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Abstract

In this work we propose a new paradigm for the rapid learning of caffset relations relevant for
task execution. Learning occurs automatically from action experiencesebys of a novel constructive
learning approach designed for applications where there is no prekoudedge of the task or world
model, examples are provided on-line during run time, and the number of é&eampmall compared
to the number of incoming experiences. These limitations pose obstacles fxistiag constructive
learning methods, where on-line learning is either not considered, a sagrtikmount of prior knowl-
edge has to be provided, or a large number of experiences or traingagnstrare required. The system
is implemented and evaluated in a humanoid robot platform using a decisiongrfedimework that
integrates a planner, the proposed learning mechanism, and a humam thatkepports the planner
in the action selection. Results demonstrate the feasibility of the system foiodeiaking in robotic
applications.
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1 INTRODUCTION

In the last decades efforts have been made towards the developmesgroica robot capable of helping
humans in human-like tasks. A requirement is a suitable description of thddahgewith a high-level
of abstraction easily handled by humans, where objects and actionssaribdd using logic statements.
The need of grounding such knowledge for the robot to act in the reddlwmplies the development of
a suitable architecture that permits the integration of the different levelsstriaation involved, ranging
from the mentioned highly abstract level to lower level mechanisms which adaghlink in the chain
for the robot embodiment.

The EU project PACO-PLUS [13] pursues the development of a cogrsigtem for service robots
embedded in human environments. In this project it is claimed that the main builltiok fior cog-
nition is the Object-Action Complex (OAC). In brief, the OAC concept statestti@world contains
undistinguished "things”, meaningless for the agent, which only becomeinggain"objects” through
actions and tasks. For the application of OACs at different levels ofaisin, a cognitive architecture
with three layers is proposed: the high, middle, and low level of abstracty@nda This architecture
permits to articulate the different level mechanisms for a cognitive robot tedsgble. OACs are imple-
mented at all levels, where the highest layer holds high-level OACs suftatdgmbolic reasoning and
human-robot interaction, and the lowest layer codes OACs for a diegfiirmance in the real world.

In this work we propose an instantiation of the OAC concept in the highedtdéabstraction using
a structure denoteorobabilistic Cause-Effect CoupleCEC[2]. A pCECdescribes not a single object
but a category of objects using multiple sets of attributes. pgBCdifferent combinations of attributes
are generated and evaluated that, observed in a given object, wopldrsap action affordance. The
evaluation is done by associating to each combination of attributes a probalaitigstimates the chance
of affording an action.

The estimation of the probabilities of action affordance can be considsredlassification problem
the classification rule is the set of attributes, and classes are positivetingliaa action affordance and
negative in the converse case. We designed a novel probability estimatiancfass of applications
where experiences occur on-line, the amount of examples is small cahtpatee number of incoming
experiences, and there is no previous knowledge of the world modet taigk to be performed. In such
applications, known classification metrics [11, 8], produce strongly Biasémations as demonstrated
later in the paper. In general, they were designed for batch learningn wHarge set of examples
is provided in advance, and they do not take into account the uncertgimtdaced by the lack of
experience. With respect to the generation of sets of attributes, we ddbpteoncept of perceptual
categorization [7] which states that from all the object attributes that éeeard to afford an action,
only a reduced number of them becomes relevant for a particular obgantration. The learning of a
relevant set of attributes is guided by this principle and is performed ugiegeral to specific strategy,
where multiple hypotheses of attributes combinations are maintained and edaluate

The learning mechanisms proposed in this work are consistent with the hapalpility of learning
cause-effect relations from experience, as enunciated by the Bidigedry of cognitive development
[15], which claims that children gradually acquire knowledge of catfests relations by repeatedly
executing processes and sequencing actions to reach goals.

The learnedoCEGs can provide action rules for high-level reasoning and planning in ttme &
STRIPS-like planning operators. Any set of attributes pGECcould in principle be used to generate
a rule but, to avoid the generation of action rules with little chance of actiomdaif@e, only sets of
attributes with the highest probabilities are used for rule generation. Adalityoio the described rule
generation mechanism we developed another mechanism for the genefatiacro rules, which contain
not a single action but a sequence of actions playing the role of long-tmuseeeffects. These macro
rules could significantly reduce the amount of deliberation as they might mepgitive sequences
of actions, or plans found with large computational cost. All the learned tobdeome immediately
available for decision making and are refined and corrected constantlyh&igfCECs improvements.
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In order to implement the learning strategies and p€&Cs for decision making, the described
mechanisms are embedded in a decision making framework where planningaamicig occur itera-
tively, effectively closing the planning-learning loop. As we will see thisisien making framework
provides a suitable platform for the integration of the three levels of abistnadescribed in [13].

The rest of the paper is organized as follows. Next section introduegsdBC and in section IlI
the learning mechanism of th@CEGCs are described. Section IV explains how {#f@EC are used to
generate action rules for high-level reasoning. In section V experinagtits real robot are performed.
The paper ends with some conclusions.

2 The Probabilistic Cause-Effect Couple ( pCEQ

A pCECmaintains and generates hypotheses about which sets of attributes, mhentpn an object,
would result in an action affordance. We say that an action is affordéd é@xecution leads to the
expected changes in the world. These changes and the action unigardgtehize eacpCEC where
the changes are coded using the attribute-values that change with the extiaated from the prior and
posterior states. The attribute-values modified with the action execution edleagsa template for the
generation of different sets of attributes to evaluate affordance, andittiibutes after the change will
describe the expected effects of the action.

2.1 Notation

In the following we refer to objects and states indiscriminately. We assumerthaiject is described
with a set ofN attributesd;, i=1,...N. Each attribute can be instantiated in a set of discrete attribute-values
dij, j=1,...di|. The representation of an observed obgeist constituted by a set of attribute-valugs,
s={dy;,dx,...,dng}. We denote any subset of attribute-values as a subsgacethe same way, actions
are represented symbolically, where each action references a lownlegleanism in charge of the actual
action execution. The object descriptions before and after the exeaftamaction are named as the
prior statesprior, and the posterior statgos;, respectively. An affordance hypothebisis composed by
any subsets of attributes that could be observed in prior states.

We describe @CECas a quadruple (1) composed by the affordance hypotltgsebe actiors, the
expected effectss, and a set of experienced prior statgsin Ls a state is labeled agusitiveexample
if the action was afforded when the state was observed, andegativeexample in the converse case.

PCEC= (Hp,a,s%,Ls) 1)

3 Learning pCEG

3.1 Birthofa pCEC

The birth of apCECtakes place whenever the robot executes an action and observgesinaver ex-
perienced before. Changes derived from the action execution edeagghe substrate for the generation
of the first affordance hypothesestity, where all the possible specializations in one attribute-value are
generated using as a template the set of attribsdf®s’ involved in the change but before the action
execution. The attribute-values modified with the actdif" will describe the expected effect of the
pCEC

s~ = {dij|dij € Sprior A dij & Spost} (2)

se™"'= {dgk|dgk ¢ Sprior /\ gk € Spost} (3)
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3.2 Affordance Hypotheses. Evaluation.

The problem of evaluating the affordance of an action given a set jetohttributes can be handled
as a classification problem, where an observed object representsirgtingtance, the set of attributes
is equivalent to a classification rule, and classespastivefor an action affordance, antkgativein
the converse case. Any classification method [11] could in principle bkedpior this purpose but
there are some important issues, inherent to the kind of applications wealnegdwith, that should be
considered. Conventional classification algorithms are designed fdr legtming, where a significant
amount of training instances are given in advance, while we are agpngean on-line kind of problem
where instances are acquired incrementally from scratch. Additionallydiheot take into account the
low confidence in the estimation caused by the lack of experience, and lssification metrics [8]
produce biased estimations of action affordances when few exampledéan observed.

We designed a novel evaluation metric that compensates the uncertaintirateddoy the lack of
experience, giving unbiased predictions of the probabilities for a cldss.uncertainties compensation
is done by taking into account in the estimation not only the observed sampiest§), but also the
states which have not been tried yet and are covered by the classificdgohe new metric is based
on relative density of samples in a region covered by a classification rhergwwthe number of observed
samples for a class is contrasted against the total number of states, berleles@d and not experienced.
Working with densities permits not only to take into account the accuracy instiraaion but also its
confidence.

The designed evaluation criterion calculates the probability of the cfass classification rulé in
the following way,

| N Kn

R==|1+(K-1)D_§F D 4

h=¥ +( )nh ,Zlnh (4)
i

Wheren‘h is the number of samples for classovered byh, ny, is the total number of states coveredtyy
andK is the number of classes.

For the case of a binary classification, and denoting the number of pasitimplesp, and negative
sampleq, equation (4) is enunciated for the positive class as,

1 p n
+ _ r_ 7
R = > <1+nh nh> (5)
It is straigthforward to see that the probability of a negative is,
_ 1 n P\ _, o+
P, _§<1+n—h _nh> =1-P (6)

With these formulas, a high;" is a confident indicator of the chance of obtaining a positive as equation
(5) assigns to unexplored states the same chance to result in a positivegatave, and compensates
the estimation given by the positive examples with the negative experienmemsknce, statistics fed
only a few times with successful examples would result Ry aa little higher than 0.5, while the other
evaluation criteria [8] would indicate a high chance of obtaining a suceessveith a few examples.

To illustrate the benefits of using the proposed density metric in cases védveexamples are ob-
served, we compare its outcomes for different situations with the most wedlrkkmetrics for predictive
performance [8]. The metrics used in the comparison are presented irl taolhe case of binary clas-
sification, whereN accounts for the total number of negative examples observe® &mdthe positive
ones.

The table shows the formula for Entropy, m-estimate, Laplace, and Weiglakdiie Accuracy
(WRA). The Entropy metric estimates the uniformity of the classes in the regiered by the classi-
fication rule, and it is used by many learning methods, like the information gaiedisidn trees [11],
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Table 1: Hypothesis Evaluation Metrics

Entropy | P = — (51002 5% + 5151082 51 )
: B p+mN%P
M-estimate = Trpim
Laplace R = pﬂi 5
_pn( p P
WRA Ph=pi (m - P+—N>

Table 2: Performance Comparison for two hypothebgshp) given a few experiences.

Hypo| p[n| ny | P|N | Ent|m-estLapl| WRA|Dens
‘ h | 3/0|200|3)| 1|0,00f0,81/0,80] 0,19|0,51
‘ h, | 3/1|50|3]|1/-0,81 0,75/0,67| 0,00 | 0,52

or the first version of the CN2 algorithm [6]. We take the negative valubeEntropy so to have lower
values for worst rules. Therestimate provides the probability of a class for an example covered by a
classification rule. The probability is biased by the prior probabihitg) for the class, weighted by a
tunable parametan, which regulates the influence of the prior probability in the rule inferehagher
values ofm produce larger influence of the prior probability of the class, while lovedues diminish
the influence ofp(c) in the rule inference. In the special case= 0, the inference of a rule is given by
the traditional relative frequency. The prior probabilifc) may be calculated from the total amount of
observed samples using the relative frequency formula, as shown inblbe da may be calculated as
1/K, whereK is the number of classes. Such is the case of the Laplace estimation, whicbesia s
case of than-estimate, where the parameieis set toK. Laplace formula has been used, among others,
by the improved version of the CN2 method [5]. Finally, WRA was one of thet meently developed
metric, and it provides a performance evaluation that compensates tha@cotia classification rule
with the accuracy of the universal rule, which covers the whole setahples, to take into account the
actual improvements in the estimation. This relative accuracy is weighted bydbalplity that an ex-
ample is covered by the classification rule to take into account the generatity nile in the predictive
performance. Note that all these metrics take into account only the obdsexaenples, a none of them
considers the uncertainties in the estimations produced by the lack of exqeeyie

In table 2 the metrics for a couple of classification rulesandh,, are compared when only a few
examples were experienced so far. The total number of possible samplegtperienced (i.e. not yet
tried objects when talking about affordances) ligiis 200, and foih, is 50. In this case all the metrics
selects rulen; as the best rule for the prediction, while the proposed density metric selgets,ras
it has more chances of observing positive examples in the future, evaglane negative experience.
Note the high probability assigned by Laplace améstimate to ruldy;. In contrast, the density metric
produces probabilities slightly higher than 0.5.

There are some points to remark. First, the criteMdRAtakes into account the total number of
positive and negative sampld3,andN, to compensate the estimation given by the rule. As the total
number of samples increases, the bias in the estimationsRoAfor h; decreases, and the hypothesis
selection is compensated towatgs(table 3). Nevertheless, its estimation still produbgselection
even when the total number of samples increases to

Finally, in order to illustrate the behavior of our approach under a largebeu of examples, we
perform the calculations using arbitrary large experiences (table Zhidrcase the proposed density
criterion produces the same rule selection as the other criteria.
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Table 3: Performance Comparison for two hypothebgsht) when the total number of experiences increases.

Hypo| p[n| ny | P | N | Ent|m-estLapl[WRA|Deng
hy [3]0]|200|3E4| 1E4|0,00| 0,81/0,80| 2E-5| 0,51
h, | 31| 50 | 3E4| 1E4 |-0,81| 0,75|0,67] O |0,52

Table 4: Performance Comparison for two hypothebgsht) after arbitrarily large number of experiences.

Hypof p [ n| ny | P | N |Ent|m-esfLap|WRA Dens
h, | 100| 10 | 200 | 1E3 | 1E3|0,44| 0,88|0,90 0,02|0,73
h, | 20 | 10| 50 | 1E3| 1E3-0,92 0,63|0,66 0,00|0,60

We have illustrated that the new proposed evaluation criterion avoids gbiawpd estimations
mainly at the beginning of the on-line learning process, where few exarapgegrovided relative to
the total possible number of experiences.

3.3 Affordance hypotheses. Generation.

As mentioned before, the generation of hypotheses is based on thetohperceptual categorization
[7] which states that only a reduced number of attributes would resultargider the estimation of
the probability of affodance of a particular observed object. Theeefihie learning of a relevant set
of attributes is performed using a general to specific strategy, where muiiiptthesis of attributes
combinations are maintained and evaluated.

Generation is triggered when an action is tried but not afforded, faxitdd as @urprise An action
is not afforded when the consistency check between the predicted arabthined effects fails, i.e.
S$ ¢ Spost-

In the case of a surprise a best-first strategy is used for the geneohtimw hypotheses: all the
specializations in one attribute-value of the “best” hypothesis are gedefidie best hypothesis, which
we call thewinner hypothesish,, is that with the highest chance of affordance, and, in case of a draw
among many hypotheses, with fewer attributes.

The inconsistency between the obtained and the expected outcome coutdibegal by many fac-
tors. Reasons can be found in a bad action model, random unpredidiabiges, random contingencies
that prevent the outcome to occur, or incomplete or wrong preconditiorsdmyation. In this work we
assume that actions are correctly modeled and that the world is determinigtier tiase circumstances,
failures in the outcomes are only produced by an incomplete or wronglafioe hypothesis.

Finally, after the generation of a hypothesis, the statistics associated adegttiaccording to the
stored examples ihs.

4 Using pCECfor High-Level Decision Making

4.1 Instantiating Planning Operators from pCECs

In order to usgpgCEGs for high-level reasoning, STRIPS-like rules [10] are generatau the pCECs
using as rule preconditions the winner hypothesis. We describe a STiiR&EPSIe R as a triple com-
posed by a precondition past(= hy), an action pary, and the effectss,, where the action and the
effects are those form th@gCEC

R = {A,s%,5%} (7)
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For simplicity, we work under the closed world assumption, so all the conditi@tsare not true for a
detector are assumed to be false. This allows us to save the deletions iretligaft of the rule.

We would like to remark that there are other approaches to learn STRI®&Hé but the limitations
aforementioned about the kind of problems we are facing pose unsobladtigcles to them, where on-
line learning is either not considered [12, 18], a significant amountiof knowledge has to be provided
[9], or a large number of experiences or training streams for the leaofifgghaviors are required
[17, 18, 4, 16, 12].

4.2 Refining Planning Operators from Affordance Hypotheses

When usingpCEGs for decision making, actions executions are guided by the planner ¢a&)b
Whenever an action is not afforded, new affordance hypothegegesrerated using the mechanisms
described in section 3.3 and the corresponding action rule is refinelacirgy its precondition part
with the new winner hypothesis.

4.3 Macro Rules

Rule R may reference a single actigh = ax, when derived from CEC or a sequence of actions
A = {aj,a,...,am}, when generated as a macro rule. For the learning of macro rules, wiopes a
technique of condition propagation [1] that permits to find the necessacppditions that will produce
the cumulative changes in the world obtained after a sequence of acticutiers. For a more detailed
explanation about macro rule generation please refer to [1].

It is important to mention that, when a single action rule is refined, all the malge that involve it
are refined too using the condition propagation method.

4.4 Decision-Making Framework

Figure 1 depicts a flow diagram for the general framework of decisionngdk which the learning
system is embedded. The framework is composed of a planner, which barilsl go accomplish tasks
with the rules learned so far, the rule learning system, which providesedings rules for the planner,
and a teacher interface, that permits teacher instruction about actior$aorpe’hen no plan is found.

LearningpCEGs is supported by experimenting actions in the environment. The action sel@etjon
be guided using different strategies, which can be random (exployatiareterministic (exploitation).
In order to avoid large unnecessary exploration of actions, actiontieglés done in a supervised way
to speed the learning for task execution. Actions to be executed are @addwjda logic-based planner,
and - if the planner fails because of incomplete knowledge - by a teaclwergtihaction instructions.
In this way, we take benefit of human natural knowledge about the ®geause-effects in currently
observed situations: it is very simple for a human to know which action to perio@a situation given
a plain task, but it could be much more complicated to explain a priori all theesegs of actions that
should take place in all possible situations. Hence, teacher instructions siondigt of a single action
to be performed in the current situation according to the task in progretssiwork, we let the teacher
control the macro rule generation by the instructions given. The teacist imstruct a sequence of
actions, one for each observed situation after the generation of a hdeewer he considers convenient
to store the sequence into a macro rule. An action instruction produces pGEe@which produces in
turn action rules to fill the gap of knowledge.

Planning and learning occur iteratively during run-time. The action to beuéeé is dictated by the
planner using the first action of the generated plan, and if no plan is fduedo the lack of rules, by
a human teacher. The planner searches for plans to accomplish theogodhé current situation, and
produces one of three possible outcomes. If the goal requested idyatezached, the system halts until
the next goal specification. In the case a plan is found, the planner yheldisst action of the plan. This
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PLANNER W
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DONE
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r
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Figure 1. Schema of the decision-making framework thapiraties the robot, the learning mechanism, the planner
and a human teacher through suitable interfaces.
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action is executed and the outcome is evaluated. If the outcome is not consistetie expected one,
fact that we denote agirprise the rule refinement mechanism is triggered to solve the inconsistencies.

5 Using pCECfor Task Execution on Humanoid Robot

The decision making framework was implemented on the humanoid robot plaAfeVAR Il [3] so to
assess the validity of the approach. The example application consistsrigiag&ups on a sideboard to
avoid collisions when moving a cup from one position to another. Given asgaestification consisting
of a cup to be moved, denoted as the target cup, and its desired destinatiabdh should learn to
move the cup to the specified position without colliding with other cups. For thsgoitild move cups
that could interfere with the movements in an ordered way.

It is important to remark that the aim of this example is to illustrate the system megisarsd
their reliability on a real complex robot, and not to solve such a simple task,hwd@no be indeed
solved by many other known strategies. As the aim of the implementation is to evihegpCEGCs
learning and their use for high-level decision making, the perceptiongetiwhs mechanisms of the
robot were simplified as much as possible to permit a rapid and clean implemenhiti@that the set
of perceptions and actions of the robot can be of any nature as faewaptbvide symbolic references
to lower-level mechanisms, no matter how sophisticated or simple these mechargsriifie example
presented is rather simple but settles the foundation for the learning of mm@ex tasks.

5.1 Perceptions

In the example task, for the representation of the position of the cups, oy et simple strategy of
partitioning the sideboard into cells using a grid world. Each cup is considerée inside a cell. This
requires the robot to perform precise movements of the cups so to planarthmsitions close to the
center of the cells and avoid false detections. Formally, for each, egllattributed; is considered, with
i=1,...N. N is the total number of cells and depends on the partition made. An attdbetauld be
instantiated in one of three possible attribute-values,

e diy = €(i), true if celli is empty.
e di» =0(i), true if a cup is inside cell
e diz =t0(i), true if the target cup is placed on cell

The target cup is identified with a color provided by the user (green in thmpbe) and referenced
asto. In rule activationp(i) andto(i) are considered equivalent.

5.2 Actions

In the application, actions are performed through pick and place withiggasphe robot is limited to
perform simple straight movements of the cups in the horizontal or vertigtain. Then, an action is
defined by the direction and the number of cells of the displacement. In thredicactions are described
using three digits, the first accounts for the index of the cell where thetabjplaced, the second is the
direction of the movement, and the third one is the number of cells in that direcktom direction of
the movements can adopt one of four possible movements with respect tdodteldor the forward
movementD for moving an object backward,for moving to the left, andR for movements to the right.
Figure 2 presents the problem definition graphically.

5.3 The Planner

The planner used for deliberation with the generated action rules is the RjicSbiased planner [14]
which uses STRIPS-like rules for plan generation.
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5.4 Experiments

Results of four experiments are presented for the task of moving the gupdrom cell 5to cell 7. In the
first experiment (figure 3) the robot faces a situation with no blockingatdnd initiates with no rules

in the data base, being not possible to find a plan. This produces an adtiarciion from the teacher,
which instructs the actioBR2 (“move object in cell 5 two positions to the right”). The robot executes
the action and generatggCEG and the ruleR; from the observed changes. The genergi€&Cis
depicted in figure 4. The affordance hypothesis with highest chanag@oéitive and fewer attributes is
used to generate the precondition [@tof rule R;. Figure 4 also shows the probabilities associated to
each affordance hypothesis using a bar representation, and hoarthepdated with the first positive
sample.

In experiment 2 (figure 5) the robot is asked again to move the green acupasitions to the right,
but this time a blocking cup is placed in the trajectory. As the only rule genesaiddr, R;, does
not contemplate the middle cell 8%, the robot uses it to cope with the goal. In this case, instead of
executing action B2, we bypass it to avoid collision. Nevertheless, ARMAR believes that itimcesed
executed and evaluates the obtained outcome, which produces a saspitiggnot consistent with the
observation. Then, affordance hypotheses generation is triggegethéw with the ruld?; refinement.
Figure 6 graphically depicts the learning mechanisme@EG. First, all the specializations in one
condition of the failed affordance hypothesis are generated, and thggtiss are initialized according
to the stored examples. Then, the affordance hypothesis that most likelgisathe action, and with
fewer attributes, is used fcuslp refinement. After rule correction, the robot faces again the same initial
situation but this time no rule is applicable (because of the added attribute-e@)ye The action
instruction mechanism is triggered and the teacher instructs the action rteedsdove the blocking
object, '6U1". Finally, the freed path permits to reach the goal with faje

5)

sideboard

. Virtual grid
L | /
/] VA
Cell Ir/dexes
of[1]2]3]4
5| 6
10 | 11|12 | 13 | 14

)

See = 1 €(0). o(1). e(2), e(3), e(4),
to(5), 0(6). e(7). e(8), e(9),
e(10), e(11). e(12). e(13), e(14) }

Figure 2: Problem definition for the task of arranging cup$.R&al setting. B) Graphical representation of the
robot perspective. C) Example statg. D) graphical representation of the state, where the cédred in green
corresponds to the target cup, and white and black cells tefsmpty or occupied cells, respectively.
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The third experiment (figure 7) consists of a more complicated situation with roapy in the
scenario. The milestone of this experiment is the generation of a macro rhis.eXperiment is not
consecutive to the previous ones and one more rule has been genetatddeen. Figure 8 shows the
set of rules learned so far when experiment 3 was performed. The gittiakion prevents the planner
to find a plan and an action instruction is needed at the first stage of thesgrothe teacher instructs,
first, the action to move the cup in cell 6 one position to the righR I’, which leads to ggCECand rule
generation, and afterward the actiolJ1". Every instructed action produces the correspongadgC
and rule generation. After the second instruction, the teacher quits imstractions, and, as two actions
were instructed, the macro ruig is generatedRs is composed oR, andRs, and its preconditions and
effects are obtained through the conditions propagation method [1]. fheresulting situation the goal
can be now reached usify.

Finally, in experiment 4 (figure 9) the rules learned in experiment 3 areiaea using the same
initial situation as experiment 3. The planner is now able to find a plan consistihg chaining of rule
Rs andR;. The execution of the macro rule is performed through the execution bfreéeit contains,
and the surprise evaluation is carried out at each step. In this experimoentrprises arise and the task
is completed successfully.

Initial state

R, =5R2
ss,={to(5).e(7)}
ss,={to(T).e(3)}

Figure 3: Experiment 1. No blocking object.

pCEC,

p‘l‘_‘l - FT‘TT“‘#—I' TT‘“FT‘N\TL"
ECEE R e

Winner hypothesis for i, generation

Figure 4: GeneratedCEG. The affordance hypotheses are represented graphicaty. ¢ells indicate a “don’t
care” whether the cells are occupied or not.
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6 Conclusions

This work presents a system to rapidly acquire cause-effect ruledefcision making using a new
paradigm for representing and learning object categories. The methades on the concept of OAC
which states that objects are defined in accordance to their use, whectsadnd actions are insepa-
rably intertwined. Learning of cause-effects occurs automatically froanges observed after action
executions using a novel learning approach that permits the robot to didaligdearn relevant set of
attributes to afford actions from few examples. Additionally, we implementediaida making frame-
work that permit to rapidly acquire and use learned cause-effectefisidn making, where learning
occurs iteratively with planning steps, closing effectively the planningaleg loop. The inclusion of

= R,=3R2 =  R-=5R2
_ ss,={10(5).e(7)} F : ‘ s,={t0(5),e(6).e(7)}
Lo ss={to(7).e(5); |®=m g ={10(7).e(5)}

. — [nitial state
7 1n<»t 6[ ]

— R,=GUIl

2" ss,~10(0).e(1)}
= ss—{o(1).e(6)}

R,=5R2

s5,={10(5).e(6).e(7)}
ss,=1o(7).e(5)}

Figure 5: Experiment 2. One blocking object. The figure shawsrprise with the following rule refinement using
the winner hypothesis.

pCEC,
H, 3)Refine R, with the a |
winner hypothesis \ 5R2 ::H
o 1
T m"ﬁ"'i ﬁ"“r{ﬁ‘\; §+ 5
I‘ ] T y
o F‘-T'T-ﬂ-- 1) Generate 2) Add example
- new hypotheses || and update
] statistics

Figure 6: Learning processes PCEG under a surprise. 1) Generation of all the specializatiothef best
hypothesis. 2) Updating of the statistics using the negagxample. 3) Rul&; refinement using the winner

hypothesis.
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a human teacher in the planning-learning loop to instruct single actions wagathner fails to find a

F Initial state

o (= _ R,-GRI =

‘ 3 AR ‘ =TT
T =] 57100 [T E] Ul
- 8362{0(7.},8(.6)} —

B Ry=T1] R;=R;-R;
| q ss,={o(7).e(2)} ss,={0(6).e(7).e(2)}

| L™= ss~{o2).e(D)} ss.~{0(2).e(6).e(T)}
T RowR2

= | sylto(S)e©).e(7)

T ssotte()e))

-

=

"
(== =

b g

Figure 7: Experiment 3. Many blocking objects. More rulesegation are shown, including a macro rule of two
steps.

R,=5R2 R,=G6U1 R,=6R3
s5,={10(5).e(0).e(7)}  ss,={o(6).e(1)}  s5,={0(6).e(9)}
ss,=to(7).e(5)} ss,={o(1),e(6)}  s5,={0(9).e(6)}

Figure 8: Initial set of rules in experiment 3.
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plan permits to significantly accelerate the learning of task-relevant cHfeszs.

We implemented and tested the system in a real complex platform of the humaboidARMAR
lll. The results elucidate the reliability of the system in a real scenario to laad perform tasks in
human environments.

Initial state
Ay = ORI
Clpkm = 7[)]
gy = SR2

Figure 9: Experiment 4. Evaluation of rules learned in ekpent 3.
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