the map using the procedure
described in Section III-A.

Thresholds vr are defined from the sensor characteristics
(field of view for cameras, maximum distance considered in
the laser alignment, etc.) In general, it is experimentally sim-
pler to define a threshold for each dimension separately than to
define a single threshold for a measure integrating the distances
along all dimensions (e.g., a weighted norm). Thus, even if there
is no technical difficulty to integrate the distance measures for
the different dimensions, it is more practical to consider them
separately. This way, we also avoid mixing rotational and trans-
lational dimensions.

With respect to threshold s, it would be desirable to adjust it
with the uncertainty in the robot pose, decreasing it as the robot
gets lost. Nevertheless, to avoid introducing more complexity,
we set this constant low in our experiments, i.e., 0.1. With such
a conservative value for s, only poses that are for sure far away
from the current pose do not pass the distance test, and no
possible loop closures are missed.

B. Mutual Information Gain for Candidate Links

The mutual information gain for a candidate link measures
the amount of uncertainty removed from the state when the
link is integrated into the filter. For Gaussian distributions, it is
given by the logarithm of the ratio of determinants of prior and
posterior state covariances [20]–[23]. These determinants are
proportional to the volume of the covariance hyper-ellipsoids of
equiprobability. Thus, this ratio is related with the number of
times the state uncertainty shrinks once a loop is asserted.

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on February 8, 2010 at 06:31 from IEEE Xplore. Restrictions apply.

82 IEEE TRANSACTIONS ON ROBOTICS, VOL. 26, NO. 1, FEBRUARY 2010

As the covariance matrix is the inverse of the information
matrix and taking into account (5), we have that the mutual
information gain of a candidate link between poses i and n is

I =
1
2

ln
|Λ + ∆Λ|

|Λ| . (7)

Taking the natural logarithm, this measure is expressed in nats.
A straightforward evaluation of global entropy reduction as in

(7) is computationally expensive since it requires the computa-
tion of the determinants of large matrices. To avoid this problem,
we introduce an algebraic manipulation of (7) that allows exact,
constant-time computation of the mutual information gain. Ex-
panding (7), using (5), and applying Cholesky decomposition to
the inverse of the measurement covariance Σ−1

y = U� U , we
obtain

I =
1
2

ln
|Λ + (U H)� (U H)|

|Λ|

and using the matrix determinant lemma [35]

I =
1
2

ln
|I + (U H)Λ−1 (U H)�| |Λ|

|Λ|

=
1
2

ln |I + U H Σ H� U�|

=
1
2

ln |U (Σy + H Σ H�) U�|

=
1
2

ln(|U U�| |Σy + H Σ H�|)

=
1
2

ln(|Σ−1
y | |S|)

with S the innovation covariance matrix, which, thanks to the
sparsity of the Jacobian H, is

S = Σy + [Hi Hn]
[

Σii Σin

Σ�
in Σnn

]
[Hi Hn]�.

Therefore, the previous manipulation transforms the ratio of
determinants of large matrices in (7) into a ratio of determinants
of matrices with the size of the observations

I =
1
2

ln
|S|
|Σy |

. (8)

It is interesting to note that even if after a loop closure, the
uncertainty shrinks for all poses in the trajectory, the ratio in (8)
summarizes all the changes in a single, compact expression.

Since sensor registration is an expensive process, in practical
applications, it is convenient to hypothesize whether a candidate
link is informative enough before actually aligning the sensor
readings. In this case, (8) is first evaluated using an approxi-
mation of the measurement covariance. If the result is above a
given threshold g, sensor registration is needed to assert data
association. The real sensor covariance is computed during sen-
sor registration and can be used to recompute the gain measure
to ultimately decide whether or not to update the state with the
new link.

V. EFFICIENT STATE RECOVERY

The two steps of the basic Pose SLAM, i.e., state augmenta-
tion and update, can be implemented in constant time assuming
the state mean is available. Moreover, the strategies proposed in
the previous section to detect relevant poses and links rely on
an efficient computation of both the distance between poses and
the information gain, and these measures require the state mean
and the joint marginal between the last pose and any other pose
from the history. Although representing the map in information
form allows a more compact representation than in covariance
form, it does not offer direct access to state mean and marginal
covariances. This section shows that the joint marginal covari-
ances of the last pose and any other pose from the trajectory can
be recovered in constant time when operating in open loop and
in linear time when closing a loop.

A. State Recovery in Open Loop

Suppose a loop closure occurred at time l. After the loop
is closed, when the robot moves to a new pose xn , n > l, the
mean for the new pose can be computed from the state transition
model with

µn = f(µn−1 , µu)

and its marginal covariance is linearly propagated with

Σnn = Fn Σn−1 n−1 F�
n + Q.

Note that since these covariances do not change during open
loop traverse, they can be computed once and stored until the
next loop closure.

The cross correlation between the last robot pose and any
previous pose i < n is

Σin = Σi n−1 F�
n .

Unfolding this recursive relation, Σin can be factorized as

Σin = Φi F� (9)

with

Φi =
{

Σil , 1 ≤ i ≤ l
Σii (F�

l+1 . . .F�
i)−1 , l < i < n

and with F� = F�
l+1 , . . . , F�

n the accumulated Jacobian from
the last loop closure to the current time slice.

Observe that F� can be updated in constant time as the robot
moves. Moreover, since the term (F�

l+1 , . . . ,F
�
i)−1 is the in-

verse of the aggregated Jacobian F� at time i, all the information
needed to evaluate Φi is available at time i and can be computed
in constant time as well.

Therefore, in open loop, the update of the exact joint
marginals is achieved in constant time with the minor price of
bookkeeping the mean estimated trajectory, the block-diagonal
entries of the covariance matrix, aggregated in a block column
matrix D, with Di = Σii , and the factors Φi used to compute
the cross covariances when necessary. This extra storage does
not diminish the advantage of a sparse information form rep-
resentation since it only scales the memory requirements by a
constant factor.

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on February 8, 2010 at 06:31 from IEEE Xplore. Restrictions apply.

ILA et al.: INFORMATION-BASED COMPACT POSE SLAM 83

B. State Recovery when Closing a Loop

When integrating a loop closure constraint yi
n , the update

is obtained by adding the following increment to the state
covariance

∆Σ = −ΣH�S−1HΣ.

Using Cholesky decomposition for the inverse of the Kalman
innovation S−1 = V�V, the above expression takes the form

∆Σ = −BB�

with

B = ΣH�V�.

Considering (4) becomes

B = [Σ(i) Σ(n)]
[
H�

i

H�
n

]
V�

with Σ(i)and Σ(n) the ith and last block columns of Σ, respec-
tively. The number of columns of the block column matrices
Σ(i) , Σ(n) , and B is determined by the dimensionality of the
underlying pose space.

Note that only two sections of the prior covariance matrix are
necessary to compute the covariance update: Σ(i) and Σ(n) . As
described in the previous section, the last block column Σ(n)
can be computed using the stored factors Φ and F, using (9). The
ith block column of Σ can be recovered solving the following
linear system:

ΛnΣ(i) = I(i) (10)

where I(i) is the sparse block column matrix with an identity
block only at the position corresponding to pose i. For very
sparse information matrices, such as the one in Pose SLAM,
these systems can be solved in near-linear time using supernodal
sparse Cholesky factorization [36].

Since we are only interested in the block diagonal and the
last column of the new covariance matrix, we can avoid the
quadratic cost of computing the whole ∆Σ and directly compute
the corresponding updates

∆Σjj = −BjB�
j (11)

where Bj is the jth block row of B, and

∆Σjn = −BjB�
n . (12)

Finally, the mean can be updated with

∆µ = BV(yi
n − h(µi, µn)). (13)

Equations (11)–(13) can be evaluated linearly and the whole
loop closure state update scales with the cost of (10). By rig-
orously controlling the number of loop closures using the in-
formation gain, we obtain a system where the sparsity of Λn

is enforced, and this guarantees the near linear cost of the state
update when closing a loop.

VI. TREE-BASED NEAREST NEIGHBOR SEARCH

FOR DATA ASSOCIATION

When using the mutual information gain criteria, the proposed
Pose-SLAM system scarcely closes loops. The cost of state re-
covery when closing a loop is amortized over the periods, where
the robot operates in open loop and when the state is augmented
in constant time. These significant savings in computational cost
shift the bottleneck of information-based Pose SLAM to data
association, that is, the search over all previously visited poses to
determine good candidates for sensor registration. This search
is typically implemented as a linear scan over all poses. The
solution we propose here is to organize the information about
the entire robot trajectory into a binary tree, exploiting the par-
ticular properties of the Pose-SLAM problem. The solution de-
scribed in this section is based on the factorization introduced in
Section V-A to compute the cross covariances in constant time
when operating in open loop. Using exact cross covariances
in a tree-based search for nearest neighbors has the advantage
of avoiding false positives which, in turn, translates to fewer
queries for sensor matching.

In our implementation, a leaf in the tree will store the mean,
the covariance, and the cross-correlation factor associated with
a particular pose (µi , Σii , Φi). The internal nodes of the tree
have to somehow summarize the information of all leaves below
them, such that a single test at the internal node allows the dis-
carding/acceptance of a large set of poses as neighbors, speeding
up the search. We choose to encode the internal nodes using in-
tervals bounding the pose information for all leaves under the
corresponding node.

A. Bounding Pose Similarity Using Interval Arithmetic

Interval arithmetic [37] is an extension of real arithmetic
where operations are defined over intervals. For instance, for
a couple of intervals a = [a, a] and b = [b, b], we have that
a + b = [a + b, a + b]. If a ∈ a and b ∈ b, then interval arith-
metic guarantees that a + b ∈ a + b. Using a similar proce-
dure, bounds are defined for all basic operators and for generic
functions.

We store in the internal tree nodes the hulls µ
i
, Σii , and Φi ,

of the means µi , marginal covariances Σii , and factors Φi for
all the leaves below the node (see Fig. 2). Using those hulls, we
can bound the probability on the displacement with respect to
the current pose for all leaves under the node to be inside the
given thresholds for each dimension.

Formally, the relative displacement d (see Section IV-A) can
be estimated as an interval-based Gaussian with

µ
d

= h(µ
i
, µn)

Σd = [Hi Hn]

[
Σii Φi F�

F Φ
�
i Σnn

]
[Hi Hn]�

where Hi is an interval evaluation of the Jacobian of h with
respect to its first parameter. Then, an interval for the probability

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on February 8, 2010 at 06:31 from IEEE Xplore. Restrictions apply.

84 IEEE TRANSACTIONS ON ROBOTICS, VOL. 26, NO. 1, FEBRUARY 2010

Fig. 2. Example of a tree of poses for the x–y projections of the two first
poses of Fig. 1(c). (a) Tree of two poses, showing the pose means, the pose
covariances, and the cross correlation factors at each node. (b) The mean hull
µ for µ1 and µ2 is shaded in gray. (c) The covariance hull for the symmetric
covariance matrices Σ1 and Σ2 is shaded in gray.

of the displacement along dimension r being below vr can be
readily computed as

p
r

=
∫ +vr

−vr

N (µ
r
, σ2

r)

=
1
2

(
erf(u) − erf(l)

)

=
1
2
[erf(u) − erf(l), erf(u) − erf(l)] (14)

with

u =
vr − µ

r

σr

√
2

l =
−vr − µ

r

σr

√
2

.

If pr < s, none of the leaves below that node pass the simi-
larity test. On the other hand, if p

r
> s, all the leaves under the

node are neighbors of the current pose. For nodes where none
of the two previous options hold, the search process has to be
recursively applied to the left and right subtrees.

A problem of interval arithmetic is that operations might pro-
duce an overestimation of the final result. This happens when
we evaluate an expression that includes repeated subexpres-
sions. For instance, the evaluation of 10 x − 8 x for x = [1, 5]
should result in the interval [2, 10], but using simple interval
arithmetic, the result is [−30, 42], since the two x in the ex-
pression are assumed to be independent variables, even though
they are not. An excessive overestimation of the bounds of p

r
would vanish the advantage of using a tree. To avoid this risk,
the polynomial resulting from (14) is factorized so that each
interval variable appears the least number of times possible in
the final expression. In the example mentioned earlier, 2 x is
preferred over 10 x − 8 x, producing no overestimation.

B. Building a Balanced Tree of Poses

The binary tree of poses is built incrementally adding new
poses to a tree as the robot moves and rebalancing the tree when
necessary. For the interval evaluation to be accurate, information
in the internal tree nodes needs to be as compact as possible;
therefore, similar poses need to be grouped under the same
node. Since nearby poses along the trajectory are likely to have
similar marginal covariance and cross correlation with respect
to the current robot pose, we organize the tree such that poses
obtained in similar time slices end up in the same branch of the
tree. This is achieved by adding new poses always to the same
extreme of the tree (the right in our implementation). However,
this biased insertion produces unbalanced trees.

Tree balance is obtained in a way similar to what is done with
height-balanced binary search trees [38]. The balance factor of
a node is the difference between the height of its right and left
subtrees. A tree is considered balanced if the balance factor
for all its nodes is −1, 0, or 1, where the height of a node
is the maximum number of nodes from itself to the leaves.
The balance of an unbalanced tree is recovered performing tree
rotations. Since insertions only occur at the right-most extreme
of the tree, only left rotations are needed to rebalance the tree.

Algorithm 1 shows the pseudocode for the inser-
tion operation, including tree balance. In this Algorithm,
LASTNODE(T) returns the right-most node of the tree,
ADDPOSE(T ,m, i, µi,Σii ,Φi) adds a new pose to the tree with
the provided information as depicted in Fig. 3, ROOT(T) re-
turns the root node of the tree, and PARENT(m) returns the
parent node of m. Furthermore, BALANCEFACTOR(T ,m) com-
putes the difference in height between the right and the left
subtrees, and LEFTROTATETREE(T ,m) increases the height of

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on February 8, 2010 at 06:31 from IEEE Xplore. Restrictions apply.

ILA et al.: INFORMATION-BASED COMPACT POSE SLAM 85

Algorithm 1: Insertion of a pose in the tree of poses.

Fig. 3. Adding a new pose to the tree. White boxes represent internal tree
nodes and green ones leaves. (Left) Tree before the insertion. (Right) Tree after
adding the new pose (marked with horizontal lines). The only pose initially in
the tree affected by the insertion is the right-most one, marked with vertical
lines.

Fig. 4. Rotation of a tree to the left at node P . White boxes represent internal
tree nodes and green ones leaves. (Top) Tree unbalanced at node P . (Bottom)
Tree after applying the tree rotation.

right child and decreases that of the left one as shown in Fig. 4.
Finally, UPDATENODE(T ,m) redefines the information in an in-
ternal tree node as the interval hull of the information stored in
the root node of its right and left subtrees.

All operations during insertion have constant time complex-
ity. However, UPDATENODE needs to be applied to the nodes

Algorithm 2: Updating the tree of poses.

from the insertion point all the way to the root. Since the tree is
balanced, the total cost of inserting a new pose is O(log n) with
n the number of poses already in the tree. Moreover, the mem-
ory used by the tree scales with O(n). Finally, note that when a
loop is closed the estimates can change considerably. Therefore,
the information on all tree nodes must be updated. Updating the
tree from scratch is as easy as updating the values stored at the
leaves and recomputing the hulls all over the internal nodes.
We refer to this procedure as UPDATETREE (see Algorithm 2).
In this recursive algorithm, HEIGHT returns the height of a tree
(1 for leaves), LABEL returns the label of the pose stored in a
given leaf, UPDATELEAVE replaces the data stored in a leaf by
the given one, and functions LEFT and RIGHT return the left
and right subtrees of a particular node, respectively. The update
only visits each node in the tree once; therefore, it has O(n)
complexity, which is asymptotically better than the near-linear
cost of state recovery at loop closure described in Section V-B.

C. Querying a Tree of Poses

The search (see Algorithm 3) proceeds in a recursive way
exploring only those branches that are likely to include poses
close to the current one. This is evaluated using the SIMILARITY

function that implements (14) for internal tree nodes and (6) for
leaves. The information stored in a tree node (interval-based for
internal nodes and real for leaves) is obtained using function
GETNODEINFO and function LABELS returns the pose labels for
all the leaves under a given node. In the end, the search returns
the labels associated with the poses that are close to the current
one.

In a real mapping situation, we will have an approximately
uniform distribution of poses and a reasonable value for thresh-
old s. Thus, each query will return a bounded number of neigh-
bors, say, at most k � n. Then, the proposed method has an
average case complexity of O(k log n) = O(log n). In an ex-
treme situation, however, the search process might degenerate.
However, in any case, the search process will never visit a node
in the binary tree more than once. Thus, asymptotically, the pro-
posed search method is always better or equal, but never worse,
than linear search. The degradation toward linear time complex-
ity depends on the distribution of poses and on the neighboring
threshold s: If set too low, almost all poses in the trajectory will
be selected as neighbors, and the tree-based search degrades to

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on February 8, 2010 at 06:31 from IEEE Xplore. Restrictions apply.

86 IEEE TRANSACTIONS ON ROBOTICS, VOL. 26, NO. 1, FEBRUARY 2010

Algorithm 3: Query using the tree of poses.

a linear search. Threshold s should only be low when the robot
is almost lost, and in that extreme case, the method would auto-
matically turn into a prior-less data-association mechanism [39].

VII. ALGORITHMIC FRAMEWORK

Algorithm 4 shows the pseudocode for the entire information-
based compact Pose-SLAM approach introduced in this paper.
To save memory, the algorithm stores the correlation between
all poses in information form using η and Λ. Moreover, to
efficiently update the state and compute the distance and the
mutual information gain, the algorithm keeps track of the state
mean µ, the diagonal of the covariance matrix D, and the factors
used to recover the last column of the covariance matrix Φ
and F. Finally, the search for neighboring poses is sped up by
organizing the information about all poses in the trajectory in a
binary tree T . Since the information criteria strictly limits loop
creation, the information matrix is sparser than in plain Pose
SLAM. The overall algorithm memory footprint is practically
linear with the number of poses.

After initializing all data structures (lines 1–9 in Algorithm 4),
the algorithm enters the SLAM main loop (lines 10–45). Since
redundant poses are removed, at each iteration t, the map in-
cludes only n poses, n ≤ t. In the main loop, we first obtain the
new odometric measurement and compound its displacement
with respect to the last pose stored in the filter (line 11). This is
used to calculate the state mean and relevant parts of the covari-
ance matrix in open loop as described in Section V-A (line 12), as
well as to augment the state in information form as described in
Section III-A (line 13). Next, the procedure described in
Section VI-C is applied to search for neighboring poses (line
14). Applying the method described in Section IV-B, we ob-
tain the most informative link i evaluating, for each link to a
possible neighbor, the expected information gain using an ap-

Algorithm 4: Information-based compact Pose SLAM.

proximation to the sensor covariance Σ̄y (line 18). Informative
links are queried for sensor matching in decreasing order of
information content (line 20). This step is particular for each
type of sensor readings to register and returns the constraint be-
tween the current and the queried pose parameterized with µy

and Σy . If sensor registration succeeds (line 21) and the link is
actually informative (line 23), the relative measurement is used
to recover the state mean and the relevant covariance entries
for data association, as described in Section V-B (line 24), as
well as to update the state in information form as shown in the
formulation in Section III-B (line 25). After closing the loop,
the state significantly changes, and the hulls on the tree must
be updated (line 26). Subsequent elements in C are then pro-
cessed, aiming at closing as many loops as possible. Since, at the
update, the expected information gain for the remaining candi-
date loops might significantly change, MAXINFOGAIN must be
re-evaluated for the rest of elements in C. After processing all
possible loop closures, redundant poses are identified (line 37).

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on February 8, 2010 at 06:31 from IEEE Xplore. Restrictions apply.

ILA et al.: INFORMATION-BASED COMPACT POSE SLAM 87

TABLE I
MAIN OPERATIONS IN ALGORITHM 4 AND THEIR ASSOCIATED COSTS

A pose is considered redundant if it is not used to close any
loop and if at least one of the possible links is not informative
(line 32). Redundant poses are not added to the filter, but their
odometric contribution is simply stored to be used in the next
iteration (line 38). Finally, relevant poses are inserted into the
search tree (line 40), and the accumulated odometry is reset
(line 41).

Table I summarizes the cost of the main steps in the
algorithm. In the table, line numbers correspond to those in
Algorithm 4. When operating in open loop, the cost of each iter-
ation is dominated by that of the SEARCHTREE. As discussed in
Section VI-C, assuming a bounded set of neighbors C, the cost
of of the SEARCHTREE is O(log n), and the cost for comput-
ing the MAXINFOGAIN is constant. Loop closure is dominated
by the cost of state recovery and by the cost of updating the
hulls in the tree, which are both O(n). In conclusion, the cost
per iteration in our compact Pose SLAM proposal is well be-
low the current state-of-the-art SLAM algorithms since it is
O(log n) for tree growth, tree search during open loop, and
occasionally O(n) for state recovery and tree update at loop
closure.

VIII. EXPERIMENTS

This section describes the experiments that validate the pre-
sented Pose-SLAM approach, first using synthetic data sets for
which ground truth is available to evaluate the quality of the
resulting maps and then using several real data sets obtained
with our robots and from standard repositories.

A. Efficiency and Consistency

The first experiment is designed to show, on one hand, the
significant computational savings achieved by restricting the
number of poses and links with the presented approach and, on
the other hand, that such approach produces a filtering scheme
that is less prone to overconfidence from linearization, with the
consequent benefit of consistent estimation for longer periods
of time.

Fig. 1 shows the reduction in the number of poses and links as
a result of using the presented information-based criteria. In the
experiment, we simulate a robot moving over two concentric
ellipses: the first with semi axes 10 and 6 m and the second
with semi axes 20 and 6 m, respectively. In the simulation, the
motion of the robot is measured with an odometric sensor whose
error is 5% of the displacement in x and y and 0.0175 rad in
orientation. A second sensor is able to establish a link between

Fig. 5. Monte Carlo simulation of a robot moving on an elliptical trajectory.
(a) Open loop. (b) Closing all possible loops.

any two poses closer than ±3 m in x and y, and ±0.26 rad
in orientation. This sensor is simulated with noise covariance
Σy = diag (0.2 m, 0.2 m, 0.009 rad)2 .

A map built with the standard Pose-SLAM approach pre-
sented in Section III is shown in Fig. 1(a). The result incor-
porates all possible poses and links to the state. We use the
distance test in (6) with v = (3 m, 3 m, 0.26 rad) and s = 0.1
to determine which poses are to be tested for registration. The
simulation takes about 50 s and, at the end of the execution, the
filter includes 169 poses and 337 links. All results correspond
to a MATLAB implementation running under Linux on a Intel
Core 2 at 2.4 GHz. Fig. 1(b) shows results of the same simula-
tion including only links that have a value of (7) higher than 3
nats. In this case, only three links are established in contrast to
337, and the execution time is 28 s.

Finally, Fig. 1(c) shows the outcome of the experiment when
only informative links and relevant poses are added to the map.
According to Section IV, a pose is considered relevant if a
possible link with another pose is informative enough. In this
case, the resulting map includes 58 poses and three links, and
the simulation takes only 9 s, which is a mere 20% of the time
required by the naive implementation from Fig. 1(a).

This gain in speed is not at the cost of map consistency but
on the contrary. Fig. 5 shows the evolution of the covariance for
the initial 25 steps of a particular run of this experiment. The
estimated robot position is indicated by red ellipses. The blue
points correspond to 100 Monte Carlo simulations of the robot
trajectory using the aforementioned parameters. When keeping
all poses but closing only informative loops as in Fig. 1(b),
99% of the sampled trajectories are inside the 95% confidence
interval of the last pose covariance, as shown in Fig. 5(a).

Fig. 5(b) shows the linearization effects on the mean and over-
confidence on the covariance as a result of adding all possible
poses and links, regardless of their information content, as in
Fig. 1(a). In this case, at the end only 5% of the Monte Carlo
simulated trajectories fall inside the 95% confidence interval of
the pose covariance, which exemplifies how a naive filter turns
inconsistent sooner when adding many links between poses.
This effect is amplified for longer and more complex trajec-
tories [11]. Since in this simulated experiment ground truth is
available, we can prove this point by evaluating the normal-
ized estimation error squared (NEES) [40] at each time slice.
Fig. 6 shows the NEES at a 95% confidence level when, like in
Fig. 1(a), we use all possible links and poses (red dashed line)

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on February 8, 2010 at 06:31 from IEEE Xplore. Restrictions apply.

88 IEEE TRANSACTIONS ON ROBOTICS, VOL. 26, NO. 1, FEBRUARY 2010

Fig. 6. Consistency evaluation using the NEES criteria.

and the same criteria when, like in Fig. 1(c), we only consider
relevant links and poses (green solid line). The lower the NEES,
the closer (in the Mahalanobis sense) the estimated trajectory is
to the ground truth. NEES values above 1 indicate an inconsis-
tent filter. Clearly, a careful selection of the links and poses to
add to the filter resulted in improved filter consistency for the
whole mapping session.

B. Efficient State Recovery

When closing a loop, the most expensive operation is the
partial state recovery described in Section V. We now compare
the proposed strategy with two other alternative methods. The
first method consists in solving a large sparse linear system to
recover the whole covariance matrix Σ. The second strategy
recovers each block column of the covariance matrix solving
separate linear systems. Fig. 7 shows the execution time and
memory footprint for these two approaches compared with our
method, as a function of state size for the experiment in Fig. 1.
Since we are interested in analyzing the price of state recov-
ery at loop closure, the setting in Fig. 1(a) is used, as this is
the one in which more loops are closed. In the three experi-
ments, linear systems are solved using the supernodal sparse
Cholesky factorization [36], as implemented in the SuiteSparse
toolbox [41]. As shown in the plot, the time needed to re-
cover the whole Σ (blue dotted line) is smaller than the time
to solve separate system sets: one per each block column (red
dashed line). However, memory requirements to solve for the
whole Σ increase much faster than when solving the systems
column-wise. The method that recovers the whole Σ is accord-
ing to the memory demanding that it cannot be applied to large
mapping problems. Memory use is directly reported by the the
SuiteSparse implementation, and the two large jumps in the plot
probably correspond to the standard memory-allocation tech-
nique that doubles the allocated memory when needed to avoid
recurrent expensive system calls. In any case, the execution time
and memory usage for our strategy, shown in green solid line in
both plots, outperform the two other methods. The experiments
with real data in Section VIII-D will show that the computational
advantages of the proposed method are also clear for larger data
sets.

Fig. 7. Execution time and memory footprint for different state recovery strate-
gies when closing a loop for the experiment in Fig. 1(a). (a) Execution time.
(b) Memory footprint.

Fig. 8. Example of a simulated trajectory used to compare time execution be-
tween linear and tree-based search. The zoom box shows the result of searching
for neighboring poses (in green) to the current pose (in blue).

C. Tree-Based Nearest Neighbor Search

To compare the proposed tree-based search for neighboring
poses with a linear search, we simulate a robot following an
elliptical trajectory moving about 1 m per time slice. The size
of the ellipse is adjusted so that the range of poses varies from
1000 to 10 000 (see Fig. 8). The robot motion is corrupted with
0.05 m and 0.009 rad of translational and rotational standard
deviation, respectively. At the end of the simulation we search
for poses within v = (3 m, 3 m, 0.25 rad) from the last robot
pose, i.e., ±3 m in x and y and ±0.25 rad in orientation, with
probability higher than s = 0.5 in a first run and with a more
permissive s = 0.1 in a second run.

Fig. 9 shows the execution time in seconds when searching for
neighboring poses comparing the linear search versus the tree-
based search. Since the trajectories are randomly generated, the

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on February 8, 2010 at 06:31 from IEEE Xplore. Restrictions apply.

ILA et al.: INFORMATION-BASED COMPACT POSE SLAM 89

Fig. 9. Averaged execution time in seconds for ten randomly generated ex-
periments using a linear search (red line) and a tree-based search with s = 0.5
(blue line) and s = 0.1 (green line) for trajectories with 1000 to 10 000 poses.
Error bars correspond to one standard deviation.

Fig. 10. Portion of the tree explored for a query with 1000 poses. White
squares are internal tree nodes that pass the data association test, red squares are
tree nodes where this test fails and, consequently, where the recursive search is
stopped, yellow squares are leaves where the data association fails, and green
squares are the leaves returned as solution for the query.

results are averaged over 10 runs with error bars for one stan-
dard deviation. The lower the probability threshold s, the larger
the number of poses that pass the neighboring test, potentially
reducing the advantage of using the tree-based search. Nonethe-
less, as shown in Fig. 9, even with s = 0.1 the tree-based search
hardly degrades, clearly outperforming the linear search, thus
validating the approach introduced in this paper.

Fig. 10 shows the portion of the tree explored when solving
a query in a tree with 1000 poses for the situation depicted in
the inset in Fig. 8. White squares are internal tree nodes that
pass the data association test. Red squares are tree nodes where
this test fails and, consequently, where the recursive search is
stopped. Yellow squares are leaves where the data association
fails. Finally, green squares are the leaves returned as solutions
for the query. The algorithm returns a set of five poses immedi-
ately preceding the current pose in the trajectory and two poses
at the beginning of the trajectory. These would be the perfect
candidates for loop closure. Since the returned poses are stored
at different parts of the tree, two different branches have to be
explored to determine the set of results. As shown in the figure,
a nice particularity of the interval evaluation is that all branches
explored lead to valid match candidates. Thus, the risk of over-
estimation due to the use of interval arithmetic is avoided in the
proposed tree-based data association. Note also how the tech-

nique leaves the tree balanced. In this case, for a tree with 1000
poses, the height of the tree is 11.

The need for accurate computation of joint marginals be-
comes evident during nearest neighbor search. For instance, a
standard KD-tree could also be used to speed up the search for
neighboring poses. However, in that case, covariances have to
be considered in marginal form, bounded at a particular con-
fidence level and approximated by axis-aligned boxes. These
approximations would produce many false positives that would
later need to be discarded using sensor registration, which is an
expensive process. For instance, the number of nearest neigh-
bors identified by our tree-based data-association technique in
the whole run of the experiment in Fig. 1 is 362. If, instead,
we use a KD-tree that considers covariances in marginal form,
the number of nearest neighbors increases to 474, introducing
about 30% false positives. In a more-realistic situation, this
would imply a considerable increase in the execution time of
the algorithm.

D. Real Mapping Sessions

To test the proposed system on real data, we collected dead-
reckoning readings and stereo images using a Segway robotic
platform fitted with a PointGrey Bumblebee2 stereo rig. Stereo
images were used to find constraints (visual odometry and loop
closure links) between corresponding poses iterating as fol-
lows: First, SIFT image features [42] are extracted and matched
from candidate stereo image pairs. The resulting point corre-
spondences are then triangulated to obtain a set of 3-D feature
matches, which are in turn used to compute a least squares
best-fit pose transformation, rejecting outliers via RANSAC.

The Segway dead-reckoning readings and the visual pose
constraints are modeled with noise covariances Σu = diag
(0.01 m, 0.005 m, 0.03 rad)2 , and Σy = diag (0.2 m, 0.2 m,
0.03 rad)2 , respectively, and the uncertainty of the initial pose
is set to Σ00 = diag (0.1 m, 0.1 m, 0.09 rad)2 . Note that the
static motion and measurement covariances are chosen to over-
estimate the true covariances. This is a worst-case scenario for
the proposed nearest neighbor search: The larger the measure-
ment uncertainty, the larger the number of potential neighbors
that need to be tested for correspondence. The experiments pre-
sented in this paper show that even in this case, the speed up
given by the tree-based search is remarkable compared with
the linear search. Tighter covariances from more accurate noise
models can only result in lower execution times.

Experimentally, we observed that images taken in poses far-
ther away than ±2.5 m in x, ±2 m in y, or ±0.26 rad in orienta-
tion cannot be safely matched, and consequently, those are the
thresholds in v used to detect nearby poses, with a very permis-
sive s = 0.1. With such value of s we avoid missing any valid
loop closure.

In the first experiment, we drove the robot for 700 s for
about 400 m along two loops around a couple of buildings
in the Barcelona Robot Lab, which is part of the EU URUS
project, located at the UPC Campus Nord (see Fig. 11). Our
Pose-SLAM method was compared with a state-of-the-art place-
recognition technique [39]. At a confidence level of 96% for the

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on February 8, 2010 at 06:31 from IEEE Xplore. Restrictions apply.

90 IEEE TRANSACTIONS ON ROBOTICS, VOL. 26, NO. 1, FEBRUARY 2010

Fig. 11. Poses recognized as being in the same place using a state-of-the-art
place-recognition technique at a 95% confidence level linked by green lines.

place-recognition method, only one loop closure could be as-
serted from the entire data set. Decreasing the confidence level
to 95%, all image pairs for the locations linked by green lines in
Fig. 11 were recognized as taken from the same locations. The
sample images shown (A and B) correspond to images taken
when coming out from two different corridors between build-
ings. Due to its repetitive structure, the environment is strongly
aliased; therefore, the use of priors to select candidate links for
loop closure is a must.

To see the effect of restricting the number of poses and links
with respect to computational time, the same strategies dis-
cussed in Section VIII-A are repeated here. When all possible
loops are closed [see Fig. 12(a)], we end up with 368 poses
and 191 links and an execution time of 182 s, without taking
into account vision related processes. When limiting the links to
those with information gain above 3 nats, the simulation runs in
131 s, and only three loop closures are established. Finally [see
Fig. 12(b)], if we retain only nonredundant poses, we end up
with a filter with 147 poses and three loop closures, and an exe-
cution time of only 44 s. The computational saving is significant
and, as shown in Fig. 12, the final estimate hardly varies with
respect to the one using the standard Pose-SLAM approach.

To analyze the effects of using the tree-based nearest neigh-
bor search strategy versus linear search, we report on the case
in which all poses are retained, but only informative links are
included. Table II gives a comparison of the execution times in
seconds. These execution times indicate only filter-related pro-
cesses (prediction, update, and nearest neighbor search) and do
not include sensor-related processes (SIFT extraction and im-
age matching). We can see that in all cases, the time devoted to
nearest neighbor search clearly dominates the cost: About 99%
of the time is used in this process that clearly motivates the need
to improve it. With s = 0.1, many poses pass the neighboring
test and the advantage of the tree-based search somehow dimin-

Fig. 12. Filtered trajectory (in red) using encoder and visual odometry on
a dataset collected at the first run at the UPC Campus Nord for the standard
Pose-SLAM approach and the approach proposed in this paper. Loop closure
links are displayed in green, a blue arrow indicates the final pose of the robot,
and the black ellipse the associated covariance at a 95% confidence level.
(a) Standard approach: incorporating all poses and all links to the filter.
(b) Proposed approach: incorporating only relevant poses and links.

TABLE II
EXECUTION TIMES (IN SECONDS) FOR THE FIRST CAMPUS NORD EXPERIMENT

ishes. Despite this, the use of the tree-based approach reduces
the cost of this search by a factor of 0.65. The total time needed
to build and rebalance the tree is about 1.5 s only, which is a
very small penalty to pay taking into account the computational
savings obtained from using it (about 40 s).

We now report results on the second experiment in which the
technique is pushed to stronger conditions on dead-reckoning
error with tighter turns and loop-closure assertion with largely
overlapped trajectories. In this experiment, we drove the robot
for about 1750 s along a more loopy trajectory in an open
space in the same Campus. Despite the fact that the trajectory
self-intersects many times, the number of loop-closure links is
reduced from 5803 to 14 when using the method proposed in
this paper. When also removing redundant poses, the number
of poses reduces from 981 to 150, and the execution time drops
from 1488 to 210 s (almost an order of magnitude faster than

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on February 8, 2010 at 06:31 from IEEE Xplore. Restrictions apply.

ILA et al.: INFORMATION-BASED COMPACT POSE SLAM 91

Fig. 13. Filtered trajectory (in red) using encoder and visual odometry on
the second dataset collected at the UPC Campus Nord. Loop-closure links are
displayed in green, and the blue arrow indicates the final pose of the robot and
the black ellipse the associated covariance at a 95% confidence level.

real time). These results suggest that, the longer the trajectory,
the larger the advantage of the proposed approach. The final
estimated trajectory for this experiment is shown in Fig. 13.
Note how the density of the poses in the trajectory is automat-
ically adjusted by taking into account the two factors relevant
to the information gain: the sensor noise and the uncertainty
in the linked poses. For instance, larger noise in rotation au-
tomatically accounts for a denser set of poses when the robot
rotates as shown in the circular subtrajectory in the center of
the figure and is sampled more densely. The consequence is that
linking poses using an information criteria produces a trajectory
in which poses are equidistant in information space, rather than
in Euclidean space. Note that the final marginal covariance for
this experiment is larger than that for the previous test. This is
due to the fact that the final part of the experiment the robot
operates in open loop for a while after closing a mildly infor-
mative loop, while in the previous test, an informative loop is
closed near the end of the experiment.

Finally, to test the performance for an even larger data set,
and to compare the technique with previously published results
(see [4] for recent reference), we used the dataset collected at
the Intel Research Laboratory (Seattle, WA), which is available
at [43]. The dataset includes 26 915 odometry readings and
13 631 laser scans. The laser scans are used to generate sensor-
based odometry and to assert loop closures by aligning them
using an ICP scan matching algorithm [24]. In this case, only
links between poses closer than ±1 m in x and y, and ±0.35
rad in orientation were considered reliable. The robot odometry
and the relative motion computed from laser scan matches are
modeled with noise covariances Σu = diag (0.05 m, 0.05 m,
0.03 rad)2 and Σy = diag (0.05 m, 0.05 m, 0.009 rad)2 ,
respectively. Finally, the covariance of the initial pose is set to
Σ00 = diag (0.1 m, 0.1 m, 0.09 rad)2 . Using the Pose-SLAM
algorithm introduced in this paper with a minimum information
gain of 4.5 nats, we end up with a map including only 1218 poses
and 103 links. With s = 0.1, the total execution time, excluding
the ICP scan alignment, is 6314 s. Fig. 14 shows the final
estimated trajectory together with the laser scan associated with
each of the stored poses in light gray. The blue points in the upper

Fig. 14. Filtered trajectory using encoder odometry and laser scans of the Intel
dataset. Blue arrow indicates the final pose of the robot and the black ellipse the
associated covariance at a 95% confidence level.

part of the plot correspond to the laser scan for the last robot
pose whose covariance in x–y is represented by a black ellipse.

Due to its large size, this dataset is often preprocessed and
reduced to about 1000 poses with about 3500 loop closure links.
The system we propose automatically selects the optimal subset
of poses in the sense of the information gain and not with respect
to Euclidean distance, allowing for a more principled selection
of loop-closure links and nodes.

Fig. 15 shows the execution time and memory footprint
at each step for the different strategies for state recovery at
loop closure discussed in this paper: recovering the whole Σ,
recovering it column-wise, and the method proposed in
Section V. The result confirms that for larger SLAM problems,
our method outperforms the two other methods both in memory
usage and in execution time. Moreover, the results also confirm
that the sparsity assumptions behind the efficient loop-closure
state recovery, proposed in this paper, actually hold in realis-
tic situations, even when the robot revisits the same area many
times. In this particular experiment, the robot travels up to three
times around the main corridor of the Intel Laboratory.

In this experiment, the time spent in the two basic filter op-
erations, i.e., state augmentation and state update including the
exact computation of state mean and needed covariance terms
using the technique introduced in Section V-B, amounts to a
very small value of 50 s, i.e., less than 1% of the total execu-
tion time, at an average of 4 ms per step. Clearly, this is almost
negligible compared with the time needed for data association
(6265 s in this case). The advantages of the tree-based search
approach proposed in this paper can be better appreciated as the
number of poses grows. Larger problems can be formed by pro-
cessing the data set with lower values for the information gain
threshold g. Fig. 16 compares the execution time used to search
for nearest neighbors in the last iteration (i.e., when the state
includes more poses) of the Intel experiment using the linear

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on February 8, 2010 at 06:31 from IEEE Xplore. Restrictions apply.

92 IEEE TRANSACTIONS ON ROBOTICS, VOL. 26, NO. 1, FEBRUARY 2010

Fig. 15. Execution time and memory footprint for different state-recovery
strategies when closing a loop in the Intel experiment. (a) Execution time.
(b) Memory footprint.

Fig. 16. Time used in the search for nearest neighbors for the last iteration
of the Intel experiment processed with different values of the information gain
threshold.

search and the tree-based one with g ∈ {4.5, 3.5, 2.5, 1.5}. We
can see that even when the number of poses substantially grows,
the time for the tree-based search hardly increases. These results
fully agree with the simulated experiment reported in Fig. 9 and
validate the presented search approach in realistic situations.

IX. CONCLUSION

This paper offers principled solutions to reduce the state size
and the number of loop closures in Pose SLAM by considering
only nonredundant poses and informative links. This is achieved
by computing two measures: the relative distance between poses
and the information gain for each candidate link. By storing the

state mean and the relevant parts of the covariance matrix, these
measures can be computed in exact form and in constant time.
Moreover, the paper introduces a constant time procedure to
update the mean and the relevant parts of the covariance matrix
when operating in open loop and a near-linear time procedure
when closing the loop.

With the proposed strategy, the robot operates most of the
time in open loop; therefore, the near-linear cost of updating the
state after a loop closure is amortized over long periods. In this
case, the bottleneck for real-time execution is not state recovery
but detecting neighboring poses for which feature matching is
likely. We proposed a tree-based method to search for neighbor-
ing poses that scales logarithmically with the number of states.
Interval arithmetic is used to evaluate the probability of a pose
being close to a subset of poses in the trajectory.

Our experiments show that for large mapping sessions the
presented technique is beneficial in several fronts: A reduction
of state size by an order of magnitude without compromising the
quality of estimates is obtained; computationally efficient state
recovery is feasible; linearization effects are delayed, maintain-
ing the filter consistent for longer sessions; and neighbor search
with the aid of interval arithmetic is able to efficiently identify
loop-closure candidates after long periods of open-loop traverse.

Estimation errors have two sources [40]: the approximation
introduced by the linearizations and the fact that Jacobians are
evaluated at estimates and not at the exact values. In this pa-
per, we addressed the first of this error sources. Maximum-
likelihood mapping techniques, e.g., [6], [19], [26], address the
second source of error. Possible extensions to our system include
the application of the information-based pose and link-selection
methods presented in this paper to maximum likelihood tech-
niques in order to improve their efficiency and to obtain a more
robust estimator. Another remaining issue is to extend our cur-
rent implementation to deal with poses in SE(3). Finally, other
refinements we would like to address include deriving more
elaborated error models and applying the proposed Pose-SLAM
algorithm in the context of hierarchical mapping.

REFERENCES

[1] S. Thrun, Y. Liu, D. Koller, A. Y. Ng, Z. Ghahramani, and H. Durrant-
Whyte, “Simultaneous localization and mapping with sparse extended
information filters,” Int. J. Robot. Res., vol. 23, no. 7–8, pp. 693–716, Jul.
2004.

[2] R. M. Eustice, H. Singh, and J. J. Leonard, “Exactly sparse delayed-
state filters for view-based SLAM,” IEEE Trans. Robot., vol. 22, no. 6,
pp. 1100–1114, Dec. 2006.

[3] V. Ila, J. Andrade Cetto, R. Valencia, and A. Sanfeliu, “Vision-based loop
closing for delayed state robot mapping,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst., San Diego, CA, Nov. 2007, pp. 3892–3897.

[4] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Incremental smooth-
ing and mapping,” IEEE Trans. Robot., vol. 24, no. 6, pp. 1365–1378,
Dec. 2008.

[5] M. Montemerlo and S. Thrun, FastSLAM: A Scalable Method for the
Simultaneous Localization and Mapping Problem in Robotic. (Springer
Tracts in Advanced Robotics Series 27). New York: Springer-Verlag, 2007.

[6] F. Dellaert and M. Kaess, “Square root SAM: Simultaneous localization
and mapping via square root information smoothing,” Int. J. Robot. Res.,
vol. 25, no. 12, pp. 1181–1204, 2006.

[7] M. R. Walter, R. M. Eustice, and J. J. Leonard, “Exactly sparse extended
information filters for feature-based SLAM,” Int. J. Robot. Res., vol. 26,
no. 4, pp. 335–359, 2007.

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on February 8, 2010 at 06:31 from IEEE Xplore. Restrictions apply.

ILA et al.: INFORMATION-BASED COMPACT POSE SLAM 93

[8] Z. Wang, S. Huang, and G. Dissanayake, “D-SLAM: A decoupled solution
to simultaneous localization and mapping,” Int. J. Robot. Res., vol. 26,
no. 2, pp. 187–204, 2007.

[9] K. Konolige and M. Agrawal, “FrameSLAM: From bundle adjustment to
realtime visual mapping,” IEEE Trans. Robot., vol. 24, no. 5, pp. 1066–
1077, Oct. 2008.

[10] M. Montemerlo and S. Thrun, “Simultaneous localization and mapping
with unknown data association using FastSLAM,” in Proc. IEEE Int. Conf.
Robot. Autom., Taipei, Taiwan, Sep. 2003, pp. 1985–1991.

[11] S. J. Julier and J. K. Uhlmann, “A counter example to the theory of
simultaneous localization and map building,” in Proc. IEEE Int. Conf.
Robot. Autom., Seoul, Korea, May 2001, pp. 4238–4243.

[12] T. Bailey, J. Nieto, J. Guivant, M. Stevens, and E. Nebot, “Consistency of
the EKF-SLAM algorithm,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., Beijing, China, Oct. 2006, pp. 3562–3568.

[13] K. Konolige, M. Agrawal, and J. Solà, “Large scale visual odometry for
rough terrain,” presented at the 13th Int. Sym. Robot. Res., Hiroshima,
Japan, Nov. 2007.

[14] V. Ila, J. Andrade Cetto, and A. Sanfeliu, “Outdoor delayed-state visually
augmented odometry,” presented at the 6th IFAC/EURON Symp. Intell.
Auton., Vehicles, Toulouse, France, Sep. 2007.

[15] I. Esteban, O. Booij, Z. Zivckovic, and B. Kröse, “SLAM for extremely
large environments,” presented at the Proc. 14th Annu. Conf. Adv. School
Comput. Imag., Heijen, The Netherlands, Jun. 2008.

[16] J. Uhlmann, “Introduction to the algorithmics of data association in
multiple-target tracking,” in Handbook of Multisensor Data Fusion, M. E.
Liggins, D. E. Hall, and J. Llinas, Eds. Boca Raton, FL: CRC, 2001.

[17] R. Smith, M. Self, and P. Cheeseman, “A stochastic map for uncertain
spatial relationships,” presented at the 4th Int. Symp. Robot. Res., Santa
Clara, CA, 1988, pp. 467–474.

[18] M. W. M. G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte,
and M. Csorba, “A solution to the simultaneous localization and map
building (SLAM) problem,” IEEE Trans. Robot. Autom., vol. 17, no. 3,
pp. 229–241, Jun. 2001.

[19] G. Grisetti, C. Stachniss, S. Grzonka, and W. Burgard, “A tree parameteri-
zation for efficiently computing maximum likelihood maps using gradient
descent,” presented at the Robot.: Sci. Syst. III, Atlanta, GA, Jun. 2007.

[20] T. Vidal-Calleja, A. Davison, J. Andrade Cetto, and D. Murray, “Active
control for single camera SLAM,” in Proc. IEEE Int. Conf. Robot. Autom.,
Orlando, FL, May 2006, pp. 1930–1936.

[21] R. Sim, “Stable exploration for bearings-only SLAM,” in Proc. IEEE Int.
Conf. Robot. Autom., Barcelona, Spain, Apr. 2005, pp. 2422–2427.

[22] G. Dissanayake, S. B. Williams, H. Durrant-Whyte, and T. Bailey,
“Map management for efficient simultaneous localization and mapping
(SLAM),” Auton. Robot., vol. 12, no. 3, pp. 267–286, May 2002.

[23] W. Zhou, J. Miro, and G. Dissanayake, “Information-driven 6D SLAM
based on ranging vision,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
Nice, France, Sep. 2008, pp. 2072–2077.

[24] F. Lu and E. Milios, “Globally consistent range scan alignment for envi-
ronment mapping,” Auton. Robot., vol. 4, no. 4, pp. 333–349, 1997.

[25] U. Frese, P. Larsson, and T. Duckett, “A multigrid algorithm for simul-
taneous localization and mapping,” IEEE Trans. Robot., vol. 21, no. 2,
pp. 1–12, Apr. 2005.

[26] E. Olson, J. Leonard, and S. Teller, “Fast iterative optimization of pose
graphs with poor initial estimates,” in Proc. IEEE Int. Conf. Robot. Autom.,
Orlando, FL, May 2006, pp. 2262–2269.

[27] A. Ranganathan, M. Kaess, and F. Dellaert, “Loopy SAM,” in Proc. Int.
Joint Conf. Artif. Intell., Hyderabad, Andhra Pradesh, India, Jan. 2007,
pp. 2191–2196.

[28] G. D. Tipaldi, G. Grisetti, and W. Burgard, “Approximated covariance
estimation in graphical approaches to SLAM,” in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst., San Diego, CA, Nov. 2007, pp. 3460–3465.

[29] R. M. Eustice, H. Singh, J. J. Leonard, and M. R. Walter, “Visually
mapping the RMS Titanic: Conservative covariance estimates for SLAM
information flters,” Int. J. Robot. Res., vol. 25, no. 12, pp. 1223–1242,
2006.

[30] J. Neira and J. D. Tardós, “Data association in stochastic mapping using
the joint compatibility test,” IEEE Trans. Robot. Autom., vol. 17, no. 6,
pp. 890–897, Dec. 2001.

[31] S. J. Julier and J. K. Uhlmann, “Using covariance intersection for SLAM,”
Robot. Auton. Syst., vol. 55, no. 1, pp. 2–20, 2007.

[32] S. Huang, Z. Wang, and G. Dissanayake, “Exact state and covariance
sub-matrix recovery for submap based sparse EIF SLAM algorithm,” in
Proc. IEEE Int. Conf. Robot. Autom., Pasadena, CA, Apr. 2008, pp. 1868–
1873.

[33] K. L. Ho and P. Newman, “Detecting loop closure with scene sequences,”
Int. J. Comput. Vis., vol. 74, no. 3, pp. 261–286, Sep. 2007.

[34] L. M. Paz, J. D. Tardós, and J. Neira, “Divide and conquer: EKF SLAM
in O(n),” IEEE Trans. Robot., vol. 24, no. 5, pp. 1107–1120, Oct. 2008.

[35] D. A. Harville, Matrix Algebra From a Statistician’s Perspective. New
York: Springer-Verlag, 1997.

[36] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam, “Algo-
rithm 887: CHOLMOD, supernodal sparse Cholesky factorization and
update/downdate,” ACM Trans. Math. Softw., vol. 35, no. 3, 2008.

[37] R. E. Moore, Interval Analysis. Englewood Cliffs, NJ: Prentice-Hall,
1966.

[38] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algo-
rithms. Cambridge, MA: MIT Press, 1992.

[39] M. Cummins and P. Newman, “FAB-MAP: Probabilistic localization and
mapping in the space of appearance,” Int. J. Robot. Res., vol. 27, no. 6,
pp. 647–665, 2008.

[40] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with Applications
to Tracking and Navigation. New York: Wiley, 2001.

[41] T. Davis. (2009). The SuiteSparse (ver. 3.4). [Online]. Available:
http://www.cise.ufl.edu/research/sparse/SuiteSparse

[42] D. Lowe, “Distinctive image features from scale-invariant keypoints,” Int.
J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004.

[43] A. Howard and N. Roy. (2003). The robotics data set repository (Radish).
[Online]. Available: http://radish.sourceforge.net

Viorela Ila received the Eng. degree in industrial
engineering and automation from the Universitatea
Tehnica, Cluj-Napoca, Romania, in 2000 and the
Ph.D. degree in information technologies from the
Universitat de Girona, Girona, Spain, in 2005.

She is currently a Postdoctoral Fellow with the
Institut de Robòtica i Informàtica Industrial, Span-
ish National Research Council, Barcelona, Spain, as
well as a visiting Faculty Member with the Col-
lege of Computing, Georgia Institute of Technology,
Atlanta. Her research interests include state estima-

tion and image processing with applications to mobile and underwater robotics.

Josep M. Porta received the Eng. degree in com-
puter science and the Ph.D. degree in artificial in-
telligence, both from the Universitat Politènica de
Catalunya, Barcelona, Spain, in 1994 and 2001,
respectively.

He is currently an Associate Researcher with the
Institut de Robòtica i Informàtica Industrial, Spanish
National Research Council, Barcelona. His research
interest includes planning under uncertainty and com-
putational kinematics.

Juan Andrade-Cetto (S’94–M’95) received the
B.S.E.E. degree from CETYS Universidad, Baja
California, Mexico, in 1993, the M.S.E.E. degree
from Purdue University, West Lafayette, IN, in 1995,
and the Ph.D. degree in systems engineering from
the Universitat Politécnica de Catalunya, Barcelona,
Spain, in 2003.

He is currently an Associate Researcher with the
Institut de Robòtica i Informàtica Industrial, Spanish
National Research Council, Barcelona. His research
interests include state estimation and computer vision

with applications to mobile robotics.

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on February 8, 2010 at 06:31 from IEEE Xplore. Restrictions apply.

