

Distributed MPC for Large Scale Systems using
 Agent-based Reinforcement Learning

Valeria Javalera*, Bernardo Morcego**, Vicenç Puig*

* Institut de Rob¸tica i Inform¨tica Industrial, CSIC-UPC C/. Llorens i Artigas, 4-6, 08028 Barcelona,
 Spain (e-mail: vjavalera@iri.upc.edu)

 **Advanced Control Systems Group (SAC), Rambla Sant Nebridi, 10, 08222 Terrassa, Spain

Abstract: In the present work, distributed control and artificial intelligence are combined in a control
architecture for Large Scale Systems (LSS). The aim of this architecture is to provide a general structure
and methodology to perform optimal control in networked distributed environments where multiple
dependencies between sub-systems are found. Often these dependencies or connections represent control
variables so the distributed control has to be consistent for both subsystems and the optimal value of these
variables has to accomplish a common goal. The aim of the research described in this paper is to exploit
the attractive features of MPC (meaningful objective functions and constraints) in a distributed
implementation combining learning techniques to perform the negotiation of these variables in a
cooperative Multi Agent environment and over a Multi Agent platform to provide speed, scalability, and
computational effort reduction. This approach is based on negotiation, cooperation and learning. Results of
the application of this architecture to a small drinking water network show that the resulting trajectories of
the levels in tanks (control variables) can be acceptable compared to the centralized solution. The
application to a real network (the Barcelona case) is currently under development.

Keywords: distributed control, distributed architectures, MPC, learning, Multi-agent systems

1. INTRODUCTION

Distributed and decentralized MPC (Model Predictive

Control) schemes have been proposed over the last years in
order to optimize complex LSS (Large Scale Systems). In
opposite to decentralized systems, where the resulting
subsystems are independent from each other, in distributed
systems the resulting subsystems can have physical
dependencies between them and therefore communication
among them. One of the main problems of distributed control
of LSS is to decide how those dependence relations between
subsystems are preserved. Those relations could be, for
example, pipes that connect two different control zones of a
decentralized water transport network, or any other kind of
connection between different control zones. When these
connections represent control variables, the distributed
control has to be consistent for both zones and the optimal
value of these variables has to accomplish a common goal.

In order to do this, many negotiation techniques have been
proposed (see for example, Camponogara, et al., (2002),
Negenborn (2008), Venkat, et al., (2005), El Fawal, et al.,
(1998), Gómez, et al., (1998) and Rawlings & Stewart
(2008)). Calculation time, problems handling multiple
restrictions and multiple objectives and the impossibility to
ensure convergence are the main problems of these
approaches. Although there have been successful results there
is still a need of a methodology that can be used for all kind
of continuous LSS.

The authors believe that this open problem in control
theory can be solved by the combination of adequate control
and computer science techniques, more precisely, the
combination of Model Predictive control (MPC), Multi-
Agent Systems (MAS), and Reinforcement Learning (RL).

The problems treated by the Distributed Artificial
Intelligence (DAI) and the Distributed Control (DC)
communities are clearly similar. For this reason the authors
propose to apply MAS techniques and technology to DC
problems such as communication, coordination, need of
adaptation (learning), autonomy and intelligence.

The goal of the research described in this paper is to
exploit the attractive features of MPC (meaningful objective
functions and constraints) in a distributed implementation
combining learning techniques to perform the negotiation of
these variables in a cooperative Multi Agent environment and
over a Multi Agent platform. All this ideas are the basis of
the proposed architecture. A methodology for the application
of the proposed architecture is also provided.

2. THE PROBLEM

In order to control an LSS in a distributed way, some
assumptions have to be made on its dynamics, i.e. on the way
the system behaves. In particular, it is assumed that the
system can be divided into n subsystems, where each
subsystem consists of a set of nodes and the interconnections
between them. The problem of determining the partitions of
the network is not addressed in this paper; instead the reader

is referred to Siljack (1991). The set of partitions should be
complete. This means that all system state and control
variables should be included at least in one of the partitions.
 P is the set of system partitions where each system partition
(subsystem) pi is described by a deterministic linear time-
invariant model that is expressed in discrete-time as follows

)()()()(

)()()()1(

,,

,,

kkkk

kkkk

iidiiuiii

iidiiuiii

dDuDxCy
dBuBxAx

 (1)

where variables x, y, u and d are the state, output, input and
disturbance vectors, respectively; A, C, B and D are the state,
output, input and direct matrix, respectively. Subindices u
and d refer to the type of inputs the matrix model, either
control inputs or disturbances.
 Internal variables are control variables that appear in the
model of only one subsystem in the problem. The set of
internal variables of one partition is defined by U.
 Shared variables are control variables that appear in the
model of at least two subsystems in the problem. Their values
should be consistent in the subsystems they appear, so they
are also called negotiated variables. V is the set of negotiated
variables.
 Each subsystem i is controlled by an MPC controller using:

 the model of the dynamics of subsystem i given by
equation (1);

 the measured state xi(k) of subsystem i;
 the exogenous inputs di(k+1) of subsystem i over a

specific horizon of time;
As a result each MPC controller determines the values

ui(k) of subsystem i. The internal control variables are
obtained directly by the MPC controller of this subsystem
while the shared variables are proposed to be negotiated with
the MPC controllers of the corresponding subsystem.

In distributed control, the set of shared variables is not
empty. The problem addressed in this paper is an agent based
distributed control. There is one agent in charge of each
system partition and its duties are to negotiate the shared
variables with other agents and to calculate the control
actions from the MPC formulation of its partition.

Figure 1: The problem of distributed control

Figure 1, on the left, shows a sample system divided into
three partitions. There are three overlapping sets that contain
four shared variables. The relations that represent those

variables are shown on the right as lines. The problem
consists in optimizing the manipulated variables of the global
system in a distributed fashion, i.e. with three local control
agents that must preserve consistency between the shared
variables.

3. REINFORCEMENT LEARNING AND MULTI AGENT
SYSTEMS

Learning techniques are powerful tools used mainly in
large and complex systems in dynamical environments. For
the problem described above, a problem of negotiation in
cooperative environments, the application of RL is a good
option.
 Reinforcement learning is based on past experience, which
is used to reduce the need of iterative methods, which
facilitates that the system behaves almost like a reactive
system with a very short time of response. RL is a well
known and formally studied family of learning techniques.
Moreover, depending on the formulation of the problem and
the richness of experience data, the chances of convergence
are high.

Another key feature of reinforcement learning is that it
explicitly considers the whole problem of a goal-directed
agent interacting with an uncertain environment. This is in
contrast with many approaches that consider subproblems
without addressing how they might fit into a larger picture.
Sutton & Barto, (1998).
The use of RL in the negotiation process allows to: 1) make
the process of negotiation adaptive; 2) learn from its own
experience; 3) consider explicitly the whole problem of two
goal-oriented agents; 3) deal with a dynamical and uncertain
environment; 4) optimize with or without a model; 5) connect
the process of negotiation with the process of MPC control.

The term agent is defined inconsistently in the three areas
that this work combines (MPC, RL and DIA): In MPC,
distributed and decentralized systems are usually called
Multi-Agent Systems and their local controllers are called
agents; In RL, the controller or the software entity that
performs a RL algorithm is also called agent; In Distributed
Artificial Intelligence (DAI), large and complex systems are
solved in a distributed way through intelligent interacting
entities named Agents.

As one can see, the terms behind DAI and Distributed
MPC deal with the same or very similar concepts.
Nevertheless, DAI is a more general area of research and
years of work have developed the technology and techniques
that led to a new programming paradigm: the Agent Oriented
Paradigm (AOP). This paradigm provides tools (i.e.
programming languages, methodologies, standards,
communication platforms, etc.) that make the implementation
of Multi Agent system feasible.

Many DAI researchers have defined the term Agent. This
term is still a controversial issue. In Stan & Graesser (1996),
the main agent definitions are presented and explained and
their taxonomy is also provided. In the present work, the
following definition of an agent is given, for unifying
proposes:
“An agent is the basic entity of software that the AOP uses to
describe an element that has some level of autonomy within a
dynamic and complex system. Besides encapsulating its

characteristics and functionality, it implements processes of
reaction and/or deliberation, as well as communication. It is
represented, from its initial design, by means of a particular,
proposed or experimental method of the AOP. The
functionality of the Agent is given by its behaviors and its
characteristics are represented in its internal state.”

The use of the AOP in the proposed distributed control
architecture allows to: 1) enjoy all the benefits of distributed
systems, like speed-up of the system activity, since it allows
parallel computation, scalability and flexibility, simplicity of
design and maintenance of the system, robustness and
reliability thanks to the possibility of implementing fault
tolerance; 2) perform an appropriate coordination and
synchronization of the agents; 3) provide a management and
communication platform for the MAS; this allows one to
allocate MPC Agents in different computers of a network
with no added effort; 4) use appropriate development tools
and standards; 5) use system analysis and design methods
and tools in order to make an appropriate formalization and
documentation of the system

3. MAMPC ARCHITECTURE

3.1 MAMPC Architecture

The proposed MAMPC distributed control architecture is
defined as:

 { , , , , , , }A N P W V U b (2)

where:

 - V is the set formed by all sets of shared variables and U
is the set formed by all sets of internal variables.
 - A is the set of MPC Agents. An MPC Agent is the entity
that is in charge of controlling one specific partition of the
system. There is one MPC Agent for each system partition.
The MPC Agent solves an MPC control problem considering
the internal variables of the partition and cooperating with
one or more Negotiator Agents to determine the optimum
value of the shared variables.
 - N is the set of Negotiator Agents. The Negotiator Agent is
the entity that is in charge of determining the value of one or
more shared variables between two MPC Agents. In this
negotiation, each MPC Agent is arranged to cooperate so that
the negotiator agent solves the optimization of a common
goal by means of an algorithm based on Reinforcement
Learning. A negotiator Agent exists for every pair of MPC
Agents that have one or more shared variables in common.
 - W is the set of nodes. A node is the physical device
(commonly a computer) in which the agents are located.
There is a node for each MPC Agent. Nodes are
communicated via some communication infrastructure (LAN,
WAN or Internet).
- b is the agent platform, it works as a virtual machine
providing the agents with a homogenous medium to
communicate and providing the user a way to manage agents.
This platform has to be installed and running in all nodes.

A methodology has been developed to assign all the elements
of the MAMPC architecture given a system. This
methodology is illustrated in the application section with an
example.

3.2 Cooperation of MPC-Agents

 The cooperative interaction of MPC agents is a basic issue
in the proposed approach. Cooperation is carried out through
three main actions:
1) Providing data (system states, errors, etc.) to the
Negotiator Agent; 2) accepting the shared variable(s)
provided by the Negotiator Agent; 3) solving the MPC
control problem of its partition, adjusting the value(s) of its
shared control variable(s) in order to coordinate the solution
of the negotiation.

The Negotiator Agent determines the optimal value of the
values in set V. This set contains the shared variables of two,
and just two MPC Agents. The Negotiator Agent optimizes
them through a Negotiation algorithm based on
Reinforcement Learning (RL). Each shared variable is an
optimization problem. This problem is solved as a whole
looking for the optimal value of the relation. The method is
based on the reinforcements given at each step and on the
experience obtained. This experience is stored in a
knowledge base, one for each negotiation variable.

In the distributed model of the system, shared variables
appear in the local models of each MPC Agent involved in
the relation, therefore they end up duplicated.

The Negotiator Agent restores the broken connections when
the system was partitioned, unifiying this dupplicate variables
in a single one, just as in the original model. Therefore, for
the Negotiator Agent, this two control variables are taken as
one.

The philosophy of the proposed negotiation algorithm is to
consider the shared variables as belonging to a single
problem with a single goal, instead of two different problems
with conflicting goals. The Negotiator Agent solves the
optimization problem for that variable and communicates the
result to the MPC Agents at each sampling time. Then, MPC
Agents set those values as a hard constraint in its respective
internal control variables and recalculate the control law.
 The Negotiator Agent optimization algorithm is based on
the Q-learning algorithm that takes into account previous
Agent experience and the reinforcements received at every
action taken in the past on similar situations. Next, these
elements are described in further detail.

3.2.1 Q-table

The Q-table represents the knowledge base of the agent,
which has a Q-table for each shared variable because each
one can have diferent behaviour and even different goals.

Q-tables maintain the reinforcement gained for each
possible state and action. A state represents the global state of
each sub-problem, which is established in terms of the error
of the output with respect to the goal. The definition of the
error that MPC Agents use is:

iii yg (3)

where εi is the error, gi is the goal and yi is the output of
variable i.

The state value is determined by:

2

21 iis

 (4)

where εi1 is the error of the variable i of first agent, and εi2 of
the corresponding variable in the second agent. This state is
updated every sampling time. Actions (a) are all the posible
values that the shared variable can take. Since states and
actions are continuous, they have to be discretized for the
application of the RL algorithm.
The reward function determines the reward of every action
taken by the agent. In this case, the reward function is:

 sr (5)

where ρ is a value greater or equal than s.

3.2.2 Negotiation algorithm

This algorithm is divided in two phases, the training phase
and the exploitation phase. In both cases, the rule for
updating Q-table values is:

)),((),(asQrasQ (6)

The training phase creates a new Q-table off-line using

stored data obtained, for instance, from the control actions
determined by the centralized approach.
Once the Q-table is initialized, the exploitation phase can
start. The main difference here is that actions are chosen
according to

)),((max' asQa

a
 (7)

in order to select the value of the action (negotiated variable)
with maximum reward for the next time instant. More details
of this algorithm and about negotiation in the MAMPC
architecture can be found in Javalera, Morcego & Puig,
(2010).

4. APPLICATION EXAMPLE

4.1 Description

A small drinking water network is used to exemplify the
proposed MAMPC architecture and its performance. The
example was proposed in Barcelli (2008) where a
centralized and a decentralized solution was studied and
compared. This hypothetical water distribution network has 8
states (tanks) and 11 control variables (valves), see Figure 2.
It can be divided into two subsystems. Two MPC Agents are
used to determine the internal control variables of each
subsystem. On the other hand, one Negotiator Agent is
responsible of negotiating the values of the two shared
control variables between the two MPC agents.

Figure 3: Case study and its partitioning

4.2 Analysis

In the analysis phase, the MAMPC Architecture is defined.
This phase comprises the following tasks:

1) Definition of the optimization goals: the control goal of
the application presented in Figure 2 is to keep a volume in
tanks around 3m3 Thus, the control objective if a centralized
MPC was used can be formulated as follows:

8
2

1 1

min (())
p

x

x

H

n ref
k n

J x k x

2) Partitioning of the network: the system (plant to be
controlled) presented in Figure 2 composed of the following
states and control inputs

},,,,,,,,

,,,,,,,,,,{

11109876543

2187654321

uuuuuuuuu

uuxxxxxxxxPlant (8)

is decomposed in two partitions using the epsilon-
decomposition proposed by Siljack (1991):

 },,,,{ 654211 xxxxxp (9)

 },,{ 8732 xxxp (10)

 },{ 1110 uuV (11)

 },,,,,{ 9876211 uuuuuuU (12)

 },,{ 5432 uuuU (13)

An important step is to check that the partinioning of the

plant leads to a complete set of partitions. This is
accomplished verifying the following relation:

 VUPPlant (14)

that can be easily verified in this example,

 VUUppPlant 2121

 (15)

Thus, the partition is a complete set of partitions. The

control objective of each partition is the following:

2

1

min (())
p

x i

H

i nx ref
k n p

J x k x

3) Definition of the Architecture. In this step, the MAMPC
Architecture is defined. Considering the definition of the
architecture in (2), the remaining elements are defined as
follows:

 },{ 21 aaA (16)

 }{ 1nN (17)

 },{ 21 wwW (18)

4) Inclusion of restrictions and considerations: the

maximum volume in tanks is 20 m3, the control value of the
messured variables is from 0.0 to 0.4 except for u2 that is
from 0.0 to 0.1. The sampling time is 1 hour and the
prediction horizon is 24 hours. The demands are considered
as measured perturbations. They typically present a periodic
behaviour that repeats every the day.

4.3 Design

In the design process, the subproblems of every MPC Agent
and Negotiator Agent are formulated. This formulation is
based on the information collected in the analysis phase.

The core of each MPC agent is an MPC controller. This
controller solves the multivariable problem of one partition of
the plant based on the models of each partition according to
(9)-(12), all the MPC parameters and requierements have to
be defined for both agents, such as:
1) The plant; 2) The measured, non-measured and
manipulated variables; 3) Limits and constraints; 4) The
negotiation variables, which are set as restrictions;
5) References (goals); 6) Prediction horizon; 7) Control
horizon; 8) Initial state; 9) Perturbations models.

Another important part of the MPC Agent is the
communication block. MPC Agents can communicate in a
sophisticated way because they are implemented using the
Agent Oriented Paradigm. This paradigm provides methods,
standards and tools that allow good communication skills.
Figure 3 shows a sequence diagram of the communication
protocol designed for this application.

Figure 3: Communication protocol

The diagram shows how MPC Agents start the
comunication by interchanging the resulting output of the
control applied (yi(k)), the vector of controls applied (ui(k)),
the absolute error with respect to the goal of the shared
variable εi(k) and the sampling time k. Then, the algorithm of

the Negotiator Agent is executed. When it finishes, it
communicates the result of the optimization and the
parameter needed by de MPC Agents to solve its
multivariable problem taking as restrictions the values given
by the negotiator. After that, the procces starts again.

4.4 Training

An off-line training using the RL was carried out in order to
provide this experience to the Negotiatior Agent. As in any
RL algorithm, the proposed architecture is based on the agent
experience and the expected reinforcements. The richer the
agent experience has been, the more efficient the
optimization algorithm will be. Thus, as a good starting point
for the agent training process, control actions determined
from a 48 hours scenario of a centralized MPC were used as
initialization values. From this point, the training continued
taking random actions The reward was calculated for all
actions.

4.5 Exploitation
In the RL exploitation phase, the knowledge adquired in the
training phase is used to solve the MPC distributed problem
through the MA system.

The results obtained using the proposed MAMPC
Architecture are shown in Figure 4. Each graph presents a 48
hour scenario, showing the trajectory of the output (water
volumes in tanks). The results are contrasted with the
centralized MPC solution (dashed line) for each tank. The
following table presents the optimal objective function value
obtained using the proposed distributed MPC solution against
the centralized.

Jcentralized 13.3712
Jdistributed 14.7201

Thus distributed solution is not as good as the centralized

one. However, the graphs show that, in some cases (tanks 1, 2
and 8, Figure 4a, 4b and 4h, respectively), the distributed
MAMPC Architecture solution is better. It is important to
note that the volume of tanks 1, and 8 depends directly on the
value of the negotiated variables (u10 and u11).

5. CONCLUSIONS

The results obtained suggest that the use of MAMPC
architecture based on RL negotiation can converge to the
centralized MPC solution with an acceptable degree of
approximation but taking advantage from the MAS properties
and the tools that the Agent Oriented Paradigm (AOP)
provides for development and implementation. Even more,
the application of learning techniques can provide the
Negotiator Agent the ability of prediction. Training of the
negotiator can be made directly from a centralized MPC or
from human operator driven control. In order to achieve
optimization, no model is needed by the negotiator. Data
from centralized MPC is advisable but non essential. The
type and quality of the training is a very important issue in
order to obtain an efficient optimization. Also the

compromise between exploration and exploitation can be
implemented on-line to enable the system not just adaptation
to the problem but adaptation to changes in time. In this
paper, this capability is not addressed in training but in
exploring during the optimization. Communication protocols
and coordination methods for MAS have to be studied and
tested in a more complex case of study in which many agents
interact.

Figure 4: Distributed MAMPC solution (solid -) against centralized
MPC solution (dashed --). Reference (-.-). (a) Tank 1; (b) tank 2; (c)
tank 3; (d) tank 4; (e) tank 5 ; (f) tank 6; (g) tank 7; (h) tank 8.

6. FURTHER RESEARCH

The MAMPC architecture presented in this work is
currently being tested on the Barcelona water transport
network in the context of the European Project Decentralized
and Wireless Control of Large Scale Systems, WIDE. The
Barcelona water network is comprised of 200 sectors with
approximately 400 control points. At present, the Barcelona
information system receives, in real time, data from 200
control points, mainly through flow meters and a few
pressure sensors. This network has been used as a LSS case
of study to test several LSS control approaches, see Brdys &
Ulanicki (1994) and Cembrano, et al., (2000). As starting
point for the application of the MAMPC Architecture, recent
work on centralized Caini, et al., (2009) and decentralized

MPC Fambrini & Ocampo (2009) applied to the Barcelona
network is being used, as well as, the partitioning algorithm
developed by Barcelli (2008).

ACKNOWLEDGMENT

The authors wish to thank the support received by WIDE-224168-
FP7-ICT-2007-2 project and WATMAN ref. DPI2009-13744 of
Spanish Ministry of Education.of Spanish Ministry of Education.
First author is supported by CONACYT and partially supported by
ITESCA

REFERENCES

Barcelli, D. (2008). Optimal decomposition of Barcelona’s water

distribution network system for applying distributed Model
Predictive Control. Master thesis. Universitat Politècnica de
Cataluña-IRI-Universitá degli Study di Siena.

Brdys, M. A., & Ulanicki, B. (1994). Operational control of
water systems, Structures, Algorithms and Applications. Great
Britain: Prentice Hall International.

Caini, E., Puig, V., & Cembrano, G. (2009). Development of a
simulation environmet for water drinking networks:
Application to the validation of a centralized MPC controller
for the Barcelona Case of study. Barcelona, Spain: IRI-CSIC-
UPC.

Camponogara, E., Jia, D., Krogh, B. H., & Talukdar, S.
 (2002, Feb). Distributed Model Predictive Control. IEEE Control

Systems Megazine , 44-52
Cembrano, G., et al., (2000). Optimal Control of a water distribution

network in a supervisory control system. Control of
Engineering Practice (8), 1177-1188.

El Fawal, H., Georges, D., & Bornard, G. (1998). Optimal control of
complex irrigation systems via descomposition-coordination
and the use of augmented lagrangian. In IEEE (Ed.), in Proc.
IEEE Int. conference Systems, man and cybernetics, 4, pp.
3874-3879. San Diego. CA.

Fambrini, V., & Ocampo Martinez, C. (2009). Modelling a
decentralized Model Predictive Control of drinking water
network. Barcelona, Spain: IRI- CSIC-UPC.

Gómez, M., Rodellar, J., Vea, F., Mantecon, J., & Cardona, J.
(1998). Decentralized adaptive control for water distribution.
Proceedings of the 1998 IEEE International on systems, man
and cybernetics, (pp. 1411-1416). San diego Califoirnia. USA.

Javalera, V., Morcego, B., & Puig, V. (2010). Negotiation and
Learning in Distributed MPC of Large Scale Systems.
Proceedings of the 2010 IFAC American Control Conference.
Baltimore, USA.

Negenborn, R. R. (2008). Multi-Agent Model Predictive Control
with applications to power networks. Engineering
Applications of Artificial Intelligence , 21, 353-366.

 Rawlings, J. B., & Stewart, B. (2008). Coordinating multiple
optimization-Based controllers: New opportunities and
challenges. Journal of process control (18), 839-845.

Siljack, D.D. (1991). Decentralized Control of Complex Systems,
Academic Press, New York.

Sutton, & Barto. (1998). Reinforcement Learning, An introduction.
London, England: MIT Press Cambridge Massachussetts.

Stan, F., & Graesser, A. (1996). Is it an agent or just a program?: A
taxonomy of autonomous agents. Proc. of the third
International workshop on Agent theories, architectures and
lenguages . Springer-Verlag.

Venkat, A. N., Rawlings, J. B., & Wrigth, S. J. (2005). Stability and
Optimality of distributed Model Predictive Control. IEEE
Conference on Decision and Control / IEE European.

