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Abstract

In this paper, a partitioning approach for large-scale systems based on graph-theory is presented. The algorithm starts with the
translation of the system model into a graph representation. Once the system graph is obtained, the problem of graph partitioning
is then solved. The resultant partition consists in a set of non-overlapping subgraphs whose number of vertices is as similar as
possible and the number of interconnecting edges between them is minimal. To achieve this goal, the proposed algorithm applies a
set of procedures based on identifying the highly-connected subgraphs with balanced number of internal and external connections.
In order to illustrate the use and application of the proposed partitioning approach, it is used to decompose a dynamicalmodel
of the Barcelona drinking water network (DWN). Moreover, a hierarchical-like DMPC strategy is designed and applied over the
resultant set of partitions in order to assess the closed-loop performance. Results obtained when used several simulation scenarios
show the effectiveness of both the partitioning approach and the DMPC strategy in terms of the reduced computational burden and,
at the same time, of the admissible loss of performance in contrast to a centralised MPC strategy.
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1. Introduction

Large-scale systems (LSS) present control theory with new
challenges due to the large size of the plant and of its model [1,
2]. The goal to be achieved with control methods for this kind
of systems is to obtain a reasonable solution with a reasonable
effort in modelling, designing and implementing the controller.

Model-based Predictive Control (MPC) has been proved to
be one of the advanced control techniques widely accepted
for the control of LSS [3]. Applications to different large-
scale infrastructures as drinking water networks [4], sewer net-
works [5], open-flow channel networks [6] or electrical net-
works [7] proves the applicability of this technique. The main
reason is due to once obtained the plant dynamical model, the
MPC design just consists in expressing the desired performance
specifications through different control objectives (e.g., weights
on tracking errors and actuator efforts as in classical linear
quadratic regulation), and constraints on system variables (e.g.,
minima/maxima of selected process variables and/or their rates
of change) which are necessary to ensure process safety and as-
set health. The rest of the MPC design is automatic: the given
model, constraints, and weights define an optimal control prob-
lem over a finite time horizon in the future (for this reason the
approach is said predictive). This is translated into an equiva-
lent optimisation problem and solved on line to obtain an opti-
mal sequence of future control moves. Only the first of these
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moves is applied to the process, as at the next time step a new
optimal control problem is solved, to exploit the information
coming from fresh new measurements. In this way, an open-
loop design methodology (i.e., optimal control) is transformed
into a feedback one.

Nevertheless, the main hurdle for MPC control (as any other
control technique) when applied to LSS in a centralised way,
is the non-scalability. The reason is that a huge control model
is needed, being difficult to maintain/update and which needs
to be rebuilt on every change of the system configuration, e.g.,
when some part of the system should be stopped because of
maintenance actions or malfunctions. Subsequently, a model
change would require re-tuning the centralised controller. It is
obvious that the cost of setting up and maintaining the mono-
lithic solution of the control problem is prohibitive. A way
of circumventing these issues might be by looking intodecen-
tralised MPC (DMPC) ordistributedMPC techniques, where
networked local MPC controllers are in charge of controlling
part of the entire system. The main difference between dis-
tributed and decentralized MPC is that the formerusesnegoti-
ations and re-computations of local control actions withinthe
sampling period to increase the level of cooperation, whereas
the latter does not (at the benefit of computation time, but atthe
cost of optimality).

The industrial success of the traditional centralised MPC
(CMPC) drives now a new interest in this old area of distributed
control, and distributed MPC has become one of the hottest
topics in process control in the early 21st century, worldwide.
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Thus, two research projects (HDMPC [8] and WIDE [9]) are
currently being carried out in Europe, both focused on the de-
velopment of decentralised and distributed MPC techniques.
Few works have been recently published in this area; see, e.g.,
[10, 11, 12, 13, 14, 15], among others.

However, in order to apply decentralised or distributed MPC
approaches to LSS, there is a prior problem to be solved: the
system decomposition into subsystems. The importance of this
issue has already been noticed in classic control books address-
ing the decentralised control of LSS as [1, 2]. The decomposi-
tion of the system in subsystems could be carried out during the
modelling of the process by identifying subsystems as partsof
the system on the basis of physical insight, intuition or experi-
ence. But, when a large-scale complex system with many states,
inputs and outputs is considered, it may be difficult, even im-
possible, to obtain partitions by physical reasoning. A more ap-
pealing alternative is to develop systematic methods, which can
be used to decompose a given system by extracting informa-
tion from its structure and representing it as a graph. Then,this
structural information can be analysed by using methods com-
ing from graph theory. Consequently, the problem of system
decomposition into subsystems leads to the problem of graph
partitioning, i.e., the decomposition of graph into subgraphs.

Graph partitioning is an important problem with extensive
application in scientific computing [16], optimisation, VLSI de-
sign [17], task partitioning for parallel processing, control of
cascading failures, among others. Several algorithms coping
this problem exist in the literature as presented in a brief review
in Section 2. However, the development of graph partitioning
algorithms that allow the decomposition of LSS into subsys-
tems for being used in decentralised or distributed MPC is still
very incipient and available methods are quite limited. In [2], a
hierarchical LBT decomposition that leads to a input-reachable
hierarchy for some particular systems is presented. A more gen-
eral approach is based on theε-decomposition method, which
is based on decomposing the system in weakly coupled subsys-
tems (see also [2]). The algorithm proceeds sequentially dis-
connecting the edges of the system graph that are smaller than
a prescribed thresholdε and identifying the disconnected sub-
graph of the resulting graph. The obtained subsystems corre-
spond to the subsystems with mutual coupling smaller or equal
thanε. However, the tuning of this parameter is not a trivial
issue and only a trial and error approach is currently available.

The main contribution of this paper is to go one step fur-
ther in the development of subsystem decomposition methods
for LSS by proposing a new automatic decomposition algo-
rithm based on graph partitioning. The aim of the proposed
method is to provide a decomposition consisting of a set of non-
overlapping subgraphs whose number of vertices is as similar
as possible and the number of interconnecting edges between
them is minimal. To achieve this goal, the proposed algorithm
is composed of a set of graph-theory-based procedures, which
identify the highly-connected subgraphs with balanced number
of internal and external connections. A real case study based
on the Barcelona DWN is used to test the proposed subsystem
decomposition methodology using a recently proposed DMPC
scheme [18].

The paper is structured as follows: in Section 2, the dynami-
cal system decomposition into subsystems seen as a graph par-
titioning problem is stated. Section 3 presents the proposed par-
titioning approach for dynamical systems. Section 4 describes
the case study considered in the paper. Section 5 discusses both
the application of the proposed graph partitioning approach,
and the implementation of a hierarchical-like DMPC strategy
over the case study, and presents the most relevant results.Fi-
nally, conclusions and directions for further work are reported
in Section 6.

Notation

In the sequel, letR and Z denote the set of real num-
bers and the set of integer numbers, respectively. Moreover,
Z≥c , {k ∈ Z : k ≥ c}, for somec ∈ Z,R+ , R \(−∞, 0)
is the set of non-negative real numbers, and #V denotes the car-
dinality of subsetV. The set difference of two setsA andB is
defined asA− B = {x : x ∈ A∧ x < B}.

2. Problem Formulation using Graph Theory

A graph can be defined as an abstract representation of a set
of objects from a certain collection, where some pairs of objects
are connected by links. The interconnected elements are typi-
cally calledverticeswhile the connection links are callededges.
These latter elements may bedirected (asymmetric) orundi-
rected(symmetric) according to their connection features, what
makes that the whole graph is directed or undirected as well.It
is also possible to distinguish graphs whether or not their ver-
tices and edges are weighted (weighted/unweighted graphs).

Consider a dynamical system represented in general form by
the state-space equations

x+ = g(x, u, d), (1a)

y = h(x, u, d), (1b)

wherex ∈ R
n and x+ ∈ R

n are, respectively, the current and
successor system states,u ∈ Rm is the system input andd ∈ Rp

is a bounded process disturbance. Moreover,g : R
n 7→ R is

the states mapping function andh : R
m 7→ R corresponds with

the output mapping function. Suppose now that it is desired to
decompose (1) into subsystems. With this aim, the graph rep-
resentation of the system model (1) is determined (by using the
system topology) and incidence matrixIM is then stated, which
describes the connections (edges) between the graph vertices
(system inputs, outputs and states). Without loss of generality,
IM and the directonality of the edges are derived from the re-
lation between system equations (rows ofIM) and system vari-
ables (columns ofIM), as proposed by [2, 19, 20]. There are
alternative matrix representations for a (directed) graphsuch
as theadjacency matrixand theLaplacian matrix(see [21]),
which are related to the matrix representation used in this paper.
OnceIM has been obtained from the system directed graph (di-
graph), the problem of the decomposition into subsystems can
be formulated in terms of partitioning the corresponding graph
into subgraphs. Since such partitioning is oriented to the appli-
cation of a decentralised control strategy (in particular,DMPC),
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the resultant subgraphs should have the following features(see
[1, 2]):

• nearly the same number of vertices;

• few connections between the subgraphs.

These features guarantee that the obtained subgraphs have
a similar size, fact that balances computations between sub-
system controllers and allows minimising communications be-
tween them. Hence, the problem of graph partitioning can be
more formally established as follows:

Problem 1 (Standard Graph Partitioning). Given a graph
G(V,E), where V denotes the set of vertices, E is the set of
edges, and k∈ Z≥1, find k subsets V1, V2, . . . , Vk of V such that

1.
k
⋃

i=1
Vi = V,

2. Vi ∩ V j = ∅, for i ∈ {1, 2, . . . , k}, j ∈ {1, 2, . . . , k}, i , j,
3. #V1 ≈ #V2 ≈ · · · ≈ #Vk,
4. the cut size, i.e., the number of edges with endpoints in

different subsets Vi , is minimised.

Remark 2.1. Defining the vertex-based weight of a subset Vi

as

Ωi ,

#Vi
∑

j=1

ω
j
i , (2)

whereω j
i corresponds to the weight of the j-th vertex of the

subset Vi , the following condition should be added to Problem
1 in the case of weighted graph partitioning:

• Ωi ≈ Ω/k, with i ∈ {1, 2, . . . , k}, where

Ω ,

k
∑

i=1

Ωi . (3)

Remark 2.2. Conditions 3 and 4 of Problem 1 are of high in-
terest from the decentralised control point of view since they are
related to the degree of interconexion between resultant subsys-
tems and their size balance, respectively.

Graph partitioning is considered as aNP-complete problem
[2]. However, it can be solved in polynomial time for #Vi = 2
(Kernighan-Lin algorithm) [22, 23]. Since this condition is very
restrictive for large-scale graphs, alternatives for graph parti-
tioning based on fundamented heuristics are properly accepted.
Two main classes of successful heuristics have evolved over
the years, trying to achieve the proper trade off between parti-
tioning speed and quality. They are theminimum-degree-based
ordering algorithms (MDB), and thegraph-partitioning-based
ordering algorithms (GPB) [24].

The MDB algorithms are local greedy heuristic, which re-
order the columns of a symmetric sparse matrix such that the
column with the fewest non-zero elements at a given iteration
of factorisation was eliminated at the next iteration [25, 19].
GPB algorithms regard to the symmetric sparse matrix as the
adjacency matrix of a graph and follow adivide-and-conquer

strategy to label the vertices of the graph by partitioning it into
smaller subgraphs [26].

The initial success of MDB algorithms prompted intense re-
search to improve their run and quality (multiple minimum
degree and approximate minimum degree). However, later
works suggest that the GPB algorithms are capable of produc-
ing better-quality ordering than the MDB algorithms for finite-
element problems, while staying within a small constant factor
of the run time of MDB algorithms [27, 28].

3. Partitioning Approach for Dynamical Systems

As said in the Introduction, the main contribution of this pa-
per consists in proposing a partitioning algorithm, as muchau-
tomatised as possible, through which a partition of a dynamical
system can be found, which allows its decomposition in subsys-
tems. This algorithm requires to represent the dynamical sys-
tem as a graph, which can obtained from the system structure
[2].

3.1. Main Algorithm

The partitioning algorithm proposed in this paper follows
some ideas developed in [24] for graph partitioning purposes
(mainly the strategy based on GPB algorithms mentioned in
Section 2). However, some refining steps have been added as
well as some of the original procedures have been drastically
changed in order to find partitions oriented to split dynamical
networked systems. Hence, the different parts/routines of the
main proposed algorithm are presented and explained in sec-
tions below. The current version of the algorithm is though to
be used off-line, i.e., the partitioning of the system is not car-
ried out on-line. A further improvement could be to adapt the
proposed algorithm such that the partitioning could be doneon-
line when some structural change of the network occurs. In this
way, the potential benefit of using a DMPC approach described
in the Introduction could be fully exploited.

3.1.1. Start up

This procedure requires the definition of the graph, i.e.,the
incidence matrix1 IM, which describes the connections between
the graph vertices, their directionality and, in some cases, the
weight of each edge.

1Theincidence matrixof a directed graphG(V,E), denoted asIM , is defined
such that

IMi j =



























−1 if the edgexj leaves vertexvi ,

1 if the edgexj enters vertexvi ,

0 otherwise.

This matrix has dimensionsϕ × ηe, whereϕ corresponds with the total number
of vertices andηe denotes de total number of edges [21]. Additionally, the
weight of the j-th vertex, denoted asω j , for j = 1, 2, . . . , ϕ, whereϕ , #V,
is computed. The weightω j represents the number of edges connected to this
vertex. Moreover,ω j is also known as thevertex degree[29].
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3.1.2. Preliminary partitioning
This procedure performs a preliminary automatic partition-

ing of the graph as follows. The vertexv j ∈ V, for j ∈
{1, 2, . . . , ϕ}, with maximum weightω is found and defined as
the centre of the first subgraphG1. Then, all vertices connected
to this vertex of maximum weight are assigned toG1. At this
point, the set of non-selected vertices is defined as

Vr , {v j ∈ V : v j < V1}.

This procedure is now repeated for all verticesv j ∈ Vr (now
for j = {1, 2, . . . , #Vr}) until Vr is empty, after the correspond-
ing updating. This routine highlights the subgraphs of higher
connectivity. The resultant subgraphs with just one vertex
are merged to the closest subgraph. Once a set of subgraphs
Gi(Vi,Ei), for i = 1, 2, . . . , k, is obtained, it is possible to deter-
mine some useful indexes for the entire graph and each one of
the resu subgraphs. These indexes are:

• ϕi , #Vi (from now on calledsubgraph internal weightof
Gi);

• εi , denoted as thecut size2 of the subgraphGi (from now
on calledsubgraph external weightof Gi);

• ϕmax , max
i
ϕi , for i = 1, 2, . . . , k;

• ϕ̄ , 1
k

k
∑

i=1
ϕi (arithmetic mean).

Notice that at this stage, the numberk of subgraphs is obtained
in an automatic way so it is not imposed.

Remark 3.1. Notice that introducing the set̃Ea ⊂ E, defined
as the set of edges with endpoints in other subgraphs different
to Ga, the representation of subgraphs Gi such that

k
⋃

i=1

Gi = G,

can be slightly modified to Gi(Vi ,Ei, Ẽi) for completeness pur-
poses. Also notice thatεi , #Ẽi .

3.1.3. Uncoarsening - Internal balance
This procedure aims at the reduction of the number of sub-

graphs, trying to achieve similar internal weights for all of
them. This process starts determining the set

M = {Gi , i = 1, 2, . . . ,m : ϕi ≤ ϕ̄}. (4)

For eachGi ∈ M, the set of neighbour3 subgraphs, denoted as
Ni , is determined and expressed as

Ni = {G j , j = 1, 2, . . . , hi : G j is neighbour ofGi}, (5)

2See Problem 1.
3Two subgraphs are calledneighboursif they are contiguous and share

edges (see, e.g., [30] among many others).

with hi = #Ni . If the condition

ϕi + ϕ j ≤ ϕ̄, i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . , hi} (6)

holds forGi ∈ M andG j ∈ Ni , then these two subgraphs are
merged. If there are two or more subgraphsG j ∈ Ni such that
(6) holds, the subgraphG j ∈ Ni with minimum internal weight
is selected. Once two subgraphs are merged, ¯ϕ is updated.

This procedure is iterated until no additional merging was
possible. It is considered that the internal balance has been
achieved when either

• ϕ̄ ≤ ϕi ≤ ϕmax, for i = 1, 2, . . . , k, or

• Gi with ϕi ≤ ϕ̄ cannot be merged with any of its neigh-
bours since theϕ associated to the resultant subgraph
might be greater thanϕmax.

3.1.4. Refining - External balance
This procedure aims at the reduction of the cut size of the re-

sultant subgraphs. To achieve this goal, defineω
j
i as the degree

of the j-th vertex of thei-th subgraph, withj ∈ {1, 2, . . . , ϕi}

and i ∈ {1, 2, . . . , k}. From this definition, two indexes can be
stated:

• thevertex internal degree, denoted as ˆω
j
i , which represents

the number of connections of the vertexv j ∈ Vi , for
j ∈ {1, 2, . . . , ϕi}, i ∈ {1, 2, . . . , k}, with other vertices
vp ∈ Vi , p ∈ {1, 2, . . . , ϕi}, p , j;

• thevertex external degree, denoted as ˘ω
j
i , which represents

the number of connections of the vertexv j ∈ Vi , for j ∈
{1, 2, . . . , ϕi}, i ∈ {1, 2, . . . , k}, with other verticesvp ∈ Vq,
p ∈ {1, 2, . . . , ϕq}, q ∈ {1, 2, . . . , k}, q , i.

Hence, for a given vertexv j ∈ Vi , if ω̂ j
i < ω̆

j
i , then vertexv j

is moved from subgraphGi(Vi ,Ei , Ẽi) to the subgraph in which
most of its edges have their endpoint (like in the AVL tree algo-
rithm [29]). All indexes should be updated for thek subgraphs
and the next vertex is analysed. This procedure will last until
each subgraph vertex fulfils ˆω

j
i ≥ ω̆

j
i .

3.1.5. The Complete Algorithm
Algorithm 1 collects all the procedures/routines mentioned

and explained before. Hence, applying this algorithm to the
graph associated to a given dynamical system, the expected re-
sult consists of a set of subgraphs which determines a particular
system decomposition. This setP is then defined as

P =















Gi , i = 1, 2, . . . , k :
k
⋃

i=1

Gi = G















. (7)

3.2. Auxiliary Routines

Despite Algorithm 1 yields an automatic partitioning of a
given graph, it does not imply that the resultant setP follows the
pre-established requirements stated in Problem 1. In this sense,
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Algorithm 1 Graph partitioning algorithm
1: IM ← System topology

% Start up
2: G(V, E)← IM

3: for j = 1 toϕ do
4: Computeω j

5: end for
% Preliminary partitioning

6: Vr ← V, i = 1
7: repeat
8: Findv ∈ Vr with maximumω
9: Vi ← v and all its neighbour vertices

10: Vr , V −

{

i
⋃

h=1
Vh

}

11: i = i + 1
12: until Vr = ∅

13: for i = 1 to k do % Compute some indexes
14: ϕi , #Vi % internal weight
15: εi , #Ẽi % external weight
16: end for
17: ϕmax , max

i
ϕi

18: ϕ̄ , 1
k

k
∑

i=1
ϕi % arithmetic mean

% Uncoarsening
19: ComputeM % see(4)
20: bint = false % Internal balance
21: while bint = falsedo
22: for i = 1 to mdo
23: ComputeNi % see(5)
24: for j = 1 to h do
25: if ϕi + ϕ j ≤ ϕ̄ then % see(6)
26: G∗ = Gi ∪G j

27: Gnew← G∗ with minimumϕ∗
28: Update ¯ϕ
29: end if
30: end for
31: end for
32: Updateϕi

% Refining
33: bext = false % External balance
34: while bext = falsedo
35: for i = 1 to k do
36: for j = 1 toϕi do
37: Compute ˆω j

i andω̆ j
i

38: if ω̂ j
i < ω̆

j
i then

39: Movevj from Gi to its neighbour
40: end if
41: Updateϕi , ϕ̄, ϕmax
42: end for
43: end for
44: Update all indexes
45: Check external balance (nodes)
46: end while
47: Check internal balance (subgraphs)
48: end while
49: return P % see(7)

complementary routines can be useful for improving the par-
titioning process according to the considered application. Ad-
ditional auxiliary routines could be added such that the gener-
ated partitioning takes into account the control performance that
would be achieved when used in decentralised or distributed
MPC control.

3.2.1. Pre-filtering

In general, the resultant solution given by the Algorithm 1 is
nearly appropriate in terms of ˆω andω̆, but it highly depends
on the topology and complexity of the graph. For this reason,
in order to obtain a better graph partitioning, sometimes itcan
be useful to make aPre-filteringroutine, where all the vertexes
with ω = 1 are virtually merged to this vertex that shares its
unique edge. This procedure createssupranodes, which should
be properly recognised at the moment of determining the parti-
tioning of the dynamical system from the decomposition of its
associated graph. Moreover, doing the manual merging of those
vertices reduces the work done by subsequent routines.

3.2.2. Post-filtering

On the other hand, suppose that after partitioning a given
graphG(V,E) by using Algorithm 1, all thek resultant sub-
graphs fulfil

ϕ̄ ≤ ϕi ≤ ϕmax, for i ∈ {1, 2, . . . , k}. (8)

However, the following situation could occur. Suppose a sub-
graphGa with ϕa ≪ ϕ̄, which is placed next to a subgraphGb

and fulfils (8). The merging of subgraphsGa andGb, expressed
asGc , Ga ∪ Gb, is not allowed sinceϕc ≥ ϕmax. ThePost-
filtering routine implements an approximation and a parametri-
sation, i.e., by adding a small toleranceδ, the existence of the
resultant subgraphGc is now allowed sinceϕc ≤ ϕmax + δ.
This relaxation allows to have less subgraphs but with higher
complexity and internal weight.

3.2.3. Anti-oscillation

This procedure leads to solve a possible issue when therefin-
ing (external balance)routine is run. When a vertex is moved
from one subgraph to another according to its internal and ex-
ternal degrees, there exists the possibility of doing this move-
ment during an infinite time if there is no specification of rou-
tine ending. Therefore, the refining routine is then run within
a for loop and the parameterρ is set as the maximum number
of iterations that this procedure is executed. Afterwards,since
the resulting set of subgraphs is stored at each iterationt′ ∈ Z,
t′ = {1, 2, . . . , ρ}, the configuration ofk subgraphs with minor
εi , for i = 1, 2, . . . , k, can be chosen.

3.3. Some Practical Issues

Given that the partitioning algorithm proposed in this paper
is mainly thought for performing decentralised control of LSS,
several features could be taken into account to achieve a conve-
nient system partitioning and less complex controller designs.
For instance, an additional routine that would restrict thecon-
nection of subgraphs with unidirectional edges would be very
useful since a pure hierarchical control scheme can be straight-
forwardly implemented, decreasing the inherent loss of perfor-
mance of a decentralised control scheme.
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4. Case Study Description

The Barcelona drinking water transport network (DWN) has
been used as the case study to illustrate the performance of
the proposed partitioning approach and the subsequent employ-
ment of the DMPC strategy reported in [18].

4.1. System Description

The Barcelona DWN, managed by Aguas de Barcelona, S.A.
(AGBAR), not only supplies drinking water to Barcelona city
but also to the metropolitan area. The sources of water are
the Ter and Llobregat rivers, which are regulated at their head
by some dams with an overall capacity of 600 cubic hectome-
tres. Currently, there are four drinking water treatment plants
(WTP): the Abrera and Sant Joan Despı́ plants, which extract
water from the Llobregat river, the Cardedeu plant, which ex-
tracts water from Ter river, and the Besòs plant, which treats the
underground flows from the aquifer of the Besòs river. There
are also several underground sources (wells) that can provide
water through pumping stations. Those different water sources
currently provide a flow of around 7 m3/s. The water flow from
each source is limited, what implies different water prices de-
pending on water treatments and legal extraction canons.

The Barcelona DWN is structurally organised in two lay-
ers4. The upper layer, named astransport network, links the
water treatment plants with the reservoirs distributed allover
the city. The lower layer, nameddistribution networkis sec-
torised in subnetworks. Each subnetwork links a reservoir with
each consumer. This paper is focused on the transport network.
Thus, each subnetwork of the distribution network is modelled
as a demand sector. The demand of each sector is characterised
by a demand pattern, which can be predicted by using a time-
series model [31]. The control system of the transport network
is also organised in two layers (see Figure 1). The upper layer
is in charge of the global control of the network, establishing
the set-points of the regulatory controllers at the lower layer.
Regulatory controllers are of PID type, while the supervisory
layer controller is of MPC type. Regulatory controllers hide
the network non-linear behaviour to the supervisory controller.
This allows the MPC supervisory controller to use a flow-based
control-oriented linear model.

4.2. Control-oriented Modelling

Control-oriented modelling principles for DWNs have been
widely presented in the literature, see [4, 32]. In order to ob-
tain a control-oriented model of the DWN, the constitutive net-
work elements as well as their basic relationships should bedis-
cussed. The reader is referred to the aforementioned references
for further details of DWN modelling and specific insights re-
lated to the case study of this paper.

Consider the main physical constraints of the DWN given by
the variables related to the tank volumes and manipulated flows.

4The proposed decomposition between transportation and distribution part
is only possible if the hydraulic couplings are weak as in thecase of Barcelona
DWN. In other water networks, the strong hydraulic couplingcould prevent
from the application of such a decomposition.

Set-points

determination

(MPC, set of rules)

Control trajectories

realisation

(PID controllers)

Global Control Level
Supervision

Local Control Level
Regulation

Networked System

disturbances

measurements

water network

measurements

Figure 1: Hierarchical structure for RTC system

For the case of tank volumes, the physical constraint related to
the range of volume capacities for thei-th tank is expressed as

xmin
i ≤ xi(t) ≤ xmax

i , ∀ t, (9)

wherexmin
i and xmax

i denote the minimum and maximum vol-
ume capacity, respectively, given in m3 and t denotes the dis-
crete time. Moreover,xmin

i ≥ 0. On the other hand, the physical
constraints related to manipulated flows through the systemac-
tuators are expressed as

umin
i ≤ ui(t) ≤ umax

i , ∀ t, (10)

whereumin
i and umax

i denote the minimum and the maximum
flow capacity, respectively, given in m3/s. Moreover,umin

i ≥ 0.

By considering the mass balance in tanks, the control-
oriented model of the DWN in discrete-time state-space form
can be written as

x(t + 1) = A x(t) + B u(t) + Bp d(t), (11)

wherex ∈ X ⊆ R
n
+ is the state vector corresponding to the wa-

ter volumes of then tanks,u ∈ U ⊆ R
m
+ represents the vector of

manipulated flows through themactuators (pumps and valves),
andd ∈ D ⊆ R

p
+ corresponds to the vector of thep water de-

mands (sectors of consume).A, B, andBp are system matrices
of suitable dimensions. Since the demands can be forecasted,
they are assumed to be known. Thus,d is a known vector of
non-negative elements, containing the measured disturbances
affecting the system. By also including static relations at net-
work nodes, model (11) can be further rewritten as

x(t + 1) = A x(t) + Γ υ(t), (12a)

E1 υ(t) = E2, (12b)

whereΓ = [B Bp], υ(t) = [u(t)T d(t)T ]T , andE1, E2 are ma-
trices of suitable dimensions dictated by the network topology.

The Barcelona DWN model (12) contains a total amount of
67 tanks and 121 actuators, these latter divided in 46 pumps
and 75 valves. Moreover, the network has 88 demand sectors
and 16 water nodes. Both the demand episodes and the network
calibration/simulation set-up are provided by AGBAR. Figure
3 (further below) depicts the considered network.
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4.3. System Management Criteria

As said before, AGBAR provides the management policies
for the Barcelona DWN given their knowledge of the system
and the performance objectives that it is to be reached com-
monly in this kind of networked systems. Thus, these criteria
are described as follows.

4.3.1. Minimising water production and transport costs
The main economic costs associated with drinking water pro-

duction (treatment) are due to chemicals, legal canons, and
electricity costs. Delivering drinking water with appropriate
pressure levels through the water transport network involves
important electricity costs in pumping stations. The corre-
sponding performance figure to be minimised is expressed as

f1(t) =We (α1 + α2(t)) u(t), (13)

whereα1 corresponds to a known vector related to the economic
costs of the water according to the selected source (treatment
plant, dwell, etc.) andα2(t) is associated with the economic
cost of the flow through certain actuators (pumps only) and their
control cost (pumping). Note the time variance ofα2 due to the
fact that pumping effort prices have different values according
to the time of the day (electricity costs). The weightWe is the
penalty associated with economic costs with respect to the other
objectives that will be included in the MPC optimisation prob-
lem. Also notice the linear nature of expression (13) is given by
the unidirectional feature of all the manipulated flows.

4.3.2. Safety storage term
The satisfaction of water demands should be fulfilled at ev-

ery time instant. However, some risk prevention mechanisms
should be introduced in the tank management so that the stored
volume is preferably maintained around a given safety valuein
case of emergency, and to guarantee future water availability
in case of inaccurate demand forecasts. A quadratic expression
for this concept is used and written as follows:

f2(t) = (x(t) − β xmax)T Wx (x(t) − β xmax), (14)

whereβ is a term which determines the safety volume to be
considered for the control law computation and matrixWx de-
fines the weight of the objective in the cost function. This term
prevents the controller from keeping the lowest possible water
volumes in the tanks, which would reduce robustness to demand
forecast inaccuracy.

4.3.3. Smoothness of the control actions
Pumping stations should avoid excessive switching: valves

should operate smoothly in order to avoid harmful transients in
the pressurised pipes, which can in turn lead to poor pipe con-
ditions. Similarly, water flows requested from treatment plants
must have a smooth profile due to plant operational constraints.
Notice that the considered control-oriented modelling does not
take into account pressure dynamics, hence a lower-level con-
troller that keeps the desired flow is assumed. The use of a

Figure 2: Graph related to the Barcelona DWN model after the application of
the Pre-filtering routine

smooth reference surelyhelps the performance of such low-
level controller. To smooth out the control action of MPC, the
following third term is included in the objective function in or-
der to penalise variations∆u(t) = u(t) − u(t − 1) of the control
signal between consecutive sampling intervals

f3(t) = ∆u(t)T W∆u∆u(t), (15)

whereW∆u is am×m weight matrix.

5. Main Results

5.1. Case Study Partitioning

This section presents the results of the application of Algo-
rithm 1 for the partitioning of the Barcelona DWN into com-
positional subsystems. Algorithm 1 and auxiliary routinespre-
sented in Section 3.2 have been designed for any system. How-
ever, some particular features should be introduced depending
on the considered case study and control law in order to obtain
an suitable decomposition. More precisely, the graph of the
Barcelona DWN, shown in Figure 2, has been derived from its
mathematical model (12) under the following considerations:

• every tank, sector of consume, water source and node is
considered as a vertex of the graph;

• every pump, valve and link with a sector of consume is
considered as a graph edge.

In order to evaluate the partitioning results obtained from
the application of Algorithm 1 and auxiliary routines to the
Barcelona DWN, the following indexes are taken into account
additionally to those introduced in Section 3:

• ε ,
k
∑

i=1
εi ,

• ε̄ , ε
k (arithmetic mean),

• σ2
ϕ , 1

k

k
∑

i=1
(ϕi − ϕ̄)2,

• σ2
ε ,

1
k

k
∑

i=1
(εi − ε̄)2.
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Table 1: Results for different partitioning approaches

Routine
k ϕ̄ ε̄ σ2

ϕ σ2
ε ε

Combination

1 17 10.59 3.76 53.88 25.32 64
2 13 6.30 4.15 21.39 27.80 54
3 10 8.20 5.10 31.73 32.76 52
4 6 13.67 6.33 14.88 25.22 38

Remark 5.1. Notice that althoughε is not directly related with
the number of shared edges between subgraphs obtained by us-
ing Algorithm 1, this index gives an indirect idea about their
level of interconnection. Recall that the objective of the par-
titioning algorithm is the minimisation of indexesσ2

ϕ, ε, and
εi (for i = 1, 2, . . . , k) to obtain a graph decomposition as less
interconnected as possible and with similar number of vertices
for each subgraph (internal weight).

Table 1 summarises the partitioning results obtained applying
Algorithm 1 (A1) combined with the auxiliary routine/filters
presented in Section 3.2 performing the following combina-
tions:

1. No auxiliary routines are considered.
2. A1 and Pre-filtering (Pre-F) routine only.
3. A1 in addition to Pre-F and Post-filtering (Post-F) rou-

tines.
4. A1 in addition to Pre-F, Post-F and Anti-Oscillation (AO)

routines.

This distinction has been done in order to understand how the
proposed routines affect the partitioning results.

Using only the Algorithm 1, the resultant partitioningP is
comprised by 17 subgraphs. Many of them are small and can-
not be merged since their neighbour subgraphs have internal
weights with values quite close to ¯ϕ (see Section 3.2). More-
over, there are several vertices withω = 1, which correspond
to network water sources and demands, leading to unnecessar-
ily difficult algorithm computations due to sizes of the resul-
tant subgraphs (in terms of internal weight). By employing the
Pre-F routine, the previous problems are fixed and Algorithm
1 produces 13 subgraphs (see Table 1). Additionally, if the re-
fining routine embedded within Algorithm 1 is complemented
with the Post-F routine, settingδ = 2, a partitioning with ten
subgraphs is reached5. Finally, if the AO routine is also con-
sidered, setting the refining limit toρ = 250, a partitioning
with six subgraphs is now reached. According to Table 1, this
last partitioning (Combination 4) satisfies the minimisation of
the average of the internal weights for all resultant subgraphs as
well as the interconnection degree between subgraph measured
throughε. It is important to highlight that the proposed parti-
tioning approach automatically determines the final numberof
partitionsk (six for this case) when the conditions 3 and 4 of

5Notice that increasing the parameterδ implies thatσ2
εi

becomes bigger.

Table 2: Dimension comparison of the DWN subsystems

Subsystem Tanks Actuators Demands Nodes

1 13 36 20 5
2 11 11 11 0
3 13 22 20 3
4 9 16 12 2
5 6 10 8 2
6 15 26 17 3

Total 67 121 88 15

µ34

µ31

µ13

µ12

µ14

µ16

µ61

µ51

S1

S2

S3

S4

S5

S6

Figure 4: Network subsystemsSi and their sets of shared connectionsµi j

Problem 1 are fulfilled (see Remark 2.2). The tuning parame-
tersδ andρ also influence in the obtained value ofk.

Notice that each subgraph of the final decomposition corre-
sponds to a subsystem of the Barcelona DWN with the num-
ber of elements presented in Table 2. Figure 3 shows, in dif-
ferent colours, the obtained subsystems of Barcelona DWN.
Moreover, Figure 4 schematically depicts the resultant subsys-
temsSi , for i ∈ {1, . . . , 6}, and the setsµi j of shared links
between the network subsystems corresponding to the control
inputsu (manipulated flows, see (12)), whose directionality is
defined fromSi to S j for j ∈ {1, . . . , 6}, i , j. Table 3 collects
the number of control inputs of each setµi j .

5.2. DMPC based on a Hierarchical-like Approach
5.2.1. Strategy Parametrisation

Using the Barcelona DWN decomposition obtained in pre-
vious section (corresponding to the routine combination 4 in
Table 1), a DMPC strategy is implemented in order to manage
the networked system. This strategy considers

• the dynamical system model in (12) split in 6 subsystems
obtained by using the proposed partitioning approach;

Table 3: Dimensions of shared linksµi j

Set µ12 µ13 µ14 µ16 µ31 µ34 µ51 µ61

Number of u’s 2 2 2 2 4 3 1 3
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Figure 3: Definitive partition of the Barcelona DWN. Thekeyelements are properly featured

• the physical constraints (9) and (10) for each subsystem;

• a demand forecasting algorithm (taken from [32, 31]); and

• a multi-objective cost function, expressed by using (13),
(14), and (15) as

J(t) =
Hu−1
∑

i=0

f1(t+ i|t)+
Hp
∑

i=1

f2(t+ i|t)+
Hu−1
∑

i=0

f3(t+ i|t), (16)

whereHp andHu correspond to the prediction and control
horizons, respectively, indext represents the current time
instant while indexi represents the predicted time along
Hp. In the case study of this paper, the prediction horizon
is related to the 24-hours demand seasonality. Regarding
the value ofHu, it has been set to be equal toHp, following
the criterion of the DWN management company.

In order to explain and discuss the implementation of the
solution sequence for the considered hierarchical-like DMPC
strategy, denoteCi as the MPC controller related to the subsys-
temSi (for i ∈ {1, . . . , 6}), and notice that, at this stage,µi j not
only contains values of each component at time stept but also

all values overHu, i.e., if µi j = {ua, ub, . . . }, then6

ua , [ua(t|t) ua(t + 1|t) . . . ua(t + Hu − 1|t)]T ,

ub , [ub(t|t) ub(t + 1|t) . . . ub(t + Hu − 1|t)]T , (17)
...

with ua(t+ i|t) denoting the value ofua at time stept+ i (over the
control horizon) givent. Additionally, the following definition
is introduced.

Definition 1 (Virtual demand). Consider two subsystems S1

and S2, which share a set of manipulated flowsµ12. According
to the notation employed in the paper, those flows come from S1

to S2. If the solution sequence of optimisation subrproblems —
defined by the pre-established hierarchical order — determines
thatµ12 is computed by the MPC controller of S1, then flows in
µ12 are considered as virtual demands in the controller related
to S2 since their value are now imposed in the same way as the
water demands.

According to [2], thepurehierarchical control scheme deter-
mines a sequence of information distribution among the subsys-
tems, where top-down communication is available from upper
to lower level of the hierarchy. Note that, despite the subsys-
tems coupling (given by the shared links), the main feature of

6With a slight abuse of the notation, the elements of vectoru are denoted
with the corresponding discrete-time dependence in order to differentiate the
vector from its components.
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Figure 5: Hierarchy of MPC controllersCi . Their solution sequence is top-
down

the pure hierarchical control approach relies on the unidirec-
tionality of the information flow between controllers.

Looking at Figure 5, where the directions of setsµi j are
graphically shown, it is possible to realise that two of those sets,
denoted byµ13 andµ16 (red dashed lines in the figure), break the
mentioned unidirectional flow between MPC controllers. This
fact implies that the standard hierarchical control schemefor
partitioned LSS cannot be straight applied. To solve this situa-
tion and design a DMPC strategy, a hierarchical-like DMPC ap-
proach proposed in [18] has been considered and conveniently
implemented over the partitioned system depicted in Figure4.
This strategy follows the hierarchical control philosophyand
the sequential way of solving the optimisation subproblemsof
the corresponding MPC controllers but also considering theap-
pearance of bidirectional information flows. For this purpose,
additional constraints and heuristics are taken into account in
order to cope with the feature of having the double direction
in the flow of information between some of the controllers. In
particular, Figure 5 shows the considered hierarchy for thecase
study of this paper, where controllers at the first level of hierar-
chy determine the values of variables shared with controllers in
lower levels. Notice that Figure 5 also shows why the pure hi-
erarchical control approach cannot be employed since the MPC
controller related to the subsystem 1 shares bidirectionalinfor-
mation with the controllers ofS2 andS3.

Therefore, the solution sequence of the described
hierarchical-like control problem for the complete Barcelona
DWN at each time stept ∈ Z≥1 is the following:

• C4 computes the control actions ofS4 and setsµ14 andµ34.

• In parallel,C2 computes the control actions ofS2 and the
setµ12.

• C1 computes the control actions ofS1 and setsµ31, µ51,
andµ61. Setsµ12, µ13, µ14, andµ16 are considered as sets
of virtual demandswithin the controllerC1.

• C5 computes the control actions ofS5 consideringµ51 as a
set of virtual demands.

• C3 computes the control actions ofS3 consideringµ31 and
µ34 as sets of virtual demands.C3 also computes the set

µ13 to be used as a set of virtual demands forC1 at time
stept + 1.

• C6 computes the control actions ofS6 consideringµ61 as a
set of virtual demands.C6 also computesµ16 to be used as
a set of virtual demands forC1 at time stept + 1.

Remark 5.2. Notice that in the solution sequence of the con-
sidered DMPC scheme, at the first time step (t= 1), the initial
values of the control actions belonging to setsµ13 andµ16 are
not available. Those values can be obtained by solving a con-
straint satisfaction problem (CSP) defined by the models and
constraints of subsystems S1, S3 and S6 (shaded blocks in Fig-
ure 5) through the algorithm proposed in [33]. The solution of
this CSP provides feasible control actions for setsµ13 andµ16,
which allows starting the solution sequence described above.
For subsequent time steps, values ofµ13 and µ16 take values
computed by C3 and C6, respectively, in the previous time step,
i.e., the elements belonging to those sets at time step t are now
assigned as (see(17))

u =



































u(t + 1|t − 1)
...

u(t + Hu − 1|t − 1)
u(t + Hu − 1|t − 1)



































.

5.2.2. Simulation Results
The results obtained by using this DMPC strategy are com-

pared with those obtained employing a centralised MPC ap-
proach. Two scenarios corresponding to different prioritisations
of the control objectives have been considered for the perfor-
mance comparison of the MPC strategies:

• Scenario 1:Ψ = (0.7, 0.2, 0.1),

• Scenario 2:Ψ = (0.6, 0.2, 0.2),

whereΨ = (ψe, ψx, ψ∆t) represents the 3-tuple of weights
associated to the weight matricesWe , ψeI , Wx , ψxI ,
W∆u , ψ∆uI at the normalised functions (13), (14), and (15),
respectively7. Notice that, given the employed normalisation of
the control objective terms in the cost function (16), the sum of
ψi , for i ∈ {e, x,∆u}, should be 1. The tuning scenarios are cho-
sen in a way that the highest priority objective is the economic
cost (see Section 4.3), which should be minimised while main-
taining a similar rate of the safety volume and control action
smoothness terms.

All results have been obtained considering real demands of
four days (with 1 hour sampling time), with initial volumes in
tanks set to 40% of their maximum volume,Hp = Hu = 24,
and the safety volume parameterβ set to 0.8. All simulations
have been performed in MATLABr 7.1 implementations run-
ning on an Intelr CoreTM2, 2.4 GHz machine with 4Gb RAM.

Table 4 summarises the obtained control results in terms of
performance (economical cost) and computational burden over

7Matrix I denotes the identity matrix of suitable dimensions.
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Table 4: Computation time and performance comparisons

Index
Scenario 1 Scenario 2

CMPC DMPC CMPC DMPC

Water Cost 138.37 189.45 137.05 188.81
Electric Cost 92.73 68.44 87.43 69.91
Total Cost 231.10 257.89 224.48 258.72
CPU time 1143 537 1127 560

four days. The indexes representing costs are given in economic
units (e.u.) instead of Euro due to confidentiality restrictions.
Computation times are given in seconds.

From Table 4, it can be noticed the increment of the total
costs of operation when using the DMPC strategy, what implies
a loss of performance of about 15%. This loss of performance is
obtained because the DMPC strategy does not take into account
in a proper way the water costs related to external water sources
since it is a global objective. On the other hand, DMPC con-
trollers are mainly focused on the reduction of pumping costs
(local objective) within each subsystem. By contrast, the in-
formation of water costs is properly managed for the CMPC
controller by optimising it but at the price ofmovingmore wa-
ter inside the network. This leads to an increment in the electric
costs (the water transportation cost) when CMPC controlleris
used. Therefore, despite the DMPC approach inevitably leads
to a loss of performance, the benefits in terms of time and com-
putational burden are significant enough, what makes it suit-
able for real-time implementation purposes. Notice that inthis
particular application, the CMPC could also satisfy the real-
time constraint since the control sampling time is 1 hour. Thus,
the main motivation for using DMPC in this application would
not be the improvement in computation but the scalability and
the potential adaptability easiness facing network changes that
could occur. In fact, according to discussions with the AG-
BAR company, the main reason for using a DMPC approach
in the case study of this paper, additionally to the easier main-
tenance of the (sub)system models, is that it allows replacing
the current legacy control in multiple steps, where the DMPC
is implemented on a selected network part only at each step.
This ability is important for practical application and mainte-
nance, which allows moving some part of the network to the
current legacy control when some malfunction/fault is detected
without stopping the supervisory MPC controller.

Regarding the closed-loop behaviour of the network, Figures
6 and 7 show the flow through a water supply valve and a the
volume of akeytank, respectively (see the highlighted elements
in Figure 3), for both predictive control strategies. Notice in
Figure 6 that the behaviour of the volume is qualitatively equiv-
alent for both strategies since the filling and emptying processes
of the associated tank follows the demand evolution. On the
other hand, notice in Figure 7 that the water inflow from this
source is greater when DMPC is implemented. As discussed
before, DMPC strategy makes that the water of each subsys-
tem is supplied by its own sources, reducing the water trans-
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Figure 6: Resultant volume related to akeytank within the DNW

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7

time (hours)

fl
o

w
 (

m
3
/s

)

 

 

CMPC

DMPC

Figure 7: Computed flow related to a supply water valve

portation within the network. Hence, this source is providing
almost all the water that this subsystem needs in contrast tothe
CMPC case, where the water was moved from other network
locations (due to its cheaper price). This fact explains whythe
DMPC strategy yields a suboptimal solution compared with the
CMPC counterpart. This degree of suboptimality is inherent
to the followed hierarchical approach since each controller is
mainly focused on optimising the control objectives related to
the subnetwork that is controlling. A further improvement of
the considered DMPC strategy would consist in adding some
improved coordination mechanism in the control objective of
each local MPC controller in order to enforce the fulfilment of
global control objectives (see, e.g., [34]). This improvement
will allow to take into account the economic costs in a global
way.

5.2.3. Relation between the System Decomposition and the
DMPC Performance

The relation between a given system decomposition obtained
when using Algorithm 1 and the performance of the employed
DMPC scheme is discussed in this section. Table 4 presents
performance indexes in terms of economic costs, what allows
comparing the results obtained with a CMPC and the used
DMPC controllers. This fact implies the evaluation of (13) with
the control inputs computed by the decentralised controllers.
Notice that, if a DMPC scheme is considered, the vector of in-
put variables is given by

u = [uINT uSHD]T ,
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whereuINT ∈ UINT denotes the vector of those control inputs that
belong to one and only one subsystemSi (for i ∈ {1, . . . , k}),
and uSHD ∈ USHD denotes the vector of shared control inputs
between subsystems. Moreover,U = UINT ∪ USHD. Hence,
since the optimisation variables correspond to the system con-
trol inputs, any of the performance index described in Section
4.3 —such as the economic cost (13)— can be written without
lost of generality as8

f (u) = l1(uINT) + l2(uSHD), (18)

wherel1 : UINT 7→ U and l2 : USHD 7→ U denote the corre-
sponding mapping functions according to each particular case.
Notice the straight relation between the size of the vector of
shared controlsuSHD and the partitioning indexε. This latter
is associated to the cut size of the entire system graph what,
in turn, measures the number of interconnections (shared con-
trols) between subsystems. Also notice that the suboptimalper-
formance degree of the considered DMPC strategy is mainly
related to the second term of (18), i.e., to the number of shared
control inputs. The influence of this term decreases asε tends
to zero. At this point, two cases can be stated:

• The caseε = 0 andk = 1 corresponds to a CMPC strategy
with l2(uSHD) = 0.

• The caseε = 0 andk > 1 implies that the resultant sub-
systems are decoupled since they do not share any control
input. Therefore, the performance of the DMPC is optimal
sincel2(uSHD) = 0 (see [10, 35]).

This fact justifies to look for a system decomposition with a
smallε (see Remark 5.1), i.e., with less shared links (control in-
puts) between its subsystems since it implies a less suboptimal
performance of the considered DMPC strategy.

6. Conclusions

This paper has proposed a graph-theory-based algorithm for
the automatic partitioning of large-scale systems into subsys-
tems intended to be applied along with a decentralised model
predictive control strategy. The algorithm transforms thedy-
namical model of the given system into a graph representation.
Once the equivalent graph has been obtained, the problem of
graph partitioning is then solved. The resultant partitions are
composed of a set of non-overlapping subgraphs such that their
sizes, in terms of number of vertices, are similar and the num-
ber of edges connecting them is minimal. To achieve this goal
the algorithm applied a set of procedures based on identifying
the highly-connected subgraphs with balanced number of inter-
nal and external connections. Some additional pre-filtering and
post-filtering routines are also needed to be included to reduce
the number of obtained subsystems. The performance of the
proposed decomposition approach has been assessed in a real
case study based on the Barcelona drinking water network. An

8The dependence oft is omitted for compactness.

study of the effect of auxiliary routines on the basic partition-
ing algorithm has also been included showing the benefits of
their use. Promising control results have been obtained using
a hierarchical-like DMPC approach, which makes use of this
partitioning. A comparison with a CMPC approach show that
the level of sub-optimality in economic costs is acceptablecon-
sidering the resultant reduction in computational burden.

As future research, further improvements of the proposed
partitioning algorithm, considering particular specifications im-
posed by the decentralised control strategies, should be added
as well as different ways of treating the sets of shared control ac-
tions between subsystems and weighting policies for their con-
sideration by the controllers. Moreover, the hierarchical-like
DMPC strategy considered in this paper, which addresses the
loops between hierarchical levels in a heuristic way, mightbe
further investigated in order to evaluate the introduced degree
of suboptimality as well as how feasibility and stability features
are preserved.
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