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Abstract

The barycenter graph has been shown as an alterna-
tive to obtain the representative of a given set of graphs.
In this paper we propose an extension of the original al-
gorithm which makes use of the graph edit distance in
conjunction with the weighted mean of a pair of graphs.
Our main contribution is that we can apply the method
to attributed graphs with any kind of labels in both the
nodes and the edges, equipped with a distance function
less constrained than in previous approaches. Exper-
iments done on four different datasets support the va-
lidity of the method giving good approximations of the
barycenter graph.

1. Introduction

The straight advantages of the use of graphs for rep-
resentation purposes appear to be useless in some ap-
plications due to the lack of mathematical structure in
graph domains. An illustrative example is the problem
of finding a representative of a set of graphs. While in
vector spaces it is easy to compute representatives such
as medians and means with respect to a wide range of
distances, in the graph domain the analogy turns out to
be a highly non–trivial task.

In the literature we can distinguish different method-
ologies to tackle this problem, both probabilistic and
deterministic. Random Graphs such as First-Order Ran-
dom Graphs (FORGs) [13], Function-Described Graphs
(FDGs) [11, 12] and Second-Order Random Graphs
(SORGs) [10]; a Maximally General Prototype [2] and
the Set and Generalized Median graph [5] have been
proposed as representatives of a set of graphs, among
others. In this paper we use the so called barycen-
ter graph, defined as the graph minimizing the sum of
squared distances to a given set of graphs, as such a
representative. One of its capital advantages agains the
Median Graph and other representatives is that an incre-
mental algorithm can be used for its approximation.

The barycenter graph was first defined in [3], where
an algorithm for its computation was proved to be op-
timal for graph domains equiped with a geometrically
constrained distance function. In this paper we propose
a computation for the barycenter graph where the dis-
tance used in the graph domain is the graph edit dis-
tance. Our main contribution with respect to the previ-
ous work is that we are able to take profit from the flex-
ibility of the graph edit distance, in constrast with the
strong restriction on the distance assumed in [3]. As it
is shown in this paper, our method has no limitation nei-
ther on the nature of the labels of the graphs nor on the
cost function in which the graph edit distance is based.
The validity of the algorithm, which is thus applicable
to any set of graphs, is supported by experimental re-
sults on four different datasets.

This paper is organized as follows. Some basic defi-
nitions are given in Section 2, the computation proposed
for the barycenter graph is presented in Section 3, Sec-
tion 4 shows some experimental results and finally in
Section 5 we draw some conclusions.

2. Definitions

To start with, let us formalize the concept of graph.

Definition 1 (Graph). Given L, a finite alphabet of
labels for nodes and edges, a graph is a four-tuple
g = (V,E, α, β) where, V is the finite set of nodes,
E ⊆ V × V is the set of edges, α is the node label-
ing function (α : V −→ L), and β is the edge labeling
function (β : E −→ L).

The definition of barycenter graph is natural. We de-
fine it by adapting the definition of barycenter of a set
of points in Rn, which we recall in the following.

Definition 2 (Barycenter). Given a set P =
{p1, p2, . . . , pm} of m points with pi ∈ Rn for i =
1 . . .m, the barycenter or centroid is

Bar(P ) = arg min
y∈Rn

m∑
i=1

||pi − y||2, (1)
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where ‖ · ‖ denotes the Euclidean norm.

Let S = {g1, g2, ..., gn} be a set of graphs and let L
be the set of labels of the nodes and edges of the graphs
of S. Let U be the set of all graphs that can be con-
structed using labels from L. Also, let d : U × U → R
be a distance over the set U .

Definition 3 (Barycenter Graph). The generalized
barycenter graph or barycenter graph, b̄, of S is defined
as:

b̄ = arg min
g∈U

∑
gi∈S

d(g, gi)
2. (2)

This is, the barycenter graph is the graph in U mini-
mizing the sum of squared distances (SOSD) to all the
graphs in S. We can also define the set barycenter,
which is the argument minimizing the SOSD, when the
search is limited to the given set S itself.

Definition 4 (Set Barycenter Graph). The set barycen-
ter graph b̂ of S is defined as:

b̂ = arg min
g∈S

∑
gi∈S

d(g, gi)
2. (3)

Note that Definitions 3 and 4 are valid for any dis-
tance function d. In this paper we let d be the well
known graph edit distance [9]. This choice makes it
posible to apply the algorithms presented later to sets of
graphs of different sizes and with any kind of labels.

Finally, we introduce the notion of weighted mean,
first presented in [1], which plays a key role in the se-
quel. Let U and d be as before.

Definition 5 (Weighted Mean). Let g, g′ be graphs and

I = {h ∈ U | d(g, g′) = d(g, h) + d(h, g′)},

the set of intermediate graphs. Given 0 ≤ a ≤ d(g, g′),
the weighted mean of g and g′ is a graph

g′′ = WM(g, g′, a) = arg min
h∈I
|d(g, h)− a|. (4)

This is, given two graphs, g and g′, and a parame-
ter a, the weighted mean is an intermediate graph, not
necessarily unique, whose distance to g is as similar as
possible to a. Consequently, its distance to g′ is also
the closest to d(g, g′) − a. Again, although the defini-
tion is valid for any distance function, we let d be the
graph edit distance. For this distance function, an effi-
cient computation of the weighted mean is given in [1].
Figure 1 shows an example of the weighted mean of a
pair of graphs where the distance is a graph edit dis-
tance.

Remark 6. Note that, the so called error, ε(a) =
|d(g, g′′)− a|, is not necessarily null. This fact, regard-
less of the exactness of the computation, depends on the
properties of the search space U .

g g′g′′

a b

Figure 1. Example of a weighted mean.
In this case a coincides with the deletion
cost of the red–blue edge. Therefore, g′′
is a WM for which |d(g, g′′)− a| = 0.

3. Computation of Barycenter Graph

The algorithm that we propose for the approximated
calculus of the barycenter graph is based on the follow-
ing geometrical property of the barycenter in Euclidean
spaces.

Lemma 7. Given a set P = {p1, p2, . . . , pm} of m
points with pi ∈ Rn for i = 1 . . .m and any 1 ≤ j ≤
m, the barycenter of the set P satisfies

Bar(P ) =
1

m
pj +

m− 1

m
Bar(P \ {pj}). (5)

As it is deduced from equation (5), Bar(P ) lies in
the segment with ends pj and Bar(P \ {pj}) and

‖Bar(P \{pj})−Bar(P )‖ = (m−1)‖Bar(P )−pj‖,

where ‖ · ‖ denotes the Euclidean distance. Therefore,
in Euclidean spaces, the barycenter of m points can be
recursively computed by substracting a point in the set
and computing the barycenter of the remaining ones.
Then, the barycenter is easy to compute because it be-
longs to a segment with known ends and the distance to
these ends is also known.

3.1. Algorithm

The procedure explained above can be easily adapted
to the domain of strings as in [4] and also to the domain
of graphs, since the last step corresponds to the compu-
tation of the weighted mean. Algorithm 1 results.

The output of Algorithm 1 is an approximation b̃ ≈
b̄ to the barycenter, but not equal to it in general. This
inaccuracy is on the one hand due to the error ε(a), and
a consequence of the suboptimal computation of dis-
tances and weighted means, which is unavoidable un-
less the number and size of the graphs of the set S is
very small. On the other hand, it cannot be theoretically
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Algorithm 1: Approximate Barycenter Graph
input : A set S = {g1, . . . , gn} of n graphs
output: b̃ = Approximate barycenter graph of S
begin

1 B2 = WM(g1, g2, d(g1, g2)/2)
2 for 3 ≤ m ≤ n do
3

Bm = WM(Bm−1, gm, d(Bm−1, gm)/m)

4 Return b̃ = Bn.

proved than the algorithm minimizes the SOSD. Never-
theless, the fact that our method gives results with small
SOSD is supported by experimental results.

It is important to remark that there is no need to
transform the graphs into vectors to apply our method.
This means that the structural information of the graphs
is preserved at every step in the process.

Finally, let us note that Algorithm 1 is incremental,
making it unnecessary to store all the information to be
processed.

3.2. Computing different sorting schemes

In Algorithm 1 the graphs are taken as they arribe,
without any sorting. Then the question whether the or-
dering of the input plays a non-negligible part in the ac-
curacy of the approximation arises. For this reason, we
have developed and implemented the following variants
of the method, to study the effect of the ordering.

In the Furthest–Ones–First (BF) sorting scheme, we
take g1 and g2 to be the pair of graphs with largest dis-
tance between them. Then B2 is computed and g3 is
chosen to be the graph in S \ {g1, g2} which is the
furthest from B2. Analogously, at each step the next
graph introduced in the barycenter computation is the
furthest from the previous intermediate barycenter. In
the Closest–Ones–First sorting (BC), g1 and g2 are the
two closest points of the set S and at each step the graph
selected to be processed is the closest one to the inter-
mediate barycenter. Finally, in the SOSD–based sort-
ings, the graphs are ordered by SOSD. We present two
methods, the Ascendent SOSD–based sorting (BSA)
and the Descendent SOSD–based sorting (BSD). In the
BSA method the graphs of the input are ordered up-
wards, such that the first graph, g1, is that with mini-
mum SOSD: the set barycenter. In the BSD method,
the ordering of the graphs is the inverse.

The method explained in Section 3.1, without pre-
processing the data, will be referred to as unordered
barycenter computation method (BN). We also compute
the set barycenter (SB).

4. Experimental Results

For the evaluation of the different methods to com-
pute the barycenter graph proposed in Section 3, we
have used four different databases from [7]: letter,
molecule, mutagenicity and web databases. Some char-
acteristic of these datasets are shown in Table 1.

Table 1. Some dataset characteristics:
size, number of classes and the average
and maximum size of graphs.

Database Size # classes ∅|g| max|g|
Letter 2,250 15 4.7 8
Molecules 2,000 2 15.7 95
Mutagenicity 4,337 2 30.3 417
Webpages 2,340 6 186.1 834

In this experiments we compute the barycenter graph
of several graph sets for each of the databases. More
precisely, we compute the barycenter graph of sets of 50
and 100 randomly chosen graphs belonging to the same
class, and we do so for all the classes in each database
and using each of the methods. Each of these experi-
ments is repeated 10 times. We also compute the set
barycenter for each of these sets.

We follow [6] and [8] for the graph edit distance
computation and [1] to compute the weighted mean.

For each database and each method, Figure 2 shows
the mean of the SOSD of the barycenter to the input set,
taken over all the classes and the ten repetitions per-
formed for each class. The lower the SOSD, the better
the barycenter found.

Figure 2. Mean SOSD of the barycenters
to the set, in four databases

Note that, trivially, the SOSD of the set barycen-
ter is an upper bound of the SOSD of the barycenter
graph. Since the exact computation of the set barycen-
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ter is afordable, for a generalized barycenter graph to be
acceptable, its SOSD to the set must be smaller than the
SOSD of the set barycenter. Unfortunately, we do not
have a lower bound for the SOSD of the true barycenter
graph.

As it can be seen in Figure 2, in the web database all
our methods give substancially better results than the set
barycenter (in dark blue). In the mutagenicity database
all the methods outperform the set barycenter in exper-
iments with 50 graph and for larger sets BSD does. For
molecules only one of the barycenter graph aproxima-
tion gives higher SOSD than the set barycenter. These
results show that our algorithms return graphs satisfac-
torily similar to the barycenter graph.

Nevertheless, at sight of the result for the letter
database, we conclude that our method is not to be used
universaly and that there are datasets for which it does
not work well. Which are the properties behind this be-
haviour is a nice question to ask in the future.

With respect to the different variant methods, pre-
sented in Section 3.2, we remark that BSD gives the best
results in 5 out of the 8 instances of the experiments.
Thevertheless, BF and BSA also give good numbers and
behave more regularly in all the datasets.

The high value of SOSD given by the BSD method
in the molecule dataset is an interesting fact. In the BSD
method, the first graphs taken into account for the cal-
culus are those with higher SOSD to the set. This means
that if there are outliers, then they are the first graphs in
the ordering. We conjecture that the first graphs in the
ordering have a stronger influence in the final result than
the last ones and that, for this reason, the BSD method
is specially sensitive to outliers and BSA is not.

Finally we make note that the BN method requires
the computation of n−1 distances and weighted means,
while the rest of the methods require the computation of
the whole distance matrix for the preprocessing, which
involves a quadratic, instead or linear, number of dis-
tances. In most of the experiments shown in Figure 2,
BN gives reasonable results. Thus, this may be the most
interesting method if the input set is large.

5. Conclusions

In this paper we have presented a new method to
compute a representative of set of graphs. More pre-
ciselly, we approximate the barycenter graph: the argu-
ment minimizing the SOSD to the given set of graphs.

We have performed experiments on four different
databases using 5 different algorithms based on this
method. Results show that in most instances the SOSD
of the graph obtained is lower than the upper bound to
beat, given by the set barycenter graph. Also, we have

concluded that preprocessing the input data is not advis-
able when the sets of graphs are large. However, it may
be interesting to consider this prepocesing if robustness
agains outliers is needed. The study of this last fact will
be considered in the future.
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