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Lock-in Time-of-Flight (ToF) Cameras: A Survey

Sergi Foix, Guillem Alenya and Carme Torras

Abstract—This paper reviews the state-of-the art in the field
of lock-in ToF cameras, their advantages, their limitatiors, the
existing calibration methods, and the way they are being usk
sometimes in combination with other sensors. Even though -
in ToF cameras provide neither higher resolution nor larger
ambiguity-free range compared to other range map estimatio
systems, advantages such as registered depth and intengitgta at
a high frame rate, compact design, low weight and reduced posv
consumption have motivated their increasing usage in sevar
research areas, such as computer graphics, machine visiomé
robotics.
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Index Terms—Lock-in, time-of-flight, calibration.

I. INTRODUCTION Fig. 1. Distance measurement using the phase offset

OF camera is a relatively new type of sensor that delivers

3-dimensional imaging at a high frame rate, simultg;yt aiso their current limitations and the research that is
neously providing intensity data and range information fqp progress. The survey is structured as follows. Section II

every pixel. Despite the number of pixels in the images i{Splains the underlying principle of lock-in ToF cameras.
still small (i.e 176<144 in Swissranger SR3000 and SR4008¢ction 11l discusses their advantages in comparison with

cameras, and 204204 in PMD CamCube camera) and noisgjterpative systems. Systematic and non-systematicsearer

in the depth values can not yet be completely removed afiggssified in Sec. IV, where some methods to compensate them
calibration, ToF imaging is rapidly showing a great pot@hti 3re als0 presented. Section V gives an overview of the cur-
in numerous scientific domains. rent intrinsic and extrinsic calibration methodologieseiul

~ Due to continuous progress in microelectronics, micro oOg:q. for sensor fusion. Section VI discusses the main ToF
tics and micro technology, the development of ToF camerggyantages that are being exploited in applications. Kinal

has been possible over the last decade. They outperform Ras{ciusions and some unresolved challenges are drawn in
technologies at the still difficult and slow task of depthggc .

intensity image matching. Further efforts are being delote
to the optimisation of the cameras themselves. More compact
and lighter cameras with better signal-to-noise ratio aiad
developed, and work continues in order to improve presapt-d Depth measurements are based on the well-known time-of-
products. New camera models have recently appeared, sucHigBt principle. Time-of-flight can be measured by usingeit

PMD CamCube and Swissranger 4K, and impressive resuw.élsed or continuous-wave (CW) modulation. Although there
are expected once researchers start to work extensiveﬂy vafe ToF cameras based on both technologies, this article wil
these new models. focus on those based on CW modulation, and more precisely

Depth-intensity pixel-associated images at a high fran®& those that use demodulation lock-in pixels [1], no matter
rate without need of mobile ComponentS’ combined Wit\Hhether the demodulation is dlgltal or analog. Lock-in ToF
other technical advantages such as robustness to illuiminatcameras are surveyed because they have been commercially
changes and low weight, make it foreseeable that ToF came®gilable for more than half a decade and have been exten-
will replace previous solutions, or alternatively compkerh Sively used in multiple applications [2], while applicat®
other technologies, in many areas of application. using pulsed-based ToF cameras are still scarce.

Thus, this paper tries to give a comprehensive overviewVWhereas sensors based on discrete pulsed modulation mea-
of the state-of-the-art for the off-the-shelf, most wideiyed sure the time of a light pulse trip to calculate depth, sesisor
ToF cameras, mainly those relying on demodulation lock-Rased on lock-in measure phase differences between emitted
pixels, describing not only their principles and advangageand received signals (see Fig. 1). A near-infrared lighR\I

via light-emitting diodes (LED), is emitted by the system

This work has been partially supported by the Spanish Minist Science  gnd then reflected back to the sensor. Many authors [9]-[12]
and Innovation under project DP12008-06022, the MIPRCYV <odider In-

genio 2010 project, and the EU PACO PLUS project FP6-20044g7657. Provide formulations for sinusoidal signals, although eoth
S. Foix and G. Alenya are supported by PhD and postdoctetiiwiships, periodic functions can be used. Every pixel on the sensor

respectively, from CSIC's JAE program. X _ samples the amount of light reflected by the scene four times
The authors are with the Institut de Robotica i Informatiodustrial, CSIC-

UPC, Llorens i Artigas 4-6, 08028 Barcelona, Spain (e-maifisix, galenya, aF equal 'ntervals for every periodnf, m1, m2 and ms N
torras@iri.upc.edu). Fig. 1), which allows for the parallel measurement of itsggha

Il. TOF CAMERA PRINCIPLE
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(a) SR3000, 176x144  (b) SR4000, 176x144 (c) 03D100, 64x48  (d) CanestaVisiol, 64x64  (e) 19k, 160x120  (f) CamCube 2.0, 204x204

Fig. 2. Current commercial lock-in ToF cameras. (a-b) Mesading AG® [3]. (c) Ifm electronié® [4]. (d) CanestaVisioR" [5]. (e-f) PMD[Vision]® [6].
Particularities of each solution include the use by Cansitan™ of square modulated waves [7], the use of a smart pixel - piotmixer device (PMD)
for simultaneous wave sensing and mixing by PMD[VisiBn]8], and the addition by Mesa Imaging A% of a coded binary sequence (CBS) modulation
for multi-camera operation on SR4000 new models.

4) No mobile parts needed

¢ = arctan (w) , (1) 5) Auto-illumination
Mo = m2 Traditionally, depth computation has been carried out by
its offset camera and laser-based systems (see [15] for a complete re-

mo + my1 + mo + ms

B = , (2) view on laser and other light emitting devices). The followi
) 4 subsections discuss their main disadvantages as compmared t
and amplitude ToF cameras.
A VIms —mi]? +[mo — mo]? 3
- 2 : (3) A Camera-based Systems

This phase demodulation tecnique is commonly known asln this group we can place methods such as depth-from-
“four-bucket” sampling and it permits to calculate easiyt focus/defocus/blur, depth-from-motion, depth-from{sha

target depth stereo and structured light triangulation methods [16].
D= Lﬁ, (4) Depth-from-focus, depth-from-motion and depth-fromsha
2m methods are based on focus variation, motion estimation,

and the intensity8), whose amplitude4) helps to predict the and shape change determination, respectively. Genettadly,
quality of the measurements. The modulation frequerfgy) ( produce ambiguities and singularities, and often requsiagu
of the emitted light determines thambiguity-free distance multiple images and solving a correspondence problem,twhic

range of the sensor c implies additional temporal, spatial and computationatso
L=—, (5) Conversely, depth information obtained with ToF cameras
2fm is generally more precise, and it is obtained using only one
wherec is the speed of light in vacuum. image.

Although current off-the-shelf lock-in ToF cameras are Triangulation methods can be divided into passive (stereo
based on analog phase demodulation, such as the ones sh@giBn) and active (such as projected structured light dsh
in Fig. 2, new prototypes based on digital phase demodufgable | shows the main differences between ToF cameras and
tion using single-photon synchronous detection (SPSD) af@mmon stereo and structured light methods.
emerging and claiming better performance [13], [14]. SPSD 1) Passive triangulation methods:
prototypes use single-photon avalanche diodes (SPADs) a®assive triangulation methods require two cameras sepa-
digital single-photon detectors instead of CCD/CMOS photeated by a baseline that determines a limited working depth
gates used by lock-in pixels. Due to its digital nature, ¢t@bi range (the higher the needed depth resolution, the larger th
analog accumulating diffusion used by previous approach&seded base). These algorithms have to solve the so-called
is simply replaced by a digital counter. Since SPSD doesrrespondence problem: determining what pairs of poimts i
not use any analog processing or analog-to-digital coio@rs the two images are projections of the same 3D point. This is
it is considered virtually noise-free at signal detectiorda a computationally expensive and complex problem, as stereo
demodulation. Digital and analog approaches share the saji#on systems are unable to match corresponding points in

mathematical representation shown previously. homogeneous regions [17]. In contrast, TOF cameras nbtural
From now on and for the sake of simplicity, we will referdeliver depth and simultaneous intensity data avoiding the
to lock-in ToF cameras as just ToF cameras. correspondence problem, and do not require a baseline in
order to operate. In addition, the ambiguity-free rangea¥ T
I1l. DEPTHCOMPUTATION AND TOF CAMERAS cameras (usually from 30cm to 7m) can easily be extended
Compared to other technologies to obtain scene depth, Té¥ varying the modulation frequentywhile that of stereo
cameras exhibit some interesting properties: systems is limited and usually requires changing the baseli

1) Registered dense depth and intensity images controlled camera motions, or zooming techniques.

2) Complete iImage acquisition at a hlgh frame rate In this case, however, some internal parameters would ehamgking
3) Small, low weight and compact design camera recalibration necessary.
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TABLE | Wiggling effect at multiple ITs
TOF CAMERA VS. TRIANGULATION METHODS. 0.15 ; : : :
0.1r
| Differences | ToF cameras | Stereo vision [ Structured light | »
Q
Correspondence No Yes Yes S 005
problem c
Extrinsic No, ‘»
calibration when used along Yes Yes :% or
B
- Auto Yes No Yes °
illumination 3 -0.05
Untextured Good Bad Good 5
surfaces performance performance performance
. Base-line Light-power -0.1r
Depth range 03+7.5m. dependent dependent
. High resolution. ‘ ‘ ‘ ‘
Image resolution| Up to 204x204 Camera dependent 1 2 3 4 5
Typically 25 Tps. Real distance in meters
Frame rate Up to 25 fps. Camera dependent

Fig. 3. Depth distortion offset (Wiggling effect). (Blue ) Measurements
captured with a SR3100 ToF camera at multiple integratioresi (2ms - 32
ms). (Red line) 6 degrees polynomial approximated function

2) Active triangulation methods:

Contrarily to the preceding methods, active triangulatio
ones require only one camera together with a structured li
emitter that projects one line or a complete set of patter
Disadvantages here, in comparison with ToF cameras, iacl
partial occlusions that involve missing depth measurement
need of _h|ghly powered and focused_ light, occas_lonal SCENNI \ D EpTH MEASUREMENT ERRORS ANDCOMPENSATION
of the light through the scene which results in low frame _ i
rates, and a very controlled light environment that leads to TOF cameras are evolving and a lot of work is devoted
a big restriction in domestic or outdoor robotics applicasi. [0 understanding the sources of errors and to minimizing
Recent approaches [18] solve the partial occlusions probléem [28]-[30], as well as to model their effect for camera
and the low frame rate by projecting the structured lighhglo simulation [31]. In this section we will present a classifica

the optical path of the camera, and using pattern defocus a8 characterisation of the different errors as well as the
depth estimation technique. currently available compensation methods and the quéngta

error reduction attained.
Depth measurements with ToF cameras face the appear-
B. Laser-based Systems ance of both systematic and non-systematic errors. Géyeral

) ) ) systematic errors can be managed by calibration and non-
Laser-based systems provide very precise sliced 3D m%é'stematic ones by filtering

surements. Albeit they have been successfully applied to
solve Simultaneous Localization and Mapping (SLAM) prob- )
lems [19], difficulties in collision avoidance have been re™ Systematic Errors
ported due to their 3D reduced field of view [11]. The common Five types of systematic errors have been identified:
solution has been mounting the sensor on a pan-and-tilt unitDepth distortion appears as a consequence of the fact that
This implies row by row sampling, and makes this solutiofhe emitted infrared light can not be generated in practge a
inappropriate for real-time, dynamic scenes, as oppos&dfo theoretically planned (generally sinusoidal) due to inlag
cameras. Although high depth range, accuracy and relibilities in the modulation process. This type of error produces
are advantageous in these systems, they are voluminowy, hean offset that depends only on the measured depth for each
increase the power consumption, and add additional movipgel. Usually, the error plotted against the distanceofod a
parts. ToF cameras, on the contrary, are compact and pertabinusoidal shage(see Fig. 3). This error is sometimes referred
they do not require the control of mechanical moving parttg aswiggling or circular error.
thus reducing power consumption, and they do not need rowThis type of error depends on the measured depth dis-
by row sampling, thus reducing image acquisition time. ~ tance, and it can be addressed by comparing camera depth
In sum, ToF cameras have evolved rapidly during th@easurements with a reference ground truth distance, or by
last two decades and, despite their low resolution and IdWeans of an optimisation process that models the error from
ambiguity-free range, they are already showing great pialen multiple relative measurements. While the first approach ha
in many applications where not very precise but fast 3the disadvantage of needing an additional sensor in order to
image range data acquisition is needed, such as obsta&g@uire the reference distance, i.e. high accuracy traekds

avoidance [11], [20] , pose estimation [21], [22] , coarse 3D
[ ] [ ] P [ ] [ ] 2This has been explained by means of perturbations on theumsehsignal

ObjECt recantrUCtion [23]’ [24] » human bOdy parts rergni. phase caused by wrapping of odd harmonics contained in thitedmeference
and tracking [25]-[27] among others (see [2] for a detailesgnal [32].

plication review). Although ToF cameras can not be con-
idered yet as a mature sensor compared to other camera-
sed measuring techniques and other depth sensors, a very
omising future can be foreseen.
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Fig. 4. Depth-colored 3D point cloud view of a white wall at@nstant distance of 1 meter. Each figure shows the X/Z viewffareht integration times
(a) 2ms (b) 4ms (c) 8ms. A systematic depth offset can be wbdatependent on the integration time. Amplitude-relatedre also appear on the boundary
edges in Fig. (a) and (b) due to low amplitudes.

in [33], [34] or a calibrated color camera as in [35]-[37]eth
second approach has the disadvantage of being only suitable
in a limited operating range [38], [39]. Applications in b 015 [
navigation, localization and mapping should be betteresuit o
by the first approach in order to ensure the most reliable
acquisition depth range, while for applications such agcibj J
modelling the second one will be more adequate. 001;
There are several approaches to encode the error data. A " o>
Look-up Table (LUT) has been proposed [33] that stores the -0.25 ]
depth errors depending on the measured depth distance using  °?
only one central pixel. The representation of depth errors
has a sinusoidal shape, so a B-Spline can be used to store
these values in a more compact form [34], [39]. Alternatiyel )
a polynomial function has been also used, although, on the [pixel] ° [pixel]
contrary of B-Splines, undesirable border effects can appe
outside the interpolation range. The degree of the polyabmfi9: 5. Depth-colored Fixed Pattern Noise (FPN) offset p&elp Figure
that models the depth error has to be chosen depending ont treacted from Kahimanet al. [33].
required measurement depth range. This detail has been left
undetermined in some works [38], [40]. In the general case . . .
a 6-degree function is adequate [41]. For small ranges ( 72There are two main stra}tegles FO s<_)lve this problem. The
meters) only a portion of the function has to be represent t t One 1S to choose one mtegratlon.tlme_ value, perform the
and a simple 3-degree polynomial function suffices [37]. Iﬁallbratlpn for the rest of the errors with th's value, andare
general this is a time-consuming process as several déﬂan%hange it [_34]’ [39], [41], [42]. This i possible when thega
have to be measured. of depths is small. ) ) ) )
In a different way, Lindneet al. [36] present a new demod- For the second one the idea is to repeatdiyah distortion

ulation algorithm applicable to the PMD camera. They use tifglibration process for different integration times [3@5],
fact that the modulated signal is composed of a sinusoidal wf43] and then apply the corresponding correction valuesigak
a rectangular reference signal. The combination of botrs dd8te account the current IT.
not provide more accurate depth images, but can be used t®uilt-in pixel-related errors arise from two main sources.
better determine thdepth distortion errors. On the one hand, errors due to different material propeiries
Integration-time-related error . Integration time (IT) can CMOS-gates. This produces a constant pixel-related distan
be selected by the user. It has been observed that for the s@ffiget, leading to different depths measured in two neiginbo
scene different IT cause different depth values in the entipixels corresponding to the same real depth. On the other
scene (see Fig. 4). The main reason for this effect is stillh@nd, there are latency-related offset errors due to thectiap
subject of investigation. charge time delay during the signal correlation processs Th
IT affects the range of depths that the camera is sensig@n be observed as a rotation of the image plane, i.e. a
with more precision. This has the effect of changing the frmperpendicular flat surface is viewed with a wrong orientatio
calibration solutions. A lot of works do not mention this soel Such errors are related to the position of the pixel in the
of error and usually it is not reported whether it is explicit sensor array. A common representation of this error is adrixe
taken into account or not. We note that some cameras havePattern Noise (FPN) table (see Fig. 5) that is obtained by
auto mode for the IT. Although it may seem as a good featuimmparing the computed depths with a reference distande [33
its use makes the calibration methods hard to apply. However, with this procedure the contribution arfplitude-

0.05
o
-0.05°

FPN offset [m]




IEEE SENSORS JOURNAL, VOL. 11, NO. 3, MARCH 2011 5

Depth-colored I I " measured distance
Image |=—median filtered datal

o
»

distance offset (nominal - measured) [m]
o
W
o

0% 10 20 30 40 50 60 70
time [min]

Fig. 7. Temperature-related error. Figure extracted frahlkannet al. [33].

Fig. 6. Depth-colored amplitude-related errors. Depthgenaf a flat wall at
0.43 meters. Depth overestimation can be observed due tdlllowination ) ) ) )
(borders of the image). Nevertheless, the preferred solution to this problem i sti

filtering.
The second error source, over-exposition, can be detected
related errors cannot be separated and FPN accounts for bdffthe raw time measures of the camera can be accessed [45].
error sources. This is not possible in Swissranger cameras. However, the ne

Neighbouring pixel errors are small, and can be consider8®4k camera provides a confidence value that can be used for
negligible. In that case, only the error from the rotation ahis purpose.
the image plane has to be modeled. A compact representatiohe third amplitude-related error cause, different object
is a function depending on the row and column position @éflectivities, is quite difficult to handle. A common solutiis
the pixel [39]. Sometimes the parameters of this functialm reproduce theéuilt-in pixel-related errors and Amplitude-
are specified inside the polynomials that define Dwpth related errors calibration methods for different reflective sur-
distorsion error and they are solved jointly in the samefaces [33] and store all the median values and use them as a
minimisation process [37], [38]. We note that the Swisseanglook-up table depending on intensity values. As the amghditu
camera manufacturer provides such a FPN matrix in tipdays an important role, the combination of the ToF camera
calibration file [3]. However, some authors prefer to rdwaie with a color camera has been also suggested [35] to better
for this error effects when using this camera [44]. measure intensity.

Amplitude-related errors occur due to low or overexposed In fact, depth and amplitude measurements are highly
reflected amplitudes. Depth accuracy is highly related ® tlkorrelated. Guomundssahal. [29] propose to improve depth
amount of incident light as it can be deduced from (1) anshes by simply subtracting the standardised amplitudeseve
(4). The higher the reflected amplitudes, the higher therdell/A), where standarised means taking away the mean and
accuracy. Low amplitude appears more often in the bordgividing by the standard deviation. Taking into account the
of the image as the emitted light power is lower than in theame correlation principle, Opriseseual. [42] provide two
center, leading to overestimating depth (see Fig. 6). @oilty methods to correct inaccuracies of depth and amplitude by
when the object is too close to the camera or integration tinaging information based on the other. This approach is con-
has been chosen too high, saturation can appear and dejpileed by Falieet al. [46], who provide a noise model for
measurements will not be valid. phenomena analysis [47] that predicts distance error atel pi

This type of error arises due to three main causes. Firgg a function of the amplitude at that pixel and the distance
systematic non-uniform NIR LEDs illumination causes deptitself.
misreadings at pixels distant from the image center. A sg¢con Temperature-related errors happen because internal cam-
cause is low illumination for scenes with objects at différe era temperature affects depth processing, explaining wimes
distances. And third, differences in object reflectivitezaise cameras include an internal fan. Depth values suffer from a
different depth measurements for pixels at the same canstdrift in the whole image until the temperature of the camera
distance. Non-specular materials retain energy and modi$ystabilised.
consequently the reflected light phase, depending on theilmpact of internal and external temperature on distance
refraction indices. measurements is studied in [33], [45] as a result of the high

Low amplitude errors can be avoided easily by filteringesponse of the semiconductor materials to changes in tempe
pixels with lower amplitude than a threshold [30], [38], this  ature. A SwissRanger camera SR-2 showed an overestimation
solution may discard a large region of the image. Additippal in measured distances when the sensor started working, and
the threshold may need to vary when moving. An earlier solwhen operating at higher temperatures (see Fig. 7). The next
tion was to increase the overall depth accuracy in scends wieneration of the camera tried to palliate this problem by
nearby and distant objects by combining depth measuremeintorporating a fan to stabilize the temperature. The gdner
from two range images with different exposure settings [73trategy to palliate temperature depth errors is to switch
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on the camera and let it take a stable working temperature
before calibrating it and using it. While some past appreach
recommended to wait around 4 minutes for the SR-3000 [48],
new studies with new camera models (SR-4000) recommend tc
wait up to 40 minutes [49]. New models did not get worse but
more accuratef1cm), and higher waiting time is considered
necessary to ensure stabilization.

Jump Edge Errors

B. Quantitative Error Analysis
. . . (a) 2D Gray scale range image (b) Rotated 3D point cloud
The preceding section has described how several authors

have applied different calibration methods in order to meduFig- 8- (a) 2D Gray scale range image of a mug. (b) Rotated 3t po
. cloud view. False depth readings appear at the edges befaegmound and
each systematic error. In order to better understand thﬂ’"an’]ooackground objects due to the integration of the reflect#t bf both surfaces
of improvement achieved in each work, Table Il summariz@sthe corresponding pixels.
the error reductions attained by the main compensation ap-
proaches found in literature. Although a comparison betwee
the different methods is a difficult task due to the variety of
cameras being used, some conclusions can be drawn. Special
attention has to be payed to the results obtained by Feichs
al. [39] and Kahlmannet al. [33], since they managed to . .
reduce the overall standard error to less than 3 mm. Themeaso ¢
why these two approaches achieve such a good performance )
is because they reduce the three main error sources: depth
distortion, built-in pixel and integration-time-relatestrors.
Rapp [45] quantified the proportion of reduction attribueio
each of these systematic errors. The temperature-related e
was not considered in his work and amplitude was just used
for pixel validation purposes. Three different ToF cameras
(Effector O3D, PMD 19k and SR-3000) were used in hi,slg 9
experiments, all of them leading to similar error reduction
results. Approximatelyl0 % of the overall error reduction
was found to be attributable to the compensation of depdind surpassing a certain accuracy threshold based on pixels
distortion, 33.3 % to the mitigation of the integration-time- variance [29], [45], [47].
related error, and onl%.6 % to correction of the built-in  Multiple light reception errors appear due to the inter-
pixel-related error. Further evidence for these results loa ference of multiple light reflections captured at each senso
observed in Table Il, where the worst overall error reduci® pixel. These multiple light reflections depend on the lowlat
obtained by a method that does not treat the integratioa-timensor resolution and the geometric shape of the objedigin t
error, and deals only partially with the built-in pixel-a¢¢d scene.
error. Multiple light reception errors are mainly due to the pres-
ence of surface edges (jump edges) and object concavigies (s
Fig. 8 and Fig. 9, respectively). On the one hand, jump
edge errors are generally removed by comparing the angle of

Four non-systematic errors can also be identified in deptitidence of neighboring pixels [28], [38], [50]. On the eth
measurements with ToF cameras, the occurrence of the lashd, it is still an open question how to deal with multiple
three being unpredictable. reflections originated by concavities [29].

Signal-to-noise ratio distortion appears in scenes not uni- Light scattering effect arises due to multiple light reflex-
formly illuminated. Low illuminated areas are more suséeptions between the camera lens and its sensor (see Fig. 18). Thi
ble to noise than high illuminated ones. This type of error isffect produces a depth underestimation over the affedted p
highly dependent on the amplitude, the IT parametrisatiwh aels, because of the energy gain produced by its neighbouring
the depth uniformity of the scene. Non-uniform depth over ttpixel reflections [50]. Errors due to light scattering ardyon
scene can lead to low-amplitude areas (far objects) that witlevant when nearby objects are present in the scene. The
be highly affected by noise. closer an object, the higher the interference [51].

Signal-to-noise ratio can be improved by several means.Light scattering effects have been minimised following two
Low-amplitude filtering can be easily used and corrupteapproaches. Firstly, [53] suggested selecting an optimanh |
readings can be simply removed [40] or a more sophisticatedler to minimise saturation problems and remove scagerin
procedure can actively decide the optimal IT depending @affected pixels using a filter based on the combination of
the desired areas [38]. Other approaches try to minimiaeplitude and intensity values. And secondly, a compemisati
noise effects by computing the average of those readingethod based on blind deconvolution was proposed based on

Multiple light reception due to concavities in theese.

C. Non-systematic Errors
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TABLE Il
ERROR REDUCTIONS ATTAINED BY DIFFERENT COMPENSATION APPRGPHES FROM LITERATURE

Article Camera Compensation method used Overall remaining error
Depth Distortion | Amplitude | Built-in pixel | Integration Time Mean | Std. Dev.

Fuchset al. [39] 03D100 B-Splines/multiple range amplitude§ Pan and tilt coef. | Unique IT/range| +1.2 mm. +5.7 mm.
Kahlmannet al. [33] SR-2 Look-up table - Fixed pattern noise] Look-up table +1.0 mm. +10.0 mm.
Lidner et al. [34] PMD (64x48) B-Spline - Fixed pattern noisel  Constant IT +10.0 mm. +3.0 mm.
Radmeret al. [43] PMD B-Spline Look-up table - Look-up table | £+10.0 mm. +25.0 mm.
Kim et al. [41] SR3000 6-degree polynomiall Radial pattern - Unique IT/range| +13.6 mm. +8.8 mm.
Schiller et al. [37] PMD (64x48) | 3-degree polynomial - Pan and tilt coef. - +50.0 mm. | £100.0 mm.

types of artifacts depending on whether their appearance is
due to lateral or axial motion. In [54] a combination of a
conventional 2D image sensor and a PMD camera is used
in order to detect lateral motion artifacts by means of a
classical 2D image edge detector. Instead of discarding the
corrupted data, the authors present two possible correctio
approaches. On the one hand, an average of positionally
weighted neighbouring pixels is recommended, and on the
other hand, after a phase sampling analysis of images, Zphas
depth computation can be used instead of the common 4 phase
algorithm. Another approach, this time for solving bottetat

and axial motion blurring consecutively, is presented i&][5

Fig. 10. Light scattering. Figure extracted from Mure-Disbd. and Higli, | ateral motion artifacts are identified first, by estimatoygic

H. [52) flow from some pre-processed phase-sampled images, and
afterwards, axial motion artifacts are removed using bath a
axial motion estimation approach and a theoretical model fo
axial motion deviation errors.

Lens Imager

Object 3

Object 2

Er(2) {i)

V. INTRINSIC AND EXTRINSIC CALIBRATION

While the error compensation procedures described in the
preceding section are specific of ToF cameras (with the ex-
ception of those dealing with motion blurring), the caliiwa
techniques explained next are mostly similar to those used
for traditional cameras that provide depth through stereo o
structured light.

A. Intrinsic
(a) Depth colored point cloud of a statip) Depth colored point cloud of a hand

hand moving to the left 3D data are not delivered in the same manner by all different
Fig. 11. Motion blurring appears due to a quick movement ef tamera camera mOdels’ l.e. SR3 dgllvers cartesian 3D pOIntS,. Whlle
or the objects in the scene during the integration time. fiececan be seen PMD delivers the absolute distance to the center of prajacti
by comparing subfigures (a) and (b). of the optical system. The pinhole model and the intrinsic
calibration parameters [40], [45] are needed to computecar
sian 3D points from depth points. This is mandatory for PMD
a mathematical model [52]. Because empiric parametrisatigameras. For SwissRanger cameras, some authors recompute
was still needed, further research must be carried out depth maps with the obtained focal depth to improve depth
optimally mitigate its effect. Instead of trying to detectda precision. As shown below, intrinsic parameters are alséulis
decrease the scattering effect, some researchers poittiaut when ToF camera images have to be combined with other
new sensor materials with lower reflectivity will arise ineth sensors.
future that will make scattering negligible [50]. Intrinsic camera parameters have often been obtained by
Motion blurring , present when traditional cameras are usegpplying classical calibration procedures based on iitiens
in dynamic environments, appears also with ToF cameras. Thhages and calibration patterns [34], [38], [56]. Alteialy,
is due to the physical motion of the objects or the cametging an array of infrared LEDs has been also proposed to
during the integration time used for sampling (see Fig. 11)improve the localization of the calibration pattern [33Jow#
Motion blurring errors can be classified in two differenever, the characteristic low resolution of these cameradsle
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to a poor localization of the calibration pattern chardstis Multiple ToF cameras can be used to observe the same

and obtained calibration parameters are usually erroneousscene. Different modulation frequencies for each ToF cam-
In sum, intrinsic TOF camera calibration has to be improvegfa should be used to avoid interference problems between

by using also the depth information provided by the cametiaem [41]. Obviously, the resulting images can be also regis

[40], and it is usually included in the extrinsic calibratio tered with color cameras.

methods explained below.

VI. EXPLOITATION OF TOF CAMERA ADVANTAGES

B. Extrinsic The distinctive characteristics of ToF cameras have proved

o ] to provide important advantages in several fields. After re-
The extrinsic parameters encode the coordinate systging their main applications to date, fully discussed in

transformation from 3D world coordinates to 3D camergyy e a1 [2], our conclusion is that the most exploited feature
coordinates. They are useful in two scenarios: first V\(henozfx ToF cameras is their capability of delivering complete
ToF camera has to be referencgd to an external deV|ce,_ L€ene depth maps at high frame rate without the need of
a robot arm; second, when ToF images have to be combingding parts. Moreover, foreground/background segmiemtat
with other Sensor datg. o methods based on depth information are quite straightiatwa
For the first scenario, let us imagine a camera mounted g8 ToF images are used in many applications requiring them.
the end-effector of a robotic arm. As will be presented ip good characteristic is that geometric invariants as well
Sec. VI, this is a common configuration e.g. for object modss metric constraints can be naturally used with ToF depth
elling [24]. The transformation between the robot coort#najmages. ToF cameras are also used satisfactorily in human
system and the camera coordinate system is the so-calleld hathyironments because they are eye-safe and permit avoiding
eye calibration. To compute it, the image measures have toﬁ}ﬁ/sical contact and dedicated markers or hardware.
used. Recently, a calibration algorithm that integrategtile ¢ depth-intensity image pair is also often used, expigiti
calibration and hand-eye calibration has been proposed [3§e fact that both images are delivered already registéred.
For the second scenario, lasers and one or various Cof@plications where the reduced resolution of a ToF camera
cameras are rigidly mounted with one or various ToF camergs. critical, it is complemented with other sensors, usually
Although extracting precise extrinsic parameters is hightolor cameras. Once the extrinsic parameters of the coatein
recommended, some simplifications can be performed whggnsformation between a color camera and a ToF camera have
sensors are mounted in particular configurations [57]5[5Yeen obtained, data fusion is possible. The easy part is to
and, depending on the application, an inaccurate caltwatifing the correspondences between them and put color to the
is sometimes sufficient [60]. Combination of a ToF camefgepth image, but more can be done. Due to the difference in
and a 2D laser scanner is common, and extrinsic parameigiSolution, between each pair of neighbouring points in the
can be obtained with a specialised pattern [61]. ToF image there are several points on the color image. As
One of the most used sensor systems is to combine Tafconsequence, these points can be interpolated to obtain a
cameras with color cameras. Traditionally the extrinsit-cadense depth map [56].
bration has been addressed by considering the intensityema some of the reviewed works do not apply any calibration
of the ToF camera and using classical stereo calibratioo+algnethod to rectify the depth images. We believe that this
rithms [56], [62]-[64]. Unfortunately, due to the low regtibn  explains several of the errors and inaccuracies reportsaotire
of the sensor, this approach suffers from the same problegygeriments, and that with proper calibration better tssul
as the ones presented for intrinsic calibration. can be obtained. We note that ToF technology is evolving
Hence the idea is to take advantage of depth informatiand depth correction methods for this type of sensor are stil
when calibrating, either coming from the ToF camera itsel§ubject to investigation.
when used together with a single intensity camera, or alsoAlbeit ToF cameras are increasingly being used in more
derived from triangulation when used in combination witlpplications everyday due to their distinctive featuresyjous
a stereo rig or structured light. The aim in the monoculaéchnologies such as stereo vision, structured light aarlid
setting is to backproject the points using the availabletidepsystems are still leading the 3D depth acquisition field.iVai

data to refine the calibration, while in the latter case, 3lbecause of their higher precision and higher acquisitiogea
3D correspondences can be used to estimate the calibration

between a ToF camera and a stereo rig. This has been applied
for a small depth range (only 400mm) [65].

However, stereo is not strictly required. Once a color camer Over the last years, the performance of ToF cameras has
has been calibrated with a known pattern, reconstruction iafproved significantly; errors have been minimised and &igh
the calibration poses is possible, and this can be usedrésolution and frame rates are being obtained. Although ToF
find better extrinsic parameters [37]. A software to calibracameras cannot yet attain the depth accuracy offered by othe
one or multiple color cameras with a TOF camera using thigpes of sensors such as laser scanners, structured light or
principle is available [66]. This algorithm also includes &tereo vision systems, plenty of research demonstratés tha
depth calibration model that represents the depth dewiat#o their distinctive features make this type of sensors a klgita
a polynomial function, similar to [38]. solution or alternative in many applications.

VII. CONCLUSIONS



IEEE SENSORS JOURNAL, VOL. 11, NO. 3, MARCH 2011

Advantages of this type of sensors are multiple, as demant] J. Weingarten, G. Gruener, and R. Siegwart, “A statthefart 3D

strated in the previous sections: they are compact andlperta

easing movement; they make data extraction simpler aﬁg]
quicker, reducing power consumption and computationatim

and they offer a combination of images that show great ( . : )
13] C. Niclass, C. Favi, T. Kluter, F. Monnier, and E. ChamhdSingle-

potential in the development of data feature extractiogisre

tration, reconstruction, planning and optimisation aitons,

among other positive characteristics. Thus, ToF cameasepr [14]
to be especially adequate for real-time applications and, i
particular, for automatic acquisition of 3D models requiri [15]

sensor movement and on-line mathematical calculation.

Finally, some broad challenges need to be mentioned. Fifdf]

resolution is still generally low for ToF cameras, despidms

efforts have already led to better resolutions as explained
above. Second, short integration times contribute to nbaai [17]

strong noise ratio, and high integration times can resygbiel

saturation [67]. Although some algorithms dealing withsthi

(18]

sensor for robot navigation,” iRroc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., vol. 3, Sendei, Sep. 2004, pp. 2155-2160.

A. Kolb, E. Barth, and R. Koch, “ToF-sensors: New dimiens for
realism and interactivity,” inProc. IEEE CVPR Wbrkshops, vol. 1-3,
Anchorage, June 2008, pp. 1518-1523.

photon synchronous detectionEEE J. Solid-Sate Circuits, vol. 44,
no. 7, pp. 1977-1989, 2009.

D. Stoppa, L. Pancheri, M. Scandiuzzo, L. Gonzo, G.-FBbtta, and
A. Simoni, “A CMOS 3-D imager based on single photon avalanch
diode,” IEEE Trans. Circuits Syst., vol. 54, no. 1, pp. 4-12, 2007.

F. Blais, “Review of 20 years of range sensor developrhenElectronic
Imag., vol. 13, no. 1, pp. 231-243, 2004.

E. Stoykova, A. Alatan, P. Benzie, N. Grammalidis, S.la4siotis, J. Os-
termann, S. Piekh, V. Sainov, C. Theobalt, T. Thevar, and dbuiis,
“3-D time-varying scene capture technologies: a survHyEE Trans.
Circuits Syst. Video Technal., vol. 17, no. 11, pp. 1568-1586, Nov. 2007.
R. Hartley and A. ZissermarMultiple View Geometry in Computer
Vision, 2nd ed. Cambridge: Cambridge University Press, 2004.

F. Moreno-Noguer, P. N. Belhumeur, and S. K. Nayar, f#erefocusing
of images and videosACM T. Graphics, vol. 26, no. 3, July 2007.

problem have already been proposed, more research is ned#8d. Andrade-Cetto and A. Sanfelinvironment Learning for Indoor

in this direction. Third, an important issue for ToF camegas

the wrapping effect, a consequence of the periodicity of the
modulated signal. Distances to objects that differ3i6hase [20]

are indistinguishable. Use of multiple modulated frequesic

can be a solution here, or lowering the modulation frequency

since it would increase the unambiguous metric range.

[21]

Other concerns include ambient light noise, motion artifac
and high-reflectivity surfaces in the scene. Ambient liglaym [22]
contain unwanted light of the same wavelength as that of

the ToF light source which may cause false measureme
in the sensor. Frequency-based filters can be used in or
to minimise this effect. Motion artifacts are errors caubgd
receiving light from different depths at the same time due
object motion in the scene. This type of errors are mos
observed around the edges of the moving object and can be

8
B

attenuated by either increasing the frame rate, or by ctorec (25

using motion estimation. Finally, errors due to the coexise
of low-reflective and high-reflective objects (mirrorindesdt)

[26]

can be addressed by combining multiple exposure settings.
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