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Abstract
In this work we propose a new paradigm for the rapid learning of cause-effect relations relevant for
task execution. Learning occurs automatically from action experiences bymeans of a novel constructive
learning approach designed for applications where there is no previousknowledge of the task or world
model, examples are provided on-line during run time, and the number of examples is small compared
to the number of incoming experiences. These limitations pose obstacles for theexisting constructive
learning methods, where on-line learning is either not considered, a significant amount of prior knowl-
edge has to be provided, or a large number of experiences or training streams are required. The system
is implemented and evaluated in a humanoid robot platform using a decision-making framework that
integrates a planner, the proposed learning mechanism, and a human teacher that supports the planner
in the action selection. Results demonstrate the feasibility of the system for decision making in robotic
applications.
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1 INTRODUCTION

In the last decades efforts have been made towards the development of aservice robot capable of helping
humans in human-like tasks. A requirement is a suitable description of the knowledge with a high-level
of abstraction easily handled by humans, where objects and actions are described using logic statements.
The need of grounding such knowledge for the robot to act in the real world implies the development of
a suitable architecture that permits the integration of the different levels of abstraction involved, ranging
from the mentioned highly abstract level to lower level mechanisms which are the last link in the chain
for the robot embodiment.

The EU project PACO-PLUS [13] pursues the development of a cognitive system for service robots
embedded in human environments. In this project it is claimed that the main building block for cog-
nition is the Object-Action Complex (OAC). In brief, the OAC concept states that the world contains
undistinguished ”things”, meaningless for the agent, which only become meaningful ”objects” through
actions and tasks. For the application of OACs at different levels of abstraction, a cognitive architecture
with three layers is proposed: the high, middle, and low level of abstraction layers. This architecture
permits to articulate the different level mechanisms for a cognitive robot to befeasible. OACs are imple-
mented at all levels, where the highest layer holds high-level OACs suitablefor symbolic reasoning and
human-robot interaction, and the lowest layer codes OACs for a direct performance in the real world.

In this work we propose an instantiation of the OAC concept in the highest level of abstraction using
a structure denotedprobabilistic Cause-Effect Couple, pCEC[2]. A pCECdescribes not a single object
but a category of objects using multiple sets of attributes. In apCECdifferent combinations of attributes
are generated and evaluated that, observed in a given object, would support an action affordance. The
evaluation is done by associating to each combination of attributes a probability that estimates the chance
of affording an action.

The estimation of the probabilities of action affordance can be considered as a classification problem
the classification rule is the set of attributes, and classes are positive indicating an action affordance and
negative in the converse case. We designed a novel probability estimation for a class of applications
where experiences occur on-line, the amount of examples is small compared to the number of incoming
experiences, and there is no previous knowledge of the world model or the task to be performed. In such
applications, known classification metrics [11, 8], produce strongly biased estimations as demonstrated
later in the paper. In general, they were designed for batch learning, when a large set of examples
is provided in advance, and they do not take into account the uncertaintiesproduced by the lack of
experience. With respect to the generation of sets of attributes, we adopted the concept of perceptual
categorization [7] which states that from all the object attributes that are relevant to afford an action,
only a reduced number of them becomes relevant for a particular object instantiation. The learning of a
relevant set of attributes is guided by this principle and is performed using ageneral to specific strategy,
where multiple hypotheses of attributes combinations are maintained and evaluated.

The learning mechanisms proposed in this work are consistent with the human capability of learning
cause-effect relations from experience, as enunciated by the Piaget’s theory of cognitive development
[15], which claims that children gradually acquire knowledge of cause-effects relations by repeatedly
executing processes and sequencing actions to reach goals.

The learnedpCECs can provide action rules for high-level reasoning and planning in the form of
STRIPS-like planning operators. Any set of attributes in apCECcould in principle be used to generate
a rule but, to avoid the generation of action rules with little chance of action affordance, only sets of
attributes with the highest probabilities are used for rule generation. Additionally to the described rule
generation mechanism we developed another mechanism for the generationof macro rules, which contain
not a single action but a sequence of actions playing the role of long-term cause-effects. These macro
rules could significantly reduce the amount of deliberation as they might mergerepetitive sequences
of actions, or plans found with large computational cost. All the learned rules become immediately
available for decision making and are refined and corrected constantly withthe pCECs improvements.
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In order to implement the learning strategies and usepCECs for decision making, the described
mechanisms are embedded in a decision making framework where planning andlearning occur itera-
tively, effectively closing the planning-learning loop. As we will see this decision making framework
provides a suitable platform for the integration of the three levels of abstraction described in [13].

The rest of the paper is organized as follows. Next section introduces the pCEC, and in section III
the learning mechanism of thepCECs are described. Section IV explains how thepCECare used to
generate action rules for high-level reasoning. In section V experimentswith a real robot are performed.
The paper ends with some conclusions.

2 The Probabilistic Cause-Effect Couple ( pCEC)

A pCECmaintains and generates hypotheses about which sets of attributes, when present in an object,
would result in an action affordance. We say that an action is afforded ifits execution leads to the
expected changes in the world. These changes and the action uniquely characterize eachpCEC, where
the changes are coded using the attribute-values that change with the action, extracted from the prior and
posterior states. The attribute-values modified with the action execution are used as a template for the
generation of different sets of attributes to evaluate affordance, and the attributes after the change will
describe the expected effects of the action.

2.1 Notation

In the following we refer to objects and states indiscriminately. We assume that an object is described
with a set ofN attributesdi , i=1,...,N. Each attribute can be instantiated in a set of discrete attribute-values
di j , j=1,...,|di |. The representation of an observed objects is constituted by a set of attribute-valuesdi j ,
s= {d1 j ,d2k, ...,dNg}. We denote any subset of attribute-values as a subspacess. In the same way, actions
are represented symbolically, where each action references a low-level mechanism in charge of the actual
action execution. The object descriptions before and after the executionof an action are named as the
prior statesprior , and the posterior statespost, respectively. An affordance hypothesishp is composed by
any subsets of attributes that could be observed in prior states.

We describe apCECas a quadruple (1) composed by the affordance hypothesesHp, the actiona, the
expected effectssse, and a set of experienced prior statesLs. In Ls a state is labeled as apositiveexample
if the action was afforded when the state was observed, and as anegativeexample in the converse case.

pCEC= 〈Hp,a,sse,Ls〉 (1)

3 Learning pCECs

3.1 Birth of a pCEC

The birth of apCECtakes place whenever the robot executes an action and observes changes never ex-
perienced before. Changes derived from the action execution are used as the substrate for the generation
of the first affordance hypotheses inHp, where all the possible specializations in one attribute-value are
generated using as a template the set of attributesssnew

p involved in the change but before the action
execution. The attribute-values modified with the actionssnew

e will describe the expected effect of the
pCEC.

ssnew
p = {di j |di j ∈ sprior ∧di j /∈ spost} (2)

ssnew
e = {dgk|dgk /∈ sprior ∧dgk ∈ spost} (3)
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3.2 Affordance Hypotheses. Evaluation.

The problem of evaluating the affordance of an action given a set of object attributes can be handled
as a classification problem, where an observed object represents a training instance, the set of attributes
is equivalent to a classification rule, and classes arepositivefor an action affordance, andnegativein
the converse case. Any classification method [11] could in principle be applied for this purpose but
there are some important issues, inherent to the kind of applications we are dealing with, that should be
considered. Conventional classification algorithms are designed for batch learning, where a significant
amount of training instances are given in advance, while we are approaching an on-line kind of problem
where instances are acquired incrementally from scratch. Additionally, they do not take into account the
low confidence in the estimation caused by the lack of experience, and their classification metrics [8]
produce biased estimations of action affordances when few examples have been observed.

We designed a novel evaluation metric that compensates the uncertainties originated by the lack of
experience, giving unbiased predictions of the probabilities for a class.The uncertainties compensation
is done by taking into account in the estimation not only the observed samples (objects), but also the
states which have not been tried yet and are covered by the classificationrule. The new metric is based
on relative density of samples in a region covered by a classification rule, where the number of observed
samples for a class is contrasted against the total number of states, both experienced and not experienced.
Working with densities permits not only to take into account the accuracy in the estimation but also its
confidence.

The designed evaluation criterion calculates the probability of the classi for a classification ruleh in
the following way,

Pi
h =

1
K






1+(K−1)

ni
h

nh
−

K

∑
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n j
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


(4)

whereni
h is the number of samples for classi covered byh, nh is the total number of states covered byh,

andK is the number of classes.
For the case of a binary classification, and denoting the number of positivesamplesp, and negative

samplesn, equation (4) is enunciated for the positive class as,

P+
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2
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p
nh
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)

(5)

It is straigthforward to see that the probability of a negative is,

P−
h =

1
2

(

1+
n
nh

−
p
nh

)

= 1−P+
h (6)

With these formulas, a highP+
h is a confident indicator of the chance of obtaining a positive as equation

(5) assigns to unexplored states the same chance to result in a positive or anegative, and compensates
the estimation given by the positive examples with the negative experiences. For instance, statistics fed
only a few times with successful examples would result in aP+

h a little higher than 0.5, while the other
evaluation criteria [8] would indicate a high chance of obtaining a success even with a few examples.

To illustrate the benefits of using the proposed density metric in cases where few examples are ob-
served, we compare its outcomes for different situations with the most well known metrics for predictive
performance [8]. The metrics used in the comparison are presented in table1 for the case of binary clas-
sification, whereN accounts for the total number of negative examples observed andP for the positive
ones.

The table shows the formula for Entropy, m-estimate, Laplace, and Weighted Relative Accuracy
(WRA). The Entropy metric estimates the uniformity of the classes in the region covered by the classi-
fication rule, and it is used by many learning methods, like the information gain in decision trees [11],
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Table 1: Hypothesis Evaluation Metrics

Entropy Ph = −
(

p
p+n log2

p
p+n + n

p+n log2
n

p+n

)

M-estimate Ph =
p+m P

N+P
n+p+m

Laplace Ph = p+1
p+n+2

WRA Ph = p+n
P+N

(

p
p+n −

P
P+N

)

Table 2: Performance Comparison for two hypotheses (h1, h2) given a few experiences.

Hypo p n nh P N Ent m-est Lapl WRA Dens

h1 3 0 200 3 1 0,00 0,81 0,80 0,19 0,51
h2 3 1 50 3 1 -0,81 0,75 0,67 0,00 0,52

or the first version of the CN2 algorithm [6]. We take the negative value ofthe entropy so to have lower
values for worst rules. Them-estimate provides the probability of a class for an example covered by a
classification rule. The probability is biased by the prior probabilityp(c) for the class, weighted by a
tunable parameterm, which regulates the influence of the prior probability in the rule inference:higher
values ofm produce larger influence of the prior probability of the class, while lower values diminish
the influence ofp(c) in the rule inference. In the special casem= 0, the inference of a rule is given by
the traditional relative frequency. The prior probabilityp(c) may be calculated from the total amount of
observed samples using the relative frequency formula, as shown in the table, or may be calculated as
1/K, whereK is the number of classes. Such is the case of the Laplace estimation, which is a special
case of them-estimate, where the parameterm is set toK. Laplace formula has been used, among others,
by the improved version of the CN2 method [5]. Finally, WRA was one of the most recently developed
metric, and it provides a performance evaluation that compensates the accuracy of a classification rule
with the accuracy of the universal rule, which covers the whole set of examples, to take into account the
actual improvements in the estimation. This relative accuracy is weighted by the probability that an ex-
ample is covered by the classification rule to take into account the generality ofthe rule in the predictive
performance. Note that all these metrics take into account only the observed examples, a none of them
considers the uncertainties in the estimations produced by the lack of experiences.

In table 2 the metrics for a couple of classification rules,h1 andh2, are compared when only a few
examples were experienced so far. The total number of possible samples tobe experienced (i.e. not yet
tried objects when talking about affordances) forh1 is 200, and forh2 is 50. In this case all the metrics
selects ruleh1 as the best rule for the prediction, while the proposed density metric selects rule h2 as
it has more chances of observing positive examples in the future, even having one negative experience.
Note the high probability assigned by Laplace andm-estimate to ruleh1. In contrast, the density metric
produces probabilities slightly higher than 0.5.

There are some points to remark. First, the criterionWRAtakes into account the total number of
positive and negative samples,P andN, to compensate the estimation given by the rule. As the total
number of samples increases, the bias in the estimations ofWRAfor h1 decreases, and the hypothesis
selection is compensated towardsh2 (table 3). Nevertheless, its estimation still producesh1 selection
even when the total number of samples increases to∞.

Finally, in order to illustrate the behavior of our approach under a large number of examples, we
perform the calculations using arbitrary large experiences (table 4). Inthis case the proposed density
criterion produces the same rule selection as the other criteria.
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Table 3: Performance Comparison for two hypotheses (h1, h2) when the total number of experiences increases.

Hypo p n nh P N Ent m-est Lapl WRA Dens

h1 3 0 200 3E4 1E4 0,00 0,81 0,80 2E-5 0,51
h2 3 1 50 3E4 1E4 -0,81 0,75 0,67 0 0,52

Table 4: Performance Comparison for two hypotheses (h1, h2) after arbitrarily large number of experiences.

Hypo p n nh P N Ent m-estLapl WRA Dens

h1 100 10 200 1E3 1E3 0,44 0,88 0,90 0,02 0,73
h2 20 10 50 1E3 1E3 -0,92 0,63 0,66 0,00 0,60

We have illustrated that the new proposed evaluation criterion avoids givingbiased estimations
mainly at the beginning of the on-line learning process, where few examplesare provided relative to
the total possible number of experiences.

3.3 Affordance hypotheses. Generation.

As mentioned before, the generation of hypotheses is based on the concept of perceptual categorization
[7] which states that only a reduced number of attributes would result relevant for the estimation of
the probability of affodance of a particular observed object. Therefore, the learning of a relevant set
of attributes is performed using a general to specific strategy, where multiplehypothesis of attributes
combinations are maintained and evaluated.

Generation is triggered when an action is tried but not afforded, fact denoted as asurprise. An action
is not afforded when the consistency check between the predicted and the obtained effects fails, i.e.
sse /∈ spost.

In the case of a surprise a best-first strategy is used for the generationof new hypotheses: all the
specializations in one attribute-value of the “best” hypothesis are generated. The best hypothesis, which
we call thewinner hypothesishw, is that with the highest chance of affordance, and, in case of a draw
among many hypotheses, with fewer attributes.

The inconsistency between the obtained and the expected outcome could be produced by many fac-
tors. Reasons can be found in a bad action model, random unpredictable changes, random contingencies
that prevent the outcome to occur, or incomplete or wrong preconditions consideration. In this work we
assume that actions are correctly modeled and that the world is deterministic. Under these circumstances,
failures in the outcomes are only produced by an incomplete or wrong affordance hypothesis.

Finally, after the generation of a hypothesis, the statistics associated are initialized according to the
stored examples inLs.

4 Using pCECfor High-Level Decision Making

4.1 Instantiating Planning Operators from pCECs

In order to usepCECs for high-level reasoning, STRIPS-like rules [10] are generated from thepCECs
using as rule preconditions the winner hypothesis. We describe a STRIPS-like rule Ri as a triple com-
posed by a precondition partssp

e(= hw), an action partAi , and the effectsssie, where the action and the
effects are those form thepCEC.

Ri = {Ai ,ssip,ssie} (7)
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For simplicity, we work under the closed world assumption, so all the conditionsthat are not true for a
detector are assumed to be false. This allows us to save the deletions in the effect part of the rule.

We would like to remark that there are other approaches to learn STRIPS-like rule, but the limitations
aforementioned about the kind of problems we are facing pose unsolvableobstacles to them, where on-
line learning is either not considered [12, 18], a significant amount of prior knowledge has to be provided
[9], or a large number of experiences or training streams for the learningof behaviors are required
[17, 18, 4, 16, 12].

4.2 Refining Planning Operators from Affordance Hypotheses

When usingpCECs for decision making, actions executions are guided by the planner (see below).
Whenever an action is not afforded, new affordance hypotheses are generated using the mechanisms
described in section 3.3 and the corresponding action rule is refined by replacing its precondition part
with the new winner hypothesis.

4.3 Macro Rules

Rule Ri may reference a single actionAi = ak, when derived from apCEC, or a sequence of actions
Ai = {a j ,ak, ...,am}, when generated as a macro rule. For the learning of macro rules, we developed a
technique of condition propagation [1] that permits to find the necessary preconditions that will produce
the cumulative changes in the world obtained after a sequence of action executions. For a more detailed
explanation about macro rule generation please refer to [1].

It is important to mention that, when a single action rule is refined, all the macro rules that involve it
are refined too using the condition propagation method.

4.4 Decision-Making Framework

Figure 1 depicts a flow diagram for the general framework of decision making in which the learning
system is embedded. The framework is composed of a planner, which build plans to accomplish tasks
with the rules learned so far, the rule learning system, which provides and refines rules for the planner,
and a teacher interface, that permits teacher instruction about actions to perform when no plan is found.

LearningpCECs is supported by experimenting actions in the environment. The action selectionmay
be guided using different strategies, which can be random (exploration) or deterministic (exploitation).
In order to avoid large unnecessary exploration of actions, action selection is done in a supervised way
to speed the learning for task execution. Actions to be executed are provided by a logic-based planner,
and - if the planner fails because of incomplete knowledge - by a teacher through action instructions.
In this way, we take benefit of human natural knowledge about the expected cause-effects in currently
observed situations: it is very simple for a human to know which action to perform in a situation given
a plain task, but it could be much more complicated to explain a priori all the sequences of actions that
should take place in all possible situations. Hence, teacher instructions simplyconsist of a single action
to be performed in the current situation according to the task in progress. In this work, we let the teacher
control the macro rule generation by the instructions given. The teacher could instruct a sequence of
actions, one for each observed situation after the generation of a rule, whenever he considers convenient
to store the sequence into a macro rule. An action instruction produces a newpCECwhich produces in
turn action rules to fill the gap of knowledge.

Planning and learning occur iteratively during run-time. The action to be executed is dictated by the
planner using the first action of the generated plan, and if no plan is founddue to the lack of rules, by
a human teacher. The planner searches for plans to accomplish the goal from the current situation, and
produces one of three possible outcomes. If the goal requested is already reached, the system halts until
the next goal specification. In the case a plan is found, the planner yieldsthe first action of the plan. This
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Figure 1: Schema of the decision-making framework that integrates the robot, the learning mechanism, the planner
and a human teacher through suitable interfaces.
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action is executed and the outcome is evaluated. If the outcome is not consistent with the expected one,
fact that we denote assurprise, the rule refinement mechanism is triggered to solve the inconsistencies.

5 Using pCECfor Task Execution on Humanoid Robot

The decision making framework was implemented on the humanoid robot platformARMAR III [3] so to
assess the validity of the approach. The example application consists in arranging cups on a sideboard to
avoid collisions when moving a cup from one position to another. Given a taskspecification consisting
of a cup to be moved, denoted as the target cup, and its desired destination the robot should learn to
move the cup to the specified position without colliding with other cups. For this, itshould move cups
that could interfere with the movements in an ordered way.

It is important to remark that the aim of this example is to illustrate the system mechanisms and
their reliability on a real complex robot, and not to solve such a simple task, which can be indeed
solved by many other known strategies. As the aim of the implementation is to evaluate the pCECs
learning and their use for high-level decision making, the perceptions andactions mechanisms of the
robot were simplified as much as possible to permit a rapid and clean implementation. Note that the set
of perceptions and actions of the robot can be of any nature as far as they provide symbolic references
to lower-level mechanisms, no matter how sophisticated or simple these mechanismsare. The example
presented is rather simple but settles the foundation for the learning of more complex tasks.

5.1 Perceptions

In the example task, for the representation of the position of the cups, we adopt the simple strategy of
partitioning the sideboard into cells using a grid world. Each cup is considered to lie inside a cell. This
requires the robot to perform precise movements of the cups so to place them in positions close to the
center of the cells and avoid false detections. Formally, for each celli, an attributedi is considered, with
i=1,...,N. N is the total number of cells and depends on the partition made. An attributedi could be
instantiated in one of three possible attribute-values,

• di1 = e(i), true if cell i is empty.

• di2 = o(i), true if a cup is inside celli.

• di3 = to(i), true if the target cup is placed on celli.

The target cup is identified with a color provided by the user (green in the example) and referenced
asto. In rule activation,o(i) andto(i) are considered equivalent.

5.2 Actions

In the application, actions are performed through pick and place with grasping. The robot is limited to
perform simple straight movements of the cups in the horizontal or vertical direction. Then, an action is
defined by the direction and the number of cells of the displacement. In the figures, actions are described
using three digits, the first accounts for the index of the cell where the object is placed, the second is the
direction of the movement, and the third one is the number of cells in that direction.The direction of
the movements can adopt one of four possible movements with respect to the robot: U for the forward
movement,D for moving an object backward,L for moving to the left, andR for movements to the right.

Figure 2 presents the problem definition graphically.

5.3 The Planner

The planner used for deliberation with the generated action rules is the PKS logic-based planner [14]
which uses STRIPS-like rules for plan generation.
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5.4 Experiments

Results of four experiments are presented for the task of moving the greencup from cell 5 to cell 7. In the
first experiment (figure 3) the robot faces a situation with no blocking objects and initiates with no rules
in the data base, being not possible to find a plan. This produces an action instruction from the teacher,
which instructs the action5R2(“move object in cell 5 two positions to the right”). The robot executes
the action and generatespCEC1 and the ruleR1 from the observed changes. The generatedpCEC is
depicted in figure 4. The affordance hypothesis with highest chance ofa positive and fewer attributes is
used to generate the precondition partss1p of rule R1. Figure 4 also shows the probabilities associated to
each affordance hypothesis using a bar representation, and how theyare updated with the first positive
sample.

In experiment 2 (figure 5) the robot is asked again to move the green cup two positions to the right,
but this time a blocking cup is placed in the trajectory. As the only rule generatedso far, R1, does
not contemplate the middle cell inssp, the robot uses it to cope with the goal. In this case, instead of
executing action 5R2, we bypass it to avoid collision. Nevertheless, ARMAR believes that it wasindeed
executed and evaluates the obtained outcome, which produces a surpriseas it is not consistent with the
observation. Then, affordance hypotheses generation is triggered together with the ruleR1 refinement.
Figure 6 graphically depicts the learning mechanisms inpCEC1. First, all the specializations in one
condition of the failed affordance hypothesis are generated, and their statistics are initialized according
to the stored examples. Then, the affordance hypothesis that most likely affords the action, and with
fewer attributes, is used forss1p refinement. After rule correction, the robot faces again the same initial
situation but this time no rule is applicable (because of the added attribute-valuee(6)). The action
instruction mechanism is triggered and the teacher instructs the action neededto remove the blocking
object, “6U1”. Finally, the freed path permits to reach the goal with ruleR1.

Figure 2: Problem definition for the task of arranging cups. A) Real setting. B) Graphical representation of the
robot perspective. C) Example stateseg. D) graphical representation of the state, where the cell colored in green
corresponds to the target cup, and white and black cells refer to empty or occupied cells, respectively.
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The third experiment (figure 7) consists of a more complicated situation with manycups in the
scenario. The milestone of this experiment is the generation of a macro rule. This experiment is not
consecutive to the previous ones and one more rule has been generatedin between. Figure 8 shows the
set of rules learned so far when experiment 3 was performed. The initialsituation prevents the planner
to find a plan and an action instruction is needed at the first stage of the process. The teacher instructs,
first, the action to move the cup in cell 6 one position to the right, “6R1”, which leads to apCECand rule
generation, and afterward the action “7U1”. Every instructed action produces the correspondingpCEC
and rule generation. After the second instruction, the teacher quits instructing actions, and, as two actions
were instructed, the macro ruleR6 is generated.R6 is composed ofR4 andR5, and its preconditions and
effects are obtained through the conditions propagation method [1]. Fromthe resulting situation the goal
can be now reached usingR1.

Finally, in experiment 4 (figure 9) the rules learned in experiment 3 are evaluated using the same
initial situation as experiment 3. The planner is now able to find a plan consistingin the chaining of rule
R6 andR1. The execution of the macro rule is performed through the execution of each rule it contains,
and the surprise evaluation is carried out at each step. In this experiment,no surprises arise and the task
is completed successfully.

Figure 3: Experiment 1. No blocking object.

Figure 4: GeneratedpCEC1. The affordance hypotheses are represented graphically. Gray cells indicate a “don’t
care” whether the cells are occupied or not.
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6 Conclusions

This work presents a system to rapidly acquire cause-effect rules fordecision making using a new
paradigm for representing and learning object categories. The method isbased on the concept of OAC
which states that objects are defined in accordance to their use, where objects and actions are insepa-
rably intertwined. Learning of cause-effects occurs automatically from changes observed after action
executions using a novel learning approach that permits the robot to automatically learn relevant set of
attributes to afford actions from few examples. Additionally, we implemented a decision making frame-
work that permit to rapidly acquire and use learned cause-effects for decision making, where learning
occurs iteratively with planning steps, closing effectively the planning-learning loop. The inclusion of

Figure 5: Experiment 2. One blocking object. The figure showsa surprise with the following rule refinement using
the winner hypothesis.

Figure 6: Learning processes inpCEC1 under a surprise. 1) Generation of all the specialization ofthe best
hypothesis. 2) Updating of the statistics using the negative example. 3) RuleR1 refinement using the winner
hypothesis.
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a human teacher in the planning-learning loop to instruct single actions when the planner fails to find a

Figure 7: Experiment 3. Many blocking objects. More rules generation are shown, including a macro rule of two
steps.

Figure 8: Initial set of rules in experiment 3.
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plan permits to significantly accelerate the learning of task-relevant cause-effects.

We implemented and tested the system in a real complex platform of the humanoid robot ARMAR
III. The results elucidate the reliability of the system in a real scenario to learn and perform tasks in
human environments.

Figure 9: Experiment 4. Evaluation of rules learned in experiment 3.
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