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Abstract. The dimensional synthesis of spatial chains for a prescribed set of positions can be used
for the design of parallel robots by joining the solutions of each serial chain at the end effector. In
some cases, this may yield a system with negative mobility. The synthesis of some overconstrained
but movable linkages can be done by comparing the known screw system associated to the motion
of the linkage to that generated by the tasks positions defined by the synthesis. This paper present
the simplest case, that of the spatial RPRP closed chain, for which one solution exists.
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1 Introduction

Synthesis of parallel robots has focused mainly on type or structural synthesis, using
group theory, screw theory, or geometric methods, see for instance [1]. Dimensional
synthesis examples exist, which focus on optimizing performance indices [2], [3] or
on reachable workspace sizing [4], [5], [6]; see also [7].

The dimensional synthesis of spatial serial chains for a prescribed set of positions
can be used for the design of parallel robots by synthesizing all supporting legs for
the same set of positions. There are a few examples of finite-position dimensional
synthesis of parallel robots in the literature, most of them doing partial synthesis.
Wolbrecht et al. [8] perform synthesis of 3-RRS, 4-RRS and 5-RRS symmetric par-
allel manipulators; Kim and Tsai [9] and Rao [10] solve the partial kinematic syn-
thesis of a 3-RPS parallel manipulator. This method yields, in some cases, a system
with negative mobility.

One interesting question is whether the finite screw surfaces generated by the task
positions can give any information for the synthesis of the overconstrained closed
linkages. Using Parkin’s definition for pitch [11], the screws corresponding to finite
displacements can form screw systems. Huang [12] showed that the single RR chain
forms a finite screw system of third order; however, the set of finite displacements
of the coupler of the Bennett linkage form a cylindroid, which is a general 2-system
of screws [13]. Baker [14] has also studied the motion of the Bennett linkage. Perez
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and McCarthy [15] used two arbitrary displacements to generate the cylindroid as-
sociated to the Bennett linkage in order to perform dimensional synthesis. Husty et
al. [16] use the geometry of the Study quadric to obtain simpler equations for the
synthesis and analysis. Following this approach, Brunnthaler [17] presents a new
solution for the spatial 2-RR closed chain. Pfurner and Husty [18] present the con-
straint manifold of overconstrained 2-3R parallel robots as 6R closed chains.

In this paper, the focus is on the simplest of the overconstrained linkages, the
closed spatial RPRP linkage. Recently, Huang [19] has shown that the set of screws
corresponding to displacements of this linkage forms a 2-screw system. We use this
result in order to synthesize RPRP linkages with positive mobility and for a given
shape of the screw system of the relative displacements. In order to do so, we state
the design equations using the Clifford algebra of dual quaternions [20], which has
a direct relation to the screw system. The design yields a single RPRP linkage.

2 Clifford algebra equations for the synthesis

2.1 Forward Kinematics

The approach used in this paper for stating design equations is based on the method
of Lee and Mavroidis [21]. They equate the forward kinematics of a serial chain
to a set of goal displacements and consider the Denavit-Hartenberg parameters as
variables. A more efficient formulation consists of stating the forward kinematics
of relative displacements using the even Clifford subalgebra C+(P3), also known as
dual quaternions. In this section, we follow the approach presented in [20].

The Plücker coordinates S = (S,C×S) of a line can be identified with the Clif-
ford algebra element S = S + εC×S. Similarly, the screw J = (S,V) becomes the
element J = S+ εV. Using the Clifford product we can compute the exponential of
the screw θ
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The exponential of a screw defines a unit dual quaternion, which can be identified
with a relative displacement from an initial position to a final position in terms of a
rotation around and slide along an axis.

For a serial chain with n joints, in which each joint can rotate an angle θi around,
and slide the distance di along, the axis Si, for i = 1, . . . ,n, the forward kinematics
of relative displacements (with respect to a reference position) can be expressed as
the composition of Clifford algebra elements. Let θ 0 and d0 be the joint parameters
of this chain when in the reference configuration, so we have ∆θ̂ = (θ −θ0 +(d−
d0)ε). Then, the movement from this reference configuration is defined by
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Fig. 1 The RP serial chain.

The RPRP linkage has a mobility M =−2 using the Kutzbach-Groebler formula;
however, for a certain dimensions of the links, it moves with one degree of freedom.
The RPRP linkage can be seen as a serial RP chain and a serial PR chain joined at
their end-effectors.

The RP serial chain consists of a revolute joint followed by a prismatic joint, see
Figure 1. In the PR serial chain, the order of the joints in the chain is switched. For
both the RP and PR serial chains, let G = g + εg0 be the revolute joint axis, with
rotation θ , and h the prismatic joint direction with a slide d. The Clifford algebra
forward kinematics equations of the RP chain are
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For the PR chain, the only difference is a negative sign in the cross product. In Eq.
(3), the angle and slide are measured from a certain reference configuration.
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2.2 Design Equations and Counting

The design equations are created when a set of task positions are defined. The design
variables that determine the dimensions of the chain are the position of the joint axes
in the reference configuration.

Given a set of task positions expressed as relative displacements, P̂1 j = cos ∆φ̂1 j
2 +

sin ∆φ̂1 j
2 P1 j, j = 2, . . . ,m, we equate them to the forward kinematics equations in Eq.

(2),

P̂1 j = e
∆θ̂1 j

2 S1e
∆θ̂2 j

2 S2 · · ·e
∆θ̂n j

2 Sn , j = 2, . . . ,m. (4)

The result is 8(m− 1) design equations. The unknowns are the n joint axes Si, i =
1, . . . ,n, and the n(m−1) pairs of joint parameters ∆θ̂i j = ∆θi j +∆di jε .

For the RP and PR serial chains, the design equations are

Q̂RP(θ j,d j) = P̂1 j, j = 1, . . . ,m. (5)

The counting of independent equations and unknowns allows to define the max-
imum number of arbitrary positions m that can be reached, based only on the type
and number of joints of the serial chain, see [22] for details. Consider a serial chain
with r revolute and p prismatic joints. The maximum number of task rotations is
given by

m =
3r + p+6
6− (r + p)

. (6)

For serial chains with less than three revolute joints, the structure of semi-direct
product of the composition of displacements needs to be considered, and the max-
imum number of rotations nR needs to be calculated too. Assuming that the orien-
tations are given and that both the directions of the revolute joints and the angles to
reach the task orientations are known, we can count, in a similar fashion, the number
of translations nT that the chain can be defined for.

mR =
3+ r
3− r

, mT =
2r + t +3− c

3− t
. (7)

In order to determine the maximum number of task positions for the RP and PR
chains, we apply Eq. (6) and Eq. (7), to obtain m = 2.5 task positions, mR = 2 task
rotations, and mT = 3 task translations. Hence, we can define one arbitrary relative
displacement and a second relative displacement whose orientation is not general.

3 Screw system for the RPRP Linkage

The linear combination of two arbitrary screws representing relative displacements
form a 2-system known as the cylindroid, which turns out to be the manifold for
the relative displacements of the closed 4R linkage. Huang [19], by intersecting the
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3-systems associated with the finite displacements of the RP and PR dyads, shows
that the screw surface of the closed RPRP linkage forms a 2-system of a special
type, the fourth special type according to Hunt [23], also known as 2-IB [24]. The
screws of this system are parallel, coplanar screws whose pitches vary linearly with
their distance.

This screw system can be generated by two screws with same direction and fi-
nite pitches. Notice that this coincides with the results of the counting in previous
section. The task positions defined for the synthesis of the RP (or PR) chain are two
relative displacements with same direction and, in general, finite pitches. We can
use those to generate the screw system.

For doing so, we define a first relative displacement, Ŝ12. The rotation axis of the
displacement, s12 is common to both Ŝ12 and the second relative displacement. We
set s12 = s13 and select a rotation angle to define the relative rotation ŝ13.

We can then set the slope of the pitch distribution in order to shape the screw
system. The pitch for the finite displacement screws is [11]

p1i =
t1i
2

tan θ1i
2

, (8)

directly calculated from the dual quaternion. Similarly, a point on the screw axis is
calculated as

c1i = s1i× s0
1i. (9)

Define the slope of the distribution as

K =
p13− p12

c13− c12
(10)

If we set the value of K, we can solve for t13 in order to define the pitch of the second
relative displacement, the location of its screw axis being defined.

4 Dimensional Synthesis of the RPRP Linkage for a Prescribed
Screw System

The solution of the RP, and similarly, PR chains is simple and yields one solution.
Given an arbitrary relative displacement Ŝ12 = (sw

12 +b12)+ε(sw0
12 +b0

12) and a sec-
ond displacement Ŝ13 such that both have same direction and a given pitch distribu-
tion, as explained in previous section, we equate them to the forward kinematics in
Eq.(3). We can solve for the direction of the revolute joint g and the rotation angles,

g =
b12

||b12|| , tanθ1i =
||b1i||

sw
1i

, i = 2,3. (11)
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The equations corresponding to the dual part are linear in the moment of the revolute
joint, g0,

g0 = b0
1i−

d1i

2
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2
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2
g×h), i = 1,2. (12)

Equating the solution of g0 for both relative displacements, we can solve linearly
for h as a function of the slides d12, d13. The relation between the slides is given by
the pitch condition,

sw0
12

d12
2 sin θ12

2

=
sw0

13
d13
2 sin θ13

2

(13)

Imposing ||h|| = 1, we can solve for the slides to obtain one solution.
Using the same process, we can solve for the PR serial chain.

5 Example

The dual quaternions in Table 1 have been generated as explained. Ŝ12 has been
randomly generated, while the rotation in Ŝ13 is such that it belongs to the workspace
of the chain.

Table 1 Goal relative displacements for the RP and PR chains

(0.660,−0.082,0.447,−0.596)+ ε(−0.810,−1.611,0.375,−0.394)
(0.338,−0.042,0.229,0.911)+ ε(−1.823,−1.189,1.169,0.328)

We obtain one solution for the RPRP linkage, specified in Table 2 as the Plucker
coordinates of the axes and the joint variables to reach the positions.

Table 2 Joint axes for the RPRP linkage at the reference configuration

Chain Revolute joint G Prismatic joint h Rotations
(θ12,θ13)

Slides (d12,d13)

RP (−0.823,0.102,−0.558) +
ε(0.704,3.313,−0.4315)

(−0.766,0.461,0.448) (-253.2,-48.6) (-2.29,3.73)

PR (0.823,−0.102,0.558) +
ε(−0.864,−0.844,1.121)

(−0.689,−0.714,0.119) (253.2,48.6) (-2.29,3.73)

Comparing these results to the joint variable conditions in [19] we can see that
our solution corresponds to the unfolded RPRP linkage. Figure 2 shows the chain
reaching the three displacements, considering the reference displacement as the
identity.
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Fig. 2 The RPRP linkage reaching three positions

6 Conclusions

This papers presents the synthesis of an overconstrained closed linkage, the RPRP.
The knowledge of the screw system that corresponds to the finite displacements of
the linkage is used to ensure that the solutions of the synthesis of the RP and PR
serial chains can be assembled to create a movable system. The counting of the
maximum positions for the synthesis suffices to define the positions that generate
the screw system. The synthesis yields a single RPRP linkage. Future work will
further study the relation between the task positions and the screw systems of other
spatial closed linkages.
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