
- 1 -

Graph Indexing and Retrieval based on

Median Graphs

Francesc Serratosa, Albert Solé-Ribalta & Enric Vidiella

Universitat Rovira i Virgili, Computer Science Department, Spain
{francesc.serratosa,albert.sole}@urv.cat,

{enric.vidiella}@estudiants.urv.cat

Abstract. Metric indexing is used to organize large databases of Attributed

Graphs and define fast queries on these sets. We present a proposal where

indexing is based on an m-tree in which routing nodes of the m-tree act as

prototypes of the sub-cluster of Attributed Graphs that routing nodes represent.

In the classical schemes, the information kept in the tree nodes of the sub-

cluster is a selected Attributed Graph from the sub-set. Depending on the sub-

cluster and the application, it is difficult to select a good representative of the

sub-clusters. To that aim, we propose to use Median Graphs as the main

information kept in the routing nodes of the m-tree. Experimental validation

shows that in the database queries, the decrease of the nodes explored in the m-

tree while using a Generalized Median Graph is about 20% respect using a

selected Attributed Graph.

Keywords: Graph database, m-tree, graph organization, graph prototype, graph

indexing.

1 Introduction

Index structures are fundamental tools of database technology, they are used to obtain

efficient access to large collections of images. Traditional database systems manage

global properties of images, such as histograms, and many techniques for indexing

one-dimensional data sets have been defined. Since a total order function over a

particular attribute domain always exists, this ordering can be used to partition the

data and moreover, exploited to efficiently support queries. Several multi-dimensional

indexes have appeared, such as, color, texture, shape, with the aim of increasing the

efficiency in executing queries on sets of objects characterized by multi-dimensional

features. Once again, ordering systems of individual orthogonal dimensions are used

for partitioning the search space, so these methods can, in fact, be considered as direct

extensions of the one-dimensional case.

 Effective access to image databases requires queries addressing the expected

appearance of searched images [1]. To this end, it is needed to represent the image as

a set of entities and relations between them. The effectiveness of retrieval may be

improved by registering images as structural elements rather than global features [2].

In the most practiced approach to content-based image retrieval, the visual appearance

of each spatial entity is represented independently by a vector of features. Mutual

relationships between entities can be taken into account in this retrieval process

through a cascade filter, which evaluates the similarity in the arrangement of entities

after these have been retrieved on the basis of their individual features [3]. To

- 2 -

overcome these systems, local entities and mutual relationships have to be considered

to have the same relevance and to be defined as parts of a global structure that

captures mutual dependencies. In this case, the model of content takes the shape of an

Attributed Graph (AG). The attributes of the vertices of the AGs represent the

features of the local entities and the attributes of the arcs of the AGs represent the

features of the relationships.

While the distance between two sets of independent features can be computed in

polynomial time, the exact distance between two AGs is computed in exponential

time, respect the number of nodes of the AGs. For this reason, few contributions, of

practical interest, have been proposed supporting the application of AGs to content-

based retrieval from image databases [4] and [5].

 Out of the specific context of content-based image retrieval, the problem of

comparing an input graph against a large number of model graphs has been addressed

in several approaches. In some applications, the classes of objects are represented

explicitly by a set of prototypes, which means that a huge amount of model AGs must

be matched with the input AG and so the conventional error-tolerant graph matching

algorithms must be applied to each model-input pair sequentially. As a consequence,

the total computational cost is linearly dependent on the size of the database of model

graphs and exponential (or polynomial in subgraph methods) with the size of the

AGs. For applications dealing with large databases, this may be prohibitive. To

alleviate these problems, some attempts have been designed with the aim of reducing

the computational time of matching the unknown input patterns to the whole set of

models from the database. Those approaches assume that the AGs that represent a

cluster or class are not completely dissimilar in the database and in this way only one

structural model is defined from the AGs that represent the cluster; as a consequence

only one comparison is needed for each cluster [6], [7] and [8].

In this paper, we show an indexing scheme implemented by an m-tree in which the

cluster knowledge embedded in each node of the m-tree is represented by a Median

Graph. In the experimental section, we have compared our scheme with a similar one

in which the cluster information was represented by one of the AGs of the cluster [4].

We show that the use of Median Graphs instead of AGs in the m-tree scheme makes

the queries more efficient. In the next section, we comment the related work and

introduce our method. In section 3, we give some definitions related to AGs and

Median Graphs. In sections 4 and 5, we first present the metric trees and then this

technique is applied to AGs. In section 6, we experimentally evaluate our model. We

finish the paper drawing some conclusions and presenting the future work.

2 Related Work and our Proposal

Some indexing techniques have been developed for graph queries. We discern these

techniques in two categories. In the first ones, the index is based on several tables and

filters [9], [10]. In the second ones, the index structure is based on metric trees [4],

[11], [12].

In the first group of techniques, the ones that are not based on trees, we emphasize the

method developed by Shasha et. al. [9] called GraphGrep. GraphGrep is based on a

table in which each row stands for a path inside the graph (up to a threshold length)

and each column stands for a graph. Each entry in the table is the number of

occurrences of the path in the graph. Queries are processed in two phases. The

filtering phase generates a set of candidate graphs for which the count of each path is

- 3 -

at least that of the query. The verification phase verifies each candidate graph by

subgraph isomorphism and returns the answer set. More recently, Yan et. al. [10]

proposed GIndex that uses frequent patterns as index features. These frequent patterns

reduce the index space as well as improve the filtering rate. The main drawback of

these models is that the construction of the indices requires an exhaustive

enumeration of the paths or fragments with high space and time overhead. Moreover,

since paths or fragments carry little information about a graph, the lost of information

at the filtering step seems to be unavoidable.

Considering the second group, the first time that metric trees were applied to graph

databases was done by Berreti et. al. [4]. Attributed Graphs were clustered

hierarchically according to their mutual distances and indexed by m-trees [13].

Queries are processed in a top-down manner by routing the query along the index

tree. Each node of the index tree represents a cluster and it has one of the graphs of

the cluster as a representative. The graph matching problem, in the tree construction

and at query time, was solved by an extension of the A* algorithm that uses a look-

ahead strategy plus a stopping threshold. Latter, Lee et. al. [11] used this technique to

model graphical representations of foreground and background scenes in videos. The

resulting graphs were clustered using the edit-distance metric, and similarity queries

were answered using a multi-level index structure.

More recently, He and Singh [12] proposed what they called a Closure-tree. It uses a

similar structure than the one presented by Berreti [4] but, the representative of the

cluster was not one of the graphs but a graph prototype (called closure graph) that

could be seen as the union of the AG that compose the cluster. Figure 1 shows the

closure of 3 graphs. The structurally similar nodes that have different attributes in the

graphs are represented in the closure graph with only one node but with more than

one attribute. Closure trees have two main drawbacks. First, they can only represent

discrete attributes at nodes of the AGs. Second, they tend to generalize to much the

set that represent, allowing AGs that have not been used to synthesize the closure

graph.

 Our proposal is to use Median Graphs as a representative of the sub-clusters in the

routing nodes of the metric trees instead of an AG representative [4] or a closure

graph [12]. On one hand, we wish to find a better representative of the sub-set and on

the other hand, we wish to use continuous attribute values.

3 Graph Preliminaries

Given an alphabet of labels for the nodes and arcs of the AGs, L, we define U as the

set of all AGs that can be constructed using labels from L. Moreover, we assume there

is a distance function between AGs d.

Fig. 1: Example of a Closure obtained by 3 AGs.

- 4 -

Given { } UgggS n ⊆= ,...,, 21
, the Generalized Median Graph g of S is defined as,

 ()i
Sg

Ug
ggdg

i

,minarg ∑
∈

∈
= (1)

That is, the generalized median graph g of S is a graph Ug∈ that minimizes the sum

of distances to all the graphs in S. Notice that g is usually not a member of S, and in

general, more than one generalized median graph may exist for a given set S. The

computation of a generalized median graph is a NP-complete problem. Nevertheless,

several suboptimal methods to obtain approximate solutions for the generalized

median graph in reasonable time have been presented [14], [15] and [16]. These

methods apply some heuristic functions in order to reduce the complexity of the graph

distance computation and the size of the search space.

An alternative to the generalized median graph but less computationally

demanding is the Set Median Graph.

 ()i
Sg

Sg
ggdg

i

,minarg ∑
∈

∈
= (2)

The difference between the two models consists in the search space where the median

is looked for. As it is shown in (1), the search space for the generalized median graph

is U, that is, the whole universe of graphs. In contrast, the search space for the set

median graph is simply S, that is, the set of given graphs. It makes the computation of

set median graph exponential in the size of the graphs, due to the complexity of graph

edit distance, but quadratic with respect to the number of graphs in S.

4 Database Indexing based on m-trees

A metric tree [13], m-tree, is a tree of nodes, each containing a fixed maximum

number of m entries, < node > := {< entry >}
m
. In turn, each entry is constituted by a

routing element H; a reference to the root r
H
 of a sub-index containing the element in

the so-called covering region of H; and a radius d
H
 providing an upper bound for the

distance between H and any element in its covering region, < entry > := {H, r
H
, d

H
}.

During retrieval, triangular inequality is used to support efficient processing of range

queries. That is, queries seeking for all the elements in the database which are within

a given range of distance from a query element G. To this end, the distance between

G and any element in the covering region of a routing element H can be lower-

bounded using the radius r
H
 and the distance between G and H.

 To perform range queries in Metric Trees, the tree is analyzed in a top down

fashion. Specifically, if dmax is the range of the query and G is the query graph, the

following conditions are employed, at each node of the tree, to check whether all the

elements in the covering region of H, sub
H
, can be discarded or accepted. The

conditions are based on the evaluation of the distance between the routing element

and the graph query d(G,H).

If condition (3) holds, we will reject all elements deeper from the routing element.

 () ⇒+≥ HrdHGd max, No element in sub
H
 is acceptable (3)

In a similar manner, the following condition checks whether all the elements in the

covering region of H, sub
H
, fall within the range of the query. In this case, all the

elements in the region can be accepted:

 () ⇒−≤ HrdHGd max, Every element in sub
H
 is acceptable (4)

- 5 -

In the critical case that neither of the two inequalities holds, the covering region of H,

sub
H
, may contain both acceptable and no acceptable elements, and the search must

be repeated on the sub index sub
H
.

5 Graph Indexing based on Median Graphs

In this section, we first present the qualities of the Median Graphs as routing elements

and second, the method used to obtain a metric tree based on Median Graphs.

 Accordingly to the definition of the Median Graphs, they are supposed to be the

best representatives of a set of graphs, due to they represent a graph which minimizes

the sum of distances to all other graphs of the set. The advantages of using Median

Graphs as routing elements in an m-tree are manifold. The main effect of using them

is the reduction of the overlap between sub-clusters, due to the radius of the covering

region can be more tightly adjusted. In fact, if we use the Generalized Median Graphs

as a routing element, the radius of the covering region has to be equal or lower than

the radius of the covering region represented by a Set Median Graph.

Figures 2.1 and 2.2 show the same 6 elements in two sub-clusters and the radius of

their covering regions. The representative of sub-clusters in figure 2.1 is the

Generalized Median Graph and in figure 2.2 is the Set Median Graph. Suppose a

hypothetical query graph Q with a query range represented by the outer doted circle.

The execution of the search will behave very different on both representations. In the

Set Median approach, neither entry p nor q holds for equations (3) and (4), so the sub
q

and sub
p
 must be explored. However, due to the better representation that the

Generalized Median provides, (3) holds for both tree node entries p and q.

Consequently, it can be assumed that none of the entries contain any desired graph.

Thus, they can be discarded and not explored.

 We provide a general construction methodology from which we are able to

construct a metric tree independently of the type of the routing element; a Generalized

Median Graph or a Set Median Graph. Given an AG set, it is crucial to obtain the

same structure of the m-tree for both types of routing elements, since we want to

compare its representational power in similar conditions. We use a non-balanced tree

constructed through a hierarchical clustering algorithm and complete linkage

clustering. In this way, given a set of graphs, we first compute the distance matrix

over the whole set and then we construct a dendogram. We obtain a set of partitions

that clusters the AGs with the dendogram using some horizontal cuts. With these

partitions we generate the m-tree and we synthesize a Generalized Median or a Set

Fig. 2.2: Clusters represented by a
Generalized Median.

Fig. 2.1: Clusters represented by a Set
Median.

- 6 -

Median. Figure 3.1 shows an example of a dendogram. The AGs G
i
 are placed on the

leaves of the dendogram and the Generalized Medians or Set Medians M
j
 are placed

on the junctions between the cuts and the horizontal lines of the dendograms. Figure

3.2 shows the obtained m-tree.

Computing the m-tree based on the Generalized Median Graph

At each node of the m-tree, we have to compute a Generalized Median, we use the

method presented in [17]. With the aim of reducing the computational cost of

computing these Medians, we compute them as pairwise consecutive computations of

the Medians obtained in lower levels of the tree. For instance, to compute M
7
, which

appears at Figure 3.1, we only use M
2
 and M

3
 Medians. That is, we assume that:

)),(,),((),(9876327 GGGGMMM ≅≅ (5)

The covering region radius r
p
 of the Generalized Median M

p
 is computed applying

three rules, depending whether the type of the descendant of M
p
 in the dendogram is

another Median (that is, a routing node of the m-tree) or an AG (that is, a leaf of the

m-tree):

- When both descendants are AGs (G
a
 and G

b
):

)),(),,((bpapp GMDistGMDistMaxr = (6)

- When a descendant is a Median (M
a
) and the other is an AG(G

b
):

)),(,),((bpaapp GMDistrMMDistMaxr += (7)

- When both descendants are Medians (M
a
 and M

b
):

Fig. 4.2: Third radius computation rule. Fig. 4.1: Second radius computation rule.

Fig. 3.2: The obtained m-tree. Fig. 3.1: Example of a dendogram.

- 7 -

)),(,),((bbpaapp rMMDistrMMDistMaxr ++= (8)

Fig. 4.1 and 4.2 illustrate the second and third rule, respectively. In the first case,

Dist(M
5
,M

4
) + r

M4
 is greater than Dist(M

5
,G

6
), and in the second case Dist(M

7
,M

3
) +

r
M3
 is greater than Dist(M

7
,M

2
)+r

M2
.

Computing the m-tree based on the Set Median Graph

At each node of the m-tree, it is desired to compute the Set Median. Given the

distance matrix of the whole set of AGs, the computation of the Set Median given a

sub-set is simply performed by adding the pre-computed distances between the

involved AGs. For instance, to compute M
7
 that appears at Figure 3.1, we use the

distances between the AGs G
6
, G

7
, G

8
 and G

9
.

The covering region radius r
p
 of the Set Median M

p
 is computed as the maximum

distance between M
p
 and any of the AGs in the sub-set.

6 Evaluation

To evaluate the performance of both model, we used two indices. The first index is

addressed to evaluate the quality of the tree. The lower is the overlap between the

covering regions of sibling nodes, the higher is the quality of the m-tree since they are

more discriminative and therefore the time to compute the query reduces.

Given two sibling nodes, we define the overlap of their covering regions as follows,

>
++

=
Otherwise

jid

RR
if

jid

RR

jiS
jiji

0

1
),(

)(

),(

)(

),(
(9)

Given a node of the m-tree, their own overlap is computed as the normalized overlap

between their children. The radius of the sub-clusters that the children represent is

obtained from the parameter d
H
 in their m-tree nodes.

=∑ ∑

= +=
2

),(

1 1

E
NNSS

E

i

E

ij

jig

(10)

where E is the number of entries of the m-tree node. Finally the general overlap of an

m-tree is computed as,

desnumberOfNoSS g∑=
(11)

The second index, called access ratio, is addressed to evaluate the capacity of the m-

tree to properly route the queries. Given a query element, this index is the number of

accessed nodes and leaves of the m-tree. That is, the number of comparisons required

between the queried AG and the median graphs (in the case of nodes of the m-tree)

plus the number of comparisons between the queried AG and the AGs (in the case of

leaves of the m-tree). This value is normalized by the number of AGs used to generate

the m-tree.

elementsofnumber
scomparisonofnumber

ratioaccess =
(12)

In the evaluation phase, we used the Letter database created at the University of Bern

[18]. It is composed by 15 classes and 150 AGs per class representing the Roman

alphabet. Nodes are defined over a two-dimensional domain that represents its plane

- 8 -

position (x, y). Edges have a binary attribute that represents the existence of a line

between two terminal points.

We constructed 12 different m-trees per each letter (or class) varying the number of

dendogram partitions {4, 7, 10 , 12} and the number of AGs that represent each class,

that is, the AGs that are used to generate the m-tree {30, 50, 100}. Therefore, we

analyzed 15x12=180 m-trees with the Generalized Median Graph as routing elements

and other 180 m-trees with the Set Median Graph as routing elements. Figures 5.1 and

5.2 show the general overlap (11) of the m-trees depending on the number of

partitions and the number of AGs per class. Figure 5.3 shows the difference between

the Set Median and the Generalize Median.

The overlap index is slightly lower when the Generalize Median is used than when

the Set Median is used. The difference increases when the number of AGs per

partition decreases since it is statistically more difficult to find a good representative

using the Set Median.

To analyze our model through the access ratio (12) we generated several queries on

the above m-trees. Each test was carried out by 9 queries in which we used 9 different

AGs. 3 of these AGs were used to create the m-tree, 3 AGs where not used to create

the m-tree but belong to the same letter and 3 AGs belong to other letters. Figures 6 to

8 show the access ratio of these queries on m-trees with Generalized Median, Set

Median and the difference between the Generalized and the Set. In these figures, we

applied the following query ranges (section 4) of dmax = {Dmax/8, Dmax / 4, Dmax/2},

respectively, where Dmax is the maximum distance of any two AGs of the m-tree.

Analyzing the experimental results, we conclude that the Generalized Median

decreases the number of accesses in about 20%. As a consequence, we conclude that

the Generalized Median has better representational power than the Set Median as

Fig. 6.3: difference of
access ratio.

Fig. 6.2: access ratio using
dmax = Dmax/2.

Fig. 5.3: overlap

difference of both methods.

Fig. 5.2: overlap using
Generalized Median.

Fig. 5.1: overlap using Set
Median.

Fig. 6.1: access ratio using
dmax = Dmax/2

- 9 -

routing objects in the m-trees. Note that the access ratio of some experiments on the

Set Median is higher than one. That means that without any indexing structure, the

run time would be lower.

7 Conclusions

We have presented a graph indexing technique based on metric trees and Median

Graphs. Furthermore, we have compared the use of the Generalized Median Graph

and the Set Median Graph as routing elements in the m-trees. We arrive at the

conclusion that the construction of the m-tree is computationally harder using the

Generalized Median Graph but better performance can be obtained while using them

as routing elements. Experimental validation on a real database shows that the general

overlap of the m-trees is lower when using the Generalized Medians instead of Set

Median. Moreover, we have verified that the number of comparisons done while

performing the queries is lower in the Generalized Medians than the Set Medians and

so, the run time is also lower. With these results, we conclude that it is preferably to

use Generalized Medians as routing elements in m-trees instead of Set Medians.

References

1. Gudivada, V.N., Raghavan, V.V.: Special issue on Content Based Image Retrieval

Systems. In: Computer, vol. 28, no. 9, (1995).

2. Tao, Y., Grosky, W.I.: Spatial Colour Indexing: A Novel approach for Content-Based

Image Retrieval. In: Proc. IEEE international conference Multimedia computing and

Systems, (1999).

Fig. 7.3: difference of
access ratio.

Fig. 7.2: Access ratio using
dmax = Dmax/4.

Fig. 7.1: Access ratio using
dmax = Dmax/4

Fig. 8.3 difference of
access ratio.

Fig. 8.2: Access ratio using
dmax = Dmax/8.

Fig. 8.1: Access ratio using
dmax = Dmax/8

- 10 -

3. Smith, J.R., Samet, H.: VisualSEEk: A Fully Automated Content-Based Image Query

System. In: Proc. ACM Multimedia, pp. 87-98, (1996),

4. Berretti, S., Del Bimbo, A., Vicario, E.: Efficient Matching and Indexing of Graph Models

in Content-Based Retrieval. In: IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 23, no. 10, pp. 1089-1105, (2001).

5. Zhao, J.L., Cheng, H.K.: Graph Indexing for Spatial Data Traversal in Road Map

Databases. In: Computers & Operations Research, vol. 28, pp: 223-241, (2001).

6. Serratosa, F., Alquézar, R., Sanfeliu, A.: Function-described graphs for modeling objects

represented by attributed graphs. In: Pattern Recognition, vol. 36 no. 3, pp. 781-798,

(2003).

7. Serratosa, F., Alquézar, R., Sanfeliu, A.: Synthesis of Function-Described Graphs and

clustering of Attributed Graphs. In: International Journal of Pattern Recognition and

Artificial Intelligence, vol. 16, no. 6, pp. 621-655, (2002).

8. Sanfeliu, A., Serratosa, F., Alquézar, R.: Second-Order Random Graphs for modeling sets

of Attributed Graphs and their application to object learning and recognition. In:

International Journal of Pattern Recognition and Artificial Intelligence, vol. 18, no. 3, pp.

375--396, (2004).

9. Shasha ,D., Wang, J.T.L., Giugno, R.: Algorithmics and applications of tree and graph

searching. In: ACM SIGMOD-SIGACT-SIGART symposium on Principles of database

systems, pp. 39-52, (2002).

10. Yan, X., Yu, P.S., Han, J.: Graph indexing: a frequent structure-based approach. In: ACM

SIGMOD international conference on Management of data, pp. 335-346, (2004).

11. Lee, S.Y., Hsu, F.: Spatial Reasoning and Similarity Retrieval of Images using 2D C-

Strings Knowledge Representation. In: Pattern Recognition, vol. 25 no. 3, pp. 305-318,

(1992).

12. He, H., Singh, A.K.: Closure-Tree: An Index Structure for Graph Queries. In: Proc.

International Conference on Data Engineering, pp. 38, (2006).

13. Ciaccia, P., Patella, M., Zezula, P.: M-tree: An Efficient Access Method for Similarity

Search in Metric Spaces. In: Proc. 23rd VLDB Conference, pp. 426-435, (1997).

14. Jiang, X., Münger, A., Bunke, H.: On median graphs: Properties, algorithms and

applications. In: IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 23, no.

10, pp: 1144-1151, (2001).

15. Ferrer, M., Valveny, E., Serratosa, F., Riesen, K., Bunke, H.: Generalized Median Graph

Computation by Means of Graph Embedding in Vector Spaces. In: Pattern Recognition,

vol. 43, no. 4, pp. 1642-1655, (2010).

16. Ferrer, M., Valveny, E., Serratosa, F.: Median graphs: A genetic approach based on new

theoretical properties. In: Pattern Recognition, vol. 42, no. 9, pp. 2003-2012, (2009).

17. Neuhaus, M., Riesen, K., Bunke, H.: Fast Suboptimal Algorithms for the Computation of

Graph Edit Distance. In: In: Proc. IAPR International Workshops on Structural and

Syntactic Pattern Recognition and Statistical Techniques in Pattern Recognition, LNCS

4109, pp. 163-172, (2006)

18. Riesen, K., Bunke, H.: IAM Graph Database Repository for Graph Based Pattern

Recognition and Machine Learning. In: Proc. IAPR International Workshops on Structural

and Syntactic Pattern Recognition and Statistical Techniques in Pattern Recognition,

LNCS 5342, pp. 287-297, (2009).

