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Abstract. Metric indexing is used to organize large databases of Attributed 

Graphs and define fast queries on these sets. We present a proposal where 

indexing is based on an m-tree in which routing nodes of the m-tree act as 

prototypes of the sub-cluster of Attributed Graphs that routing nodes represent. 

In the classical schemes, the information kept in the tree nodes of the sub-

cluster is a selected Attributed Graph from the sub-set. Depending on the sub-

cluster and the application, it is difficult to select a good representative of the 

sub-clusters. To that aim, we propose to use Median Graphs as the main 

information kept in the routing nodes of the m-tree. Experimental validation 

shows that in the database queries, the decrease of the nodes explored in the m-

tree while using a Generalized Median Graph is about 20% respect using a 

selected Attributed Graph.  
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1 Introduction 

Index structures are fundamental tools of database technology, they are used to obtain 

efficient access to large collections of images. Traditional database systems manage 

global properties of images, such as histograms, and many techniques for indexing 

one-dimensional data sets have been defined. Since a total order function over a 

particular attribute domain always exists, this ordering can be used to partition the 

data and moreover, exploited to efficiently support queries. Several multi-dimensional 

indexes have appeared, such as, color, texture, shape, with the aim of increasing the 

efficiency in executing queries on sets of objects characterized by multi-dimensional 

features. Once again, ordering systems of individual orthogonal dimensions are used 

for partitioning the search space, so these methods can, in fact, be considered as direct 

extensions of the one-dimensional case. 

 Effective access to image databases requires queries addressing the expected 

appearance of searched images [1]. To this end, it is needed to represent the image as 

a set of entities and relations between them. The effectiveness of retrieval may be 

improved by registering images as structural elements rather than global features [2]. 

In the most practiced approach to content-based image retrieval, the visual appearance 

of each spatial entity is represented independently by a vector of features. Mutual 

relationships between entities can be taken into account in this retrieval process 

through a cascade filter, which evaluates the similarity in the arrangement of entities 

after these have been retrieved on the basis of their individual features [3]. To 
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overcome these systems, local entities and mutual relationships have to be considered 

to have the same relevance and to be defined as parts of a global structure that 

captures mutual dependencies. In this case, the model of content takes the shape of an 

Attributed Graph (AG). The attributes of the vertices of the AGs represent the 

features of the local entities and the attributes of the arcs of the AGs represent the 

features of the relationships. 

While the distance between two sets of independent features can be computed in 

polynomial time, the exact distance between two AGs is computed in exponential 

time, respect the number of nodes of the AGs. For this reason, few contributions, of 

practical interest, have been proposed supporting the application of AGs to content-

based retrieval from image databases [4] and [5]. 

 Out of the specific context of content-based image retrieval, the problem of 

comparing an input graph against a large number of model graphs has been addressed 

in several approaches. In some applications, the classes of objects are represented 

explicitly by a set of prototypes, which means that a huge amount of model AGs must 

be matched with the input AG and so the conventional error-tolerant graph matching 

algorithms must be applied to each model-input pair sequentially. As a consequence, 

the total computational cost is linearly dependent on the size of the database of model 

graphs and exponential (or polynomial in subgraph methods) with the size of the 

AGs. For applications dealing with large databases, this may be prohibitive. To 

alleviate these problems, some attempts have been designed with the aim of reducing 

the computational time of matching the unknown input patterns to the whole set of 

models from the database. Those approaches assume that the AGs that represent a 

cluster or class are not completely dissimilar in the database and in this way only one 

structural model is defined from the AGs that represent the cluster; as a consequence 

only one comparison is needed for each cluster [6], [7] and [8]. 

In this paper, we show an indexing scheme implemented by an m-tree in which the 

cluster knowledge embedded in each node of the m-tree is represented by a Median 

Graph. In the experimental section, we have compared our scheme with a similar one 

in which the cluster information was represented by one of the AGs of the cluster [4]. 

We show that the use of Median Graphs instead of AGs in the m-tree scheme makes 

the queries more efficient. In the next section, we comment the related work and 

introduce our method. In section 3, we give some definitions related to AGs and 

Median Graphs. In sections 4 and 5, we first present the metric trees and then this 

technique is applied to AGs. In section 6, we experimentally evaluate our model. We 

finish the paper drawing some conclusions and presenting the future work. 

2 Related Work and our Proposal 

Some indexing techniques have been developed for graph queries. We discern these 

techniques in two categories. In the first ones, the index is based on several tables and 

filters [9], [10]. In the second ones, the index structure is based on metric trees [4], 

[11], [12]. 

In the first group of techniques, the ones that are not based on trees, we emphasize the 

method developed by Shasha et. al. [9] called GraphGrep. GraphGrep is based on a 

table in which each row stands for a path inside the graph (up to a threshold length) 

and each column stands for a graph. Each entry in the table is the number of 

occurrences of the path in the graph. Queries are processed in two phases. The 

filtering phase generates a set of candidate graphs for which the count of each path is 
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at least that of the query. The verification phase verifies each candidate graph by 

subgraph isomorphism and returns the answer set. More recently, Yan et. al. [10] 

proposed GIndex that uses frequent patterns as index features. These frequent patterns 

reduce the index space as well as improve the filtering rate. The main drawback of 

these models is that the construction of the indices requires an exhaustive 

enumeration of the paths or fragments with high space and time overhead. Moreover, 

since paths or fragments carry little information about a graph, the lost of information 

at the filtering step seems to be unavoidable. 

Considering the second group, the first time that metric trees were applied to graph 

databases was done by Berreti et. al. [4]. Attributed Graphs were clustered 

hierarchically according to their mutual distances and indexed by m-trees [13]. 

Queries are processed in a top-down manner by routing the query along the index 

tree. Each node of the index tree represents a cluster and it has one of the graphs of 

the cluster as a representative. The graph matching problem, in the tree construction 

and at query time, was solved by an extension of the A* algorithm that uses a look-

ahead strategy plus a stopping threshold. Latter, Lee et. al. [11] used this technique to 

model graphical representations of foreground and background scenes in videos. The 

resulting graphs were clustered using the edit-distance metric, and similarity queries 

were answered using a multi-level index structure. 

More recently, He and Singh [12] proposed what they called a Closure-tree. It uses a 

similar structure than the one presented by Berreti [4] but, the representative of the 

cluster was not one of the graphs but a graph prototype (called closure graph) that 

could be seen as the union of the AG that compose the cluster. Figure 1 shows the 

closure of 3 graphs. The structurally similar nodes that have different attributes in the 

graphs are represented in the closure graph with only one node but with more than 

one attribute. Closure trees have two main drawbacks. First, they can only represent 

discrete attributes at nodes of the AGs. Second, they tend to generalize to much the 

set that represent, allowing AGs that have not been used to synthesize the closure 

graph.  

 
 Our proposal is to use Median Graphs as a representative of the sub-clusters in the 

routing nodes of the metric trees instead of an AG representative [4] or a closure 

graph [12]. On one hand, we wish to find a better representative of the sub-set and on 

the other hand, we wish to use continuous attribute values. 

3 Graph Preliminaries 

Given an alphabet of labels for the nodes and arcs of the AGs, L, we define U as the 

set of all AGs that can be constructed using labels from L. Moreover, we assume there 

is a distance function between AGs d. 

Fig. 1: Example of a Closure obtained by 3 AGs. 
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Given { } UgggS n ⊆= ,...,, 21
, the Generalized Median Graph g of S is defined as,  
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That is, the generalized median graph g  of S is a graph Ug∈  that minimizes the sum 

of distances to all the graphs in S. Notice that g  is usually not a member of S, and in 

general, more than one generalized median graph may exist for a given set S. The 

computation of a generalized median graph is a NP-complete problem. Nevertheless, 

several suboptimal methods to obtain approximate solutions for the generalized 

median graph in reasonable time have been presented [14], [15] and [16]. These 

methods apply some heuristic functions in order to reduce the complexity of the graph 

distance computation and the size of the search space. 

An alternative to the generalized median graph but less computationally 

demanding is the Set Median Graph. 
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The difference between the two models consists in the search space where the median 

is looked for. As it is shown in (1), the search space for the generalized median graph 

is U, that is, the whole universe of graphs. In contrast, the search space for the set 

median graph is simply S, that is, the set of given graphs. It makes the computation of 

set median graph exponential in the size of the graphs, due to the complexity of graph 

edit distance, but quadratic with respect to the number of graphs in S. 

4 Database Indexing based on m-trees 

A metric tree [13], m-tree, is a tree of nodes, each containing a fixed maximum 

number of m entries, < node > := {< entry >}
m
. In turn, each entry is constituted by a 

routing element H; a reference to the root r
H
 of a sub-index containing the element in 

the so-called covering region of H; and a radius d
H
 providing an upper bound for the 

distance between H and any element in its covering region, < entry > := {H, r
H
, d

H
}. 

During retrieval, triangular inequality is used to support efficient processing of range 

queries. That is, queries seeking for all the elements in the database which are within 

a given range of distance from a query element G. To this end, the distance between 

G and any element in the covering region of a routing element H can be lower-

bounded using the radius r
H
 and the distance between G and H. 

 To perform range queries in Metric Trees, the tree is analyzed in a top down 

fashion. Specifically, if dmax is the range of the query and G is the query graph, the 

following conditions are employed, at each node of the tree, to check whether all the 

elements in the covering region of H, sub
H
, can be discarded or accepted. The 

conditions are based on the evaluation of the distance between the routing element 

and the graph query d(G,H). 

If condition (3) holds, we will reject all elements deeper from the routing element. 

          ( ) ⇒+≥ HrdHGd max,  No element in sub
H
 is acceptable               (3) 

In a similar manner, the following condition checks whether all the elements in the 

covering region of H, sub
H
, fall within the range of the query. In this case, all the 

elements in the region can be accepted: 

          ( ) ⇒−≤ HrdHGd max,  Every element in sub
H
 is acceptable               (4) 
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In the critical case that neither of the two inequalities holds, the covering region of H, 

sub
H
, may contain both acceptable and no acceptable elements, and the search must 

be repeated on the sub index sub
H
. 

5 Graph Indexing based on Median Graphs 

In this section, we first present the qualities of the Median Graphs as routing elements 

and second, the method used to obtain a metric tree based on Median Graphs. 

 Accordingly to the definition of the Median Graphs, they are supposed to be the 

best representatives of a set of graphs, due to they represent a graph which minimizes 

the sum of distances to all other graphs of the set. The advantages of using Median 

Graphs as routing elements in an m-tree are manifold. The main effect of using them 

is the reduction of the overlap between sub-clusters, due to the radius of the covering 

region can be more tightly adjusted. In fact, if we use the Generalized Median Graphs 

as a routing element, the radius of the covering region has to be equal or lower than 

the radius of the covering region represented by a Set Median Graph. 

  

Figures 2.1 and 2.2 show the same 6 elements in two sub-clusters and the radius of 

their covering regions. The representative of sub-clusters in figure 2.1 is the 

Generalized Median Graph and in figure 2.2 is the Set Median Graph. Suppose a 

hypothetical query graph Q with a query range represented by the outer doted circle. 

The execution of the search will behave very different on both representations. In the 

Set Median approach, neither entry p nor q holds for equations (3) and (4), so the sub
q
 

and sub
p
 must be explored. However, due to the better representation that the 

Generalized Median provides, (3) holds for both tree node entries p and q. 

Consequently, it can be assumed that none of the entries contain any desired graph. 

Thus, they can be discarded and not explored. 

 We provide a general construction methodology from which we are able to 

construct a metric tree independently of the type of the routing element; a Generalized 

Median Graph or a Set Median Graph. Given an AG set, it is crucial to obtain the 

same structure of the m-tree for both types of routing elements, since we want to 

compare its representational power in similar conditions. We use a non-balanced tree 

constructed through a hierarchical clustering algorithm and complete linkage 

clustering. In this way, given a set of graphs, we first compute the distance matrix 

over the whole set and then we construct a dendogram. We obtain a set of partitions 

that clusters the AGs with the dendogram using some horizontal cuts. With these 

partitions we generate the m-tree and we synthesize a Generalized Median or a Set 

Fig. 2.2: Clusters represented by a 
Generalized Median. 

Fig. 2.1: Clusters represented by a Set 
Median. 



- 6 - 

Median. Figure 3.1 shows an example of a dendogram. The AGs G
i
 are placed on the 

leaves of the dendogram and the Generalized Medians or Set Medians M
j
 are placed 

on the junctions between the cuts and the horizontal lines of the dendograms. Figure 

3.2 shows the obtained m-tree. 

  
 

  

Computing the m-tree based on the Generalized Median Graph 

At each node of the m-tree, we have to compute a Generalized Median, we use the 

method presented in [17]. With the aim of reducing the computational cost of 

computing these Medians, we compute them as pairwise consecutive computations of 

the Medians obtained in lower levels of the tree. For instance, to compute M
7
, which 

appears at Figure 3.1, we only use M
2
 and M

3
 Medians. That is, we assume that:     

)),(,),((),( 9876327 GGGGMMM ≅≅  (5) 

The covering region radius r
p
 of the Generalized Median M

p
 is computed applying 

three rules, depending whether the type of the descendant of M
p
 in the dendogram is 

another Median (that is, a routing node of the m-tree) or an AG (that is, a leaf of the 

m-tree): 

- When both descendants are AGs (G
a
 and G

b
): 

)),(),,(( bpapp GMDistGMDistMaxr =  (6) 

- When a descendant is a Median (M
a
) and the other is an AG(G

b
): 

)),(,),(( bpaapp GMDistrMMDistMaxr +=  (7) 

- When both descendants are Medians (M
a
 and M

b
): 

Fig. 4.2: Third radius computation rule. Fig. 4.1: Second radius computation rule. 
 

Fig. 3.2: The obtained m-tree. Fig. 3.1: Example of a dendogram. 
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)),(,),(( bbpaapp rMMDistrMMDistMaxr ++=  (8) 

Fig. 4.1 and 4.2 illustrate the second and third rule, respectively. In the first case, 

Dist(M
5
,M

4
) + r

M4
 is greater than Dist(M

5
,G

6
), and in the second case Dist(M

7
,M

3
) + 

r
M3
 is greater than Dist(M

7
,M

2
)+r

M2
. 

 

Computing the m-tree based on the Set Median Graph 

At each node of the m-tree, it is desired to compute the Set Median. Given the 

distance matrix of the whole set of AGs, the computation of the Set Median given a 

sub-set is simply performed by adding the pre-computed distances between the 

involved AGs. For instance, to compute M
7
 that appears at Figure 3.1, we use the 

distances between the AGs G
6
, G

7
, G

8
 and G

9
. 

The covering region radius r
p
 of the Set Median M

p
 is computed as the maximum 

distance between M
p
 and any of the AGs in the sub-set. 

6 Evaluation 

To evaluate the performance of both model, we used two indices. The first index is 

addressed to evaluate the quality of the tree. The lower is the overlap between the 

covering regions of sibling nodes, the higher is the quality of the m-tree since they are 

more discriminative and therefore the time to compute the query reduces. 

Given two sibling nodes, we define the overlap of their covering regions as follows, 







>
++

=
Otherwise

jid

RR
if

jid

RR

jiS
jiji

0

1
),(

)(

),(

)(

),(  
(9) 

Given a node of the m-tree, their own overlap is computed as the normalized overlap 

between their children. The radius of the sub-clusters that the children represent is 

obtained from the parameter d
H
 in their m-tree nodes. 






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(10) 

where E is the number of entries of the m-tree node. Finally the general overlap of an 

m-tree is computed as, 

desnumberOfNoSS g∑=  
(11) 

The second index, called access ratio, is addressed to evaluate the capacity of the m-

tree to properly route the queries. Given a query element, this index is the number of 

accessed nodes and leaves of the m-tree. That is, the number of comparisons required 

between the queried AG and the median graphs (in the case of nodes of the m-tree) 

plus the number of comparisons between the queried AG and the AGs (in the case of 

leaves of the m-tree). This value is normalized by the number of AGs used to generate 

the m-tree. 

elementsofnumber
scomparisonofnumber

ratioaccess =  
(12) 

In the evaluation phase, we used the Letter database created at the University of Bern 

[18]. It is composed by 15 classes and 150 AGs per class representing the Roman 

alphabet. Nodes are defined over a two-dimensional domain that represents its plane 
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position (x, y). Edges have a binary attribute that represents the existence of a line 

between two terminal points. 

We constructed 12 different m-trees per each letter (or class) varying the number of 

dendogram partitions {4, 7, 10 , 12} and the number of AGs that represent each class, 

that is, the AGs that are used to generate the m-tree  {30, 50, 100}. Therefore, we 

analyzed 15x12=180 m-trees with the Generalized Median Graph as routing elements 

and other 180 m-trees with the Set Median Graph as routing elements. Figures 5.1 and 

5.2 show the general overlap (11) of the m-trees depending on the number of 

partitions and the number of AGs per class. Figure 5.3 shows the difference between 

the Set Median and the Generalize Median. 

   

The overlap index is slightly lower when the Generalize Median is used than when 

the Set Median is used. The difference increases when the number of AGs per 

partition decreases since it is statistically more difficult to find a good representative 

using the Set Median. 

To analyze our model through the access ratio (12) we generated several queries on 

the above m-trees. Each test was carried out by 9 queries in which we used 9 different 

AGs. 3 of these AGs were used to create the m-tree, 3 AGs where not used to create 

the m-tree but belong to the same letter and 3 AGs belong to other letters. Figures 6 to 

8 show the access ratio of these queries on m-trees with Generalized Median, Set 

Median and the difference between the Generalized and the Set. In these figures, we 

applied the following query ranges (section 4) of dmax = {Dmax/8, Dmax / 4, Dmax/2}, 

respectively, where Dmax is the maximum distance of any two AGs of the m-tree. 

   

Analyzing the experimental results, we conclude that the Generalized Median 

decreases the number of accesses in about 20%. As a consequence, we conclude that 

the Generalized Median has better representational power than the Set Median as 

Fig. 6.3: difference of
access ratio. 

Fig. 6.2: access ratio using 
dmax = Dmax/2. 

Fig. 5.3: overlap 

difference of both methods. 

Fig. 5.2: overlap using
Generalized Median. 

Fig. 5.1: overlap using Set 
Median. 

Fig. 6.1: access ratio using 
dmax = Dmax/2 
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routing objects in the m-trees. Note that the access ratio of some experiments on the 

Set Median is higher than one. That means that without any indexing structure, the 

run time would be lower. 
 

   
 

   

7 Conclusions 

We have presented a graph indexing technique based on metric trees and Median 

Graphs. Furthermore, we have compared the use of the Generalized Median Graph 

and the Set Median Graph as routing elements in the m-trees. We arrive at the 

conclusion that the construction of the m-tree is computationally harder using the 

Generalized Median Graph but better performance can be obtained while using them 

as routing elements. Experimental validation on a real database shows that the general 

overlap of the m-trees is lower when using the Generalized Medians instead of Set 

Median. Moreover, we have verified that the number of comparisons done while 

performing the queries is lower in the Generalized Medians than the Set Medians and 

so, the run time is also lower. With these results, we conclude that it is preferably to 

use Generalized Medians as routing elements in m-trees instead of Set Medians.  
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