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Abstract—The probabilistic belief networks that result from
standard feature-based simultaneous localization and map
building cannot be directly used to plan trajectories. The reason
is that they produce a sparse graph of landmark estimates
and their probabilistic relations, which is of little value to find
collision free paths for navigation. In contrast, we argue in this
paper that Pose SLAM graphs can be directly used as belief
roadmaps. We present a method that devises optimal navigation
strategies by searching for the path in the pose graph with
lowest accumulated robot pose uncertainty, independently of the
map reference frame. The method shows improved navigation
results when compared to shortest paths both over synthetic
data and real datasets.

I. INTRODUCTION

Aside from applications such as the reconstruction of

archaeological sites [1] or the inspection of dangerous ar-

eas [2], the final objective for an autonomous robot is not to

build a map of the environment, but to use this map as a pre-

requisite for navigation, i.e., to reach distant locations in the

environment efficiently and safely. In recent years, we have

witnessed an amazing advance in the field of simultaneous

localization and map building (SLAM) and state of the

art approaches can now manage thousands of features [3].

For efficiency reasons, most SLAM algorithms represent the

environment using a sparse set of features. Unfortunately,

this representation can not be directly used for collision-

free path planning since it does not provide much informa-

tion about which routes in the map have been previously

traversed safely, or about the nature of the obstacles they

represent. Those sparse models could be somehow enriched

with obstacle or traversability-related information [4], but at

the expense of significant increased complexity.

The problem of finding adequate trajectories to reach

distant locations is addressed in the motion planning liter-

ature [5]. The most successful path planning methods are

those based on randomized sampling such as the Probabilis-

tic Roadmaps or the Rapidly-exploring Random Trees in

which samples are stochastically drawn in the configuration

space and, if possible, neighboring collision-free samples

are connected via collision-free paths forming a roadmap.

This roadmap is later used to connect any two given con-

figurations. In these approaches, all collision free paths are

considered valid and, thus, the focus is to determine the

shortest path between the given start and goal configurations.
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Fig. 1. Path planning using the map generated by Pose SLAM. (a)
The Pose SLAM graph. The red dots and lines represent the estimated
trajectory, and the green lines indicate loop closure constraints established
by registering sensor readings at different poses. (b) A plan in configuration
space would produce the shortest path to the goal. At one point during path
execution, sensor registration fails and the robot gets lost. (c) A plan in
belief space produces the minimum uncertainty path to the goal. Plans with
low uncertainty have larger probability of success.

Originally, the research in motion planning assumed deter-

ministic setups where a perfect model of the environment was

available and where the configuration of the robot was known

too. Many extensions have been introduced recently to deal

with different sources of uncertainty, either in the model of

the environment [6], in the robot configuration [7], or in the

effect of robot actions [8]. The extension that best matches

the stochastic nature of the SLAM problem is the Belief

Roadmap (BRM) [9]. In this approach, the edges defining the

roadmap include information about the uncertainty change

when traversing such edge. However, the main drawback of

the BRM approach is that it still assumes a known model

of the environment. In this paper, we aim to overcome this

limitation noting that the map generated by Pose SLAM [10]

(or in any other delayed-state SLAM algorithm [11, 12]) is

perfectly suited to be used as a belief roadmap.
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Fig. 2. Zoomed view of a region along the shortest path where the robot
gets lost. The bad localization on this path leads the robot to deviate from the
next way-point, producing failed sensor registration. The rectangles indicate
the areas where sensor registration is reliable. The blue lines and ellipses
represent the localization estimates.

Pose SLAM is the variant of SLAM where only the robot

trajectory is estimated and where landmarks are only used

to produce relative constraints between robot poses. Thus,

the map in Pose SLAM only contains the trajectory of the

robot. The poses stored in the map are, by construction,

feasible and obstacle-free since they were already traversed

by the robot when the map was originally built. Furthermore,

since the robot trajectories are usually human-driven, they

even satisfy mobility constraints not usually modeled in the

robot controller, such as the existence of restricted traversable

regions (grass or sidewalks), or the right of way along paths.

In this paper, we show that, using this map, we can plan in

the belief space to obtain paths to remote locations that take

into account the uncertainty along the path (see Fig. 1). The

main motivation behind our method is that, in Pose SLAM,

poses with large uncertainty estimates lead to less reliable

sensor registration. Therefore, a plan to navigate through

these areas would suggest higher risk of becoming lost during

path execution (see Fig. 2).

From the point of view of SLAM, this paper constitutes a

step forward to actually use the output of the mapping pro-

cess for path planning. Other approaches that attempt to use

SLAM for path planning either ignore the uncertainty in the

robot pose [13, 14] or in the map [15] whereas our approach

takes both of them into account. From the point of view

of motion planning, this paper contributes with a method

to generate belief roadmaps without resorting to stochastic

sampling on a pre-defined model of the environment.

The rest of the paper is devoted to detail the extension

of Pose SLAM to perform path planning. In Section II we

summarize Pose SLAM and reinterpret its map as a set of

samples in the belief space, and in Section III we describe

how to plan using a roadmap defined on these samples.

In Section IV, this new planning approach is tested with

simulated and real data sets and, finally, Section V gives

some concluding remarks.

II. ENVIRONMENT SAMPLING WITH POSE SLAM

Pose SLAM produces a directed graph in which the

nodes are poses or way-points, and the edges are established

through odometry or sensor registration of the environment.

Assuming Gaussian distributions, a probabilistic estimate of

the poses in the nodes, x = {x1, . . . , xk}, is maintained

with a canonical parametrization p(x) = N−1(η,Λ), using
an information filter, with information vector η = Λµ,

and information matrix Λ = Σ
−1. This parametrization,

compared to the traditional Kalman form (mean µ and

covarianceΣ) has the advantage of being exactly sparse [11].

In Pose SLAM, state transitions result from the composi-

tion of a motion command uk to the previous pose,

xk = f(xk−1, uk) = xk−1 ⊕ uk.

Augmenting the state in information form introduces

shared information only between the new robot pose xk and

the previous one xk−1, resulting in an information matrix

with a tridiagonal block structure. Assuming the state mean

to be available, this operation can be performed in constant

time.

Registration of sensory data also introduces shared in-

formation, but now between non-consecutive poses. These

relative constrains can also be modeled with a compounded

operation

zki = h(xk, xi) = ⊖xk ⊕ xi,

where h(xk, xi) gives the relative displacement from xk to

xi in the frame of reference of xk. When establishing such a

link, the update operation only modifies the diagonal blocks i

and k of the information matrix Λ and introduces new off-

diagonal blocks at locations ik, and ki. This operation is

also executed in constant time, assuming the state mean to

be available. These links enforce graph connectivity, or loop

closure in SLAM parlance, and revise the entire path state

estimate, reducing overall uncertainty. The result is that the

marginal uncertainty for each node in the graph results from

the fusion of the uncertainties for all possible paths from the

origin of the map to that node.

From the point of view of planning, it seems reasonable

to distribute poses uniformly in the space where the plan is

to be defined. In classical motion planning algorithms, the

plan is built in the configuration space, but when taking into

account uncertainty the plan is defined in the belief space.

During map building, the distance in the belief space

of one pose with respect to the poses already in the map

can be measured from the information carried by the links

established between those poses. If links are low informative

(i.e., if its information gain is below a threshold γ), there is

no need to include the new pose in the map since it is too

close to other poses in belief space.

Formally, the information gain of a link can be evaluated

as [10]

I =
1

2
ln

|S|

|Σy|
,



where Σy is the sensor registration error, S is the innovation

covariance

S = Σy + [Hi Hk]

[

Σii Σik

Σ
⊤

ik Σkk

]

[Hi Hk]
⊤,

Hi, Hk are the Jacobians of h with respect poses i and k

evaluated at the state means µi and µk, Σii is the marginal

covariance of pose i, andΣik is the cross correlation between

poses i and k.

One can say that in Pose SLAM, the sampling method-

ology is aware of both the motion and sensor models since

nodes are added to the graph as a function of the information

content in their connecting links.

The information content separating two nodes is only

lower bounded by γ, but there is no upper bound. Actually,

information content between neighbor nodes varies depend-

ing on the quality of sensor registration and on the density of

loop closures in that region. For this reason, different paths

from the given start configuration to the goal node will not

be uniformly distributed with respect to information content,

and the accumulated relative uncertainty will vary between

them.

III. PATH PLANNING IN POSE SLAM

During path planning we assume maximum likelihood

actions and measurements, which implies that the mean

estimate after a sequence of controls will lie at the mean

of a node in the Pose SLAM graph and that the observation

previously obtained at that position will be repeated. Given

the Pose SLAM graph, and a goal destination, the objective

of path planning is then to find an optimal collision-free path

in the graph from the current robot pose to the goal.

A. Increasing Graph Connectivity with Guaranteed Reach-

ability during Path Search

Note that only odometry-based links ensure the existence

of collision-free transitions between poses. However, the

graph with only odometry-based edges is sparse. Loosely

connected graphs are not best suited for path planning and we

need to increase the number of edges to allow the system to

jump from one exploration sequence to another in the quest

for an optimal path. Thus, beside odometry related poses,

we consider the possible transition to all neighboring nodes

during path planning.

Neighbor node search is computed by measuring the

distance between query nodes and their candidate neighbors.

The relative displacement, d, from the current robot pose

xk to any other previous pose in the trajectory xi can be

estimated as a Gaussian with parameters

µd = h(µk, µi),

Σd = [Hi Hk]

[

Σii Σik

Σ
⊤

ik Σkk

]

[Hi Hk]
⊤ .

Marginalizing the distribution of the displacement, d, for

each one of its dimensions, r, we get a one-dimensional

Gaussian distribution N (µr, σ
2
r) that allows to compute the

probability of pose xi being closer than vr to pose xk along

such dimension

pr =

∫

+vr

−vr

N (µr, σ
2
r) =

1

2

(

erf

(

vr − µr

σr

√
2

)

− erf

(−vr − µr

σr

√
2

))

.

If for all dimensions, pr is above a given threshold s, then

configuration xi is considered kinematically reachable from

the current configuration, xk.

In many cases there will not exist a collision free path

between neighboring poses. These cases, however, can be

easily detected during path execution, the poses be removed

from the list of neighbors, and a re-plan process be triggered.

One advantage of the method is that the original odometry-

based links present in the Pose SLAM map ensure the

existence of collision-free way-outs for every pose, thus

guaranteeing reachability.

B. Minimum Uncertainty along a Path

Given that candidate paths lie on top of the graph, we can

safely assume that, after path execution, sensor registration

will close a loop and the final robot uncertainty will be close

to the original marginal at that node. Thus, a cost function

that only evaluates the belief state at the goal is unsuitable.

We are interested instead in those paths that maintain the

robot well localized throughout the whole trajectory.

We now propose a cost function that considers cumulative

relative uncertainty during localization, independent of the

map reference frame. Finding trajectories that accumulate

the least uncertainty can be seen as searching for a path

of minimal mechanical work in an information surface [16,

17] over the space of robot poses. In this case, the cost of

traversing a link from node xi to node xj is proportional to

the conditional entropy at node j given full confidence about

node i, H(xj |xi), which for Gaussians is proportional to

H(xj |xi) ∝ |Σ̄jj − Σ̄jiΣ̄
−1

ii Σ̄ij |, (1)

where the marginals and cross-correlations are extracted

from Σ̄, the covariance of the compound localization es-

timate (xi, xj).
Given a discrete trajectory u1:T , we define its mechanical

work in the information surface as the sum of relative entropy

increments ∆Hi = H(xi+1|xi)−H(xi|xi−1) along the path

W (T ) =

T
∑

i=1

∆Hi ∀∆Hi > 0.

Thus, the minimal uncertainty path corresponds to the path

that accumulates the least positive variations of uncertainty.

Equation 1 is a measure of the robot’s ability to safely

track its position during path execution. To compute both

marginals and cross correlation terms in Eq. 1 we need

to track localization estimates of the previous and current

robot poses xi and xj . That is, we compute the compound

localization estimate (xi, xj) using the Extended Kalman

Filter (EKF), with the particularity that every EKF update

is given by sensor registration with the Pose SLAM graph

at node j, taking into account its marginal covariance Σjj .



POSESLAMPATHPLANNING(M ,g)
Inputs:

M : The map computed by Pose SLAM.
g: The goal pose.

Outputs:

p: Minimum uncertainty path to the goal pose.

1: m← NUMPOSES(M)
2: Q← {1, . . . ,m}
3: d[1, . . . ,m]←∞
4: v[1, . . . ,m]← 0
5: s← CURRENTPOSE(M)
6: d[s]← 0
7: H[s]← 0
8: Σ̄[s]← CURRENTMARGINALCOVARIANCE(M)
9: while g ∈ Q do

10: i← EXTRACTMIN(Q, d)
11: if i 6= g then

12: for all j ∈ (NEIGHBORS(M, i) ∩Q) do

13: Σ̄← GETPOSTERIOR(M, i, j, Σ̄[i])

14: H(j|i) = |Σ̄jj − Σ̄jiΣ̄
−1

ii Σ̄ij |
15: ∆H = H(j|i)−H[i]
16: if ∆H > 0 then

17: d′ = d[i] + ∆H
18: else

19: d′ = d[i]
20: end if

21: if d[j] < d′ then
22: d[j]← d′

23: v[j]← i
24: Σ̄[j]← Σ̄jj

25: H[j]← H(j|i)
26: end if

27: end for

28: end if

29: end while

30: return RECONSTRUCTPATH(v, g)

Algorithm 1: Path planning using the poses maintained in the Pose SLAM
map and a minimum uncertainty criteria to select the optimal path.

C. The Pose SLAM Path Planning Algorithm

The path planning method introduced in this paper is for-

mally described in Algorithm 1. This algorithm implements

a minimum uncertainty path search on the graph implicitly

defined by the neighboring relations between the poses stored

in the map built by Pose SLAM. The distance between

nodes is computed from relative entropy measures obtained

simulating maximum likelihood localization estimates. The

algorithm takes as inputs the Pose SLAM map M and the

goal pose, g, which is assumed in M . Should this not be

the case, the closest pose in the map to g (in configuration

space) is used as a goal. The robot initializes the set of

nodes not yet visited, Q, with all the nodes in the graph

(Lines 1-2) and establishes an initial cost for the path to

each node (Line 3) and a fake predecessor for each node

(Line 4). Then, the cost to reach the starting configuration is

set to zero (Lines 5-7), the marginal covariance at that node

is read from the map (Line 8), and we enter in a loop until

we reach the goal (Lines 9-29). At each iteration of the loop,

we extract the node i with minimum cost from Q (Line 10).

If this is not the goal, we perform breadth first search on the

neighbor nodes to i already in Q. The neighboring nodes

are determined using the procedure given in Section III-A

that takes into account the uncertainty in the pose estimates.

Line 15 computes the cost to reach each neighbor j from i
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Fig. 3. (a) Accumulated cost along the shortest (red) and minimum uncer-
tainty (blue) path in the simulated experiment. (b) Monte Carlo realization
with 100 runs of the simulated experiment. The minimum uncertainty path
guarantees path completion during localization. The red dots indicate points
where the robot gets lost due to a missed sensor registration.

using the path cost criterion described in Section III-B. If this

path is cheaper than the best known until this moment, the

cost to reach j is updated, we set i as the predecessor of j, we

update the marginal covariance for the best path to the node,

and we store the marginal entropy for this node (Lines 22-

25). When the goal is reached, the minimum uncertainty path

to the goal is reconstructed using the chains to predecessor

nodes stored in v (Line 30).

The asymptotic cost of the algorithm is O(e log2 n) with e

the number of edges in the graph and n the number of

nodes. This cost assumes that the nodes in Q are organized

into a heap where the extraction of the minimum element

is constant time and the update of the cost of an element is

logarithmic. Moreover, it also assumes that poses are orga-

nized into a tree so that neighboring poses can be determined

logarithmically. If the search is performed linearly the cost

increases to O(e n log n).

Note that, when planning in the belief space we need to

simulate registration with the map during localization, for

which marginals of the Pose SLAM covariance matrix are

needed (Line 13). The most efficient way to compute these

marginals is to invert the whole information matrix before

starting to plan. Despite its presumably large size, one can

efficiently invert it taking advantage of its sparsity using, for

instance, sparse supernodal Cholesky decomposition [18]. As

it will be shown in Section IV, the cost of searching for the

optimal path in the graph is small compared to the cost of

recovering the state marginals.

Finally, should a map change significantly during path

execution (i.e., a new highly informative loop closure is

found), replanning is enforced. Note that this is seldom

the case since the optimal path traverses already visited

regions in the environment as best localized as possible.

Moreover, re-traversing a path on an already optimized map

will seldom lead to map improvements as no new information

is introduced. The map can only be improved or extended

by joining different paths closing a loop or when exploring

new paths to cover a larger area. However, exploration is out

of the scope of the paper.
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Fig. 4. Path planning over the Intel dataset. (a) Pose SLAM map built with encoder odometry and laser scans of the Intel dataset. The blue arrow indicates
the final pose of the robot and the black ellipse the associated covariance at a 95% confidence level. (b) Planning in configuration space we obtain the
shortest path to the goal. (c) Planning in belief space we obtain the minimum uncertainty path to the goal.

IV. EXPERIMENTAL RESULTS

In order to evaluate the planning strategy presented in this

paper we show results on two cases. The first one is a simu-

lated environment used to illustrate the basic principles of the

paradigm. The second one is a test with a publicly available

dataset that shows its performance in real conditions.

In the first experiment, we simulate a robot moving over

a trajectory with several loops. In the simulation, the motion

of the robot is measured with an odometric sensor whose

error is 5% of the displacement in x and y, and 0.0175 rad
in orientation. A second sensor is able to establish a link

between any two poses closer than ±1.25m in x, ±0.75m
in y, and ±0.26 rad in orientation. This sensor is simulated

with noise covariance Σy = diag(0.2m, 0.2m, 0.009 rad)2.
Fig. 1(a) shows the final map as estimated by the Pose SLAM

algorithm. The shadowed area simulates harsher navigation

conditions with odometry and loop closure errors increased

by a factor of 8. This noisier area simulates a part of

the environment with less features and where constraints

between poses are harder to be established.

After building the map using Pose SLAM we planned the

path from the last robot pose to a particular goal selected

from the nodes in the map. Fig. 1(b) shows the trajectory to

the goal using a shortest path criterion, and Fig. 1(c) shows

the trajectory obtained when using the minimum uncertainty

criterion introduced in Section III-B.

Fig. 3(a) shows a plot of the accumulated cost along

the two trajectories. The accumulated uncertainty of the

shortest path is significantly larger than that of the minimum

uncertainty path. Therefore, following this second trajectory

there is increased guarantee that the robot will be better

localized all along the path and will less likely get into

trouble, for instance, of getting lost. This is verified in

Fig. 3(b) that shows a Monte Carlo realization of the this

experiment with 100 runs. Navigation through the shortest

path reached the goal only 45% of the times due to failed

sensor registration along the path, whereas navigating over

the minimum uncertainty path always reached the final

destination since the trajectory avoids the noisier area in the

environment.

To test the performance of the planning technique over real

data we used the data set collected at the Intel Research Lab

building (Seattle) [19]. The dataset includes 26915 odometry

readings and 13631 laser scans. The laser scans are used to

generate sensor-based odometry and to assert loop closures,

by aligning them using an ICP scan matching algorithm [20].

In this case, only links between poses closer than ±1m in x

and y, and ±0.35 rad in orientation were considered reliable.

These are also the thresholds used to determine neighboring

poses when planning. The robot odometry and the relative

motion computed from laser scan matches are modeled with

noise covariances Σu = diag(0.05m, 0.05m, 0.03 rad)2 and

Σy = diag(0.05m, 0.05m, 0.009 rad)2, respectively. Finally,
the covariance of the initial pose is set to Σ0 = diag(0.1m,

0.1m, 0.09 rad)2. Fig. 4(a) shows the trajectory estimated by

Pose SLAM together with the laser scans associated to each

of the stored poses in light gray. This map is the departing

point of the planning algorithm and the process starts from

the last robot pose. The goal is selected at the opposite

side of the building. Figures 4(b) and (c) show the shortest

and minimum uncertainty paths between the two poses. The

apparent overshoot of the shortest path trajectory at the goal

is due to the fact that the robot has to execute a 180 deg
turn at the end of the trajectory to align with the goal. This

rotation is only possible few meters away of the goal, in front

of a door where many samples with the robot at different

orientations accumulate.

Fig. 5(a) shows the accumulated cost along the two trajec-

tories. As in the simulated case, the accumulated uncertainty

of the shortest path along the trajectory is larger than that for

the minimum uncertainty trajectory. Therefore, following this

second trajectory the robot is better localized all along the

path. Figure 5(b-c) shows the execution time and memory

footprint for planning with different subsets of the Intel

map, with varying number of poses, using a non-optimized

Matlab code. It shows two different strategies for recovering

the marginals: recovering the whole Σ and recovering them

column-wise as needed during planning. The continuous line

in Fig. 5(b) shows the execution time for recovering the

marginals and the dashed line shows the execution time of the
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Fig. 5. (a) Accumulated cost along the shortest (red) and minimum uncertainty (blue) path in the Intel experiment. (b-c) Plots of execution time and
memory footprint when planning with different subsets of the Intel map and employing two different strategies for recovering the marginals. (b) Execution
time for recovering the marginals (continuous line) and for the whole planning algorithm (dashed line). (c) Memory footprint for recovering the marginals.

whole planning algorithm. The figure shows that recovering

the whole matrix is computationally more efficient at the

expense of increased memory space. On the contrary, on-

the-fly computation of column-wise elements of the matrix

results in repeated computations since these are not stored

during plan search. A strategy of compromise would be to

store the matrix columns computed during search. But, for

searches that need to explore the entire graph without any

pruning strategy, the space cost will be the same as that of

full matrix inversion. In any case, full matrix inversion can

be computed in reasonable time for sparse systems such as

ours. If memory space is a constraint, we suggest instead to

use approximation techniques to recover marginals, such as

for instance, Markov blankets [21].

V. CONCLUSION

This work constitutes a step towards an integrated frame-

work for exploration, mapping, and planning for autonomous

robots. We presented a planning method showing how the

poses of a Pose SLAM map can be readily used as nodes

of a belief roadmap and, thus, used for planning minimum

uncertainty routes. We also proposed a principled way to

evaluate the cost of a path taking into account the uncertainty

of traversing every edge. The final path obtained by the

planner is the safer among all the possible paths to the goal,

increasing the chances to reach it. Two advantages of the

proposed metric are that it is defined in the belief space and

that it encodes only the relative information between poses,

independently of the map reference frame. Lastly, one aspect

that is beyond the scope of this work is exploration. When

the goal pose is not included in the map, the robot must

autonomously explore the environment to find it. We leave

this problem for future work.
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