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Abstract: In this paper, two tuning strategies for a multi-objective predictive controller applied
to a drinking water network (DWN) are proposed. A control-oriented DWN model is briefly
reviewed, together with its management objectives. A comparison of methods to explore the
Pareto front of the multi-objective optimisation (MOO) problem behind the predictive controller
is presented with an effective normalisation method for the model predictive control (MPC)
objectives. The proposed tuning strategies, applied to a real-life case study, are compared.
Finally, simulation results show that the proposed MPC tuning strategies outperform the

baseline results.
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1. INTRODUCTION

The tuning task for model predictive control (MPC) laws
has been widely investigated (see Garriga and Soroush
(2010)), specially for industrial implementations of this
control strategy. In Wojsznis et al. (2003), a practical tun-
ing approach is presented, with some guidelines to adjust
the basic MPC parameters, giving special emphasis in the
modelling tasks. In Long and Gatzke (2005) and Gatzke
and Doyle IIT (2001), mixed-integer methods, stated in
Tyler and Morari (1999) (specifically propositional logic),
are used to discretise and prioritise control objectives in
an MPC strategy. One advantage of methods based on
propositional logic is that control objectives are explicitly
stated and prioritised, thus avoiding some uncertainties
associated with MPC controller tuning. In Kerrigan and
Maciejowski (2002), a class of objective functions, that can
be incorporated into a prioritised, multi-objective optimi-
sation problem, for which a solution can be obtained by
solving a sequence of single-objective, constrained, convex
programming problems is presented. The main disadvan-
tage of these methods is the computational cost to solve
the optimisation problems online.
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In the current paper, two methods for tuning an MPC
controller for a large-scale system, particularly a drinking
water network (DWN), are proposed. The first is based on
a histogram of the weight combinations, and the second
is based on a model between the average water demand
and a weight combination index. The MPC controller
referred in this work takes into account a forecast of
water demands that incorporates the hourly and daily
seasonalities. This forecast has been introduced into the
MPC prediction model in order to enrich the information
of the disturbances behaviour over the prediction horizon.

One of the main objectives of this work is to explore
the optimal, non-dominated solution space of the multi-
objective predictive control strategy applied to the DWN
system, i.e., the Pareto front of the problem, and choose
a solution in line with the management objectives. The
aim behind the Pareto front calculation is to find a direct
relation between the weights of the solution points and
the water demands —which are measured disturbances for
the control problem— in order to state an adaptive tuning
strategy for the online MPC implementation.

The two main contributions of this paper are the following.
First, it is highlighted that the Pareto front of the DWN
control problem is not static due to the disturbances
changing the control problem constantly. Hence, it is
necessary to adjust the controller continually. Second, it
is noted that the tuning of the controller is explicitly
related to the disturbances of the DWN problem, i.e.,
water demands.

The outline of this work is the following: in Section 2, the
DWN control problem is stated; in Section 3, methods to



calculate the Pareto front of a DWN predictive controller
are presented. In Section 4, two strategies to tune the
MPC weighting factors are proposed; later, in Section 5,
simulation results are presented and discussed. Finally, in
Section 6, comments and conclusions are provided.

2. DRINKING WATER NETWORK CONTROL
PROBLEM

The control-oriented modelling principles of DWNs have
been widely presented in the literature (see Brdys and
Ulanicki (1994)). In order to obtain the DWN control-
oriented model, the constitutive elements and basic re-
lationships are introduced in this section (see Ocampo-
Martinez et al. (2009)).

2.1 DWN Components and Control Variables

Water Storing Tanks. ~ Water tanks are modelled using a
mass balance expression related with the stored water vol-
ume, inflows and outflows. For the i-th tank, the discrete
time expression is

wilk+1) = 2i(k) + A (3 i (]) = D dourilk) ), (1)

where x;(k) is the volume of the i-th tank, at time k € Z,
in m?®; At is the sampling time in seconds; ¢;n, i(k) is the
inflow to the i-th tank at time k in m3/s; and qous, i (k) is
the outflow flow from the i-th tank at time k in m?/s.

Inflows are treated as manipulated variables. Outflows are
modelled as manipulated variables or measured distur-
bances (sector of consume).

The model of a tank includes the physical constraint
" < wi(k) < @ (2)

3

min are given in m3.

%

where z and x]"*
Valves and Pumps. In order to control the water flow,
two kind of actuators are considered: valves and pumps.
In order to control water flows, setpoints of the regulatory
flow control loops are taken as manipulated variables,
denoted as u. Both actuators have physical constraints,
which are expressed as

u" < (k) < (3)

max
K2

min
i

where u"" and u"*® are given in m?/s.

In terms of economic costs, it is more expensive to control
water flows with pumping stations than with valves.

Network Nodes. Nodes are points of the network where
water flows are merged or split. They are represented
as mass balance relations and are modelled as equality
constraints of inflows and outflows of the nodes in the
following way

> Gin,i(k) = dour,i(k). (4)

Sectors of Consume.  Sectors of consume represent the
water demand made by DWN users of a specific geograph-
ical area. These demands are modelled as known system
disturbances. In this application, a demand forecast mod-
ule is used together with the MPC controller.

2.2 DWN Linear Model

Considering the above expressions, a linear state-space
model for control purposes has been stated as follows

x(k +1) = Ax(k) + Bu(k) + B,d(k),
Bu(k) + Egd(k) = 0,

(5a)
(5b)

where x(k) € R™ is the state vector of water volumes
corresponding to the n tanks. All the states are supposed
to be measurable; u(k) € R™ is the vector of manipulated
flows through the m actuators; d(k) € R? is the vector of
demands acting as measured disturbances for the p sectors
of consume; A, B and B,, are state-space system matrices;
and F and E4 are matrices of suitable dimensions that
describe the mass balance relation at network nodes.

2.8 DWN Control Objectives

Water Production and Transport Cost.  Main economic
costs associated to drinking water production are due to
chemicals (used in water treatment), legal canons (taxes),
and electricity costs. The total cost associated to water
transportation is

fi(k) = (a1 + az(k))u(k)At, (6)
where u(k) is a vector of control actions at time k; oy is a
known vector related to economic costs of water treatment;
and az (k) is a known time-varying vector associated to the
economic cost of water flows related to pumping stations.
The time dependence is given by the electric pumping cost,
which varies along the time.

Safety Storage Term. The objective of this function is to
penalise quadratically the predicted volumes that go down
from a pre-established value. Hence, the decision vector
includes those penalisation variables (denoted as ¢), see
Adrian (2010) for further details.

The objective function has been defined as

fa(k) = e(k) Te(k), (7)
where (k) is the amount of soft constraint violation. € has
been defined as when there is no violation € = 0.

Smoothness Objective. 1t is desirable to avoid excessive
variations in the control actions, given the flow-based
nature of the system model. Pumping stations and valves
should operate smoothly avoiding big “steps” in the pres-
surised pipes. This quadratic term is expressed as

f3(k) = Au(k) " Au(k), (8)
where Au(k) is the vector of control signal variations,
defined as Au(k) = u(k) —u(k — 1).

2.4 Optimisation Problem Statement

The multi-objective optimisation (MOQO) problem behind
the MPC of the DWN is

MPC : ngn ’y1F1 (Z) + ’)/QFQ(Z) + ’YgFg(Z), (9&)
subject to

QZ <w, and (9b)

HZ =h, (9c)

where Z = [AU ¢]T is the vector of decision variables,

AU is the vector of control variations, Au, and ¢ is the



Table 1. Pareto Front Calculation Methods and MPC

MPC
Method ‘Weights Relation Pros Cons
Implicit Explicit
NNC v X - Front - Function
exploration normalisation
- CPU time
- Convexity of
subproblems
ENNC V4 VA - Front - CPU time
exploration
- Function - Convexity of
normalisation subproblems
ENNCP vV X - Front - CPU Time
exploration
- Function - Convexity of
normalisation subproblems
NWS v VA - CPU time - Front

- Preserve
convexity

exploration

vector of tank volume constraint violation, both of them
extended over the prediction horizon; Fy, Fs, and F3 are
the extension of objective functions (6), (7), and (8) for
the MPC formulation (see Maciejowski (2001)). Note that
F} is linear while Fy and F3 are quadratic functions; and
Y1, 72, and 3 are weighting factors of the optimisation
problem behind the MPC. These weighting factors are the
MPC tuning parameters studied in this paper.

Constraints (9b) and (9c) are an extension of the physical
limits and mass balances at network nodes expressed in
(2), (3), and (5b).

3. PARETO FRONT CALCULATION OF A MOO
PROBLEM

Efficient approaches to generate the Pareto front for multi-
objective optimal control problems have been recently
reported (see, e.g., Logist et al. (2009, 2010)).

In this section, four methods to calculate the Pareto
front of a MOO problem are compared. Three of them
are based on the normalised normal constraints (NNC)
idea presented in Messac et al. (2003). The fourth is
a normalised version of the well known weighted sum
method (see Ding et al. (2006), and Marler and Arora
(2010) for details).

Table 1 shows a comparison between the tested Pareto
front calculations methods. They are the NNC, the en-
hanced NNC (ENNC) and a variation of it using pseudo
anchor points (ENNCP), these two latter presented in San-
chis et al. (2008). Moreover, the normalised weighted sum
(NWS) method, that takes advantage of the normalisation
scheme proposed in the ENNCP, is also compared.

The NWS method has a direct relation between Pareto
front points and weighting factors. Recently, an explicit
relation between Pareto front points calculated with the
ENNC method and weighting factors have been stated (see
Logist and Van Impe (2010); Logist et al. (2011)).

3.1 Objective Function Normalisation

In the normalised design space, it is desired that the anchor
points, that correspond to the best possible values for
respective individual objectives (see Sanchis et al. (2008)),
have the following coordinates:

F =0 1 1 117,
F =1 0 1 117,
F" =1 11 10", (10)

where FZ*, i =1...q, are the normalised anchor points of
the g objective functions.

In general, when the MOO problem presents “disparate”
objectives scales, condition (10) will not always be fulfilled
and the normalised objective space will not be preserved.
For this reason, a solution with an exact linear transforma-
tion between the anchor points and the normalised ones is
proposed in the ENNCP method.

In order to normalise the MOO problem, the following
steps must be fulfilled:

(1) Calculate the difference matrix ¥
U =F* —[F* FY] (11)

axq?
where
e [** is a matrix with the ¢ pseudo anchor points,
defined as
Fr BN RN
EYN FY . FyY
P — 2 . 2 2 : (12)
NN
A N axa

e [ is the i-th value of the utopia point vector F**,
of dimension g x 1, which corresponds to the best
possible value for the i-th objective; and

e FN is the i-th value of the nadir point vector,
which corresponds to the worst possible value for
the i-th objective.

(2) Calculate the linear transformation matrix T

01...1
10...1
T=1|... .|¥} and (13)
11...0
(3) Calculate the normalised objective functions
F=T(F-F"), (14)
where F' is the unnormalised vector of objective

functions.

Remark 3.1. Condition (10) applied to the pseudo anchor
points, F** will always be fulfilled in spite of disparate
objectives scales.

Remark 3.2. Matrix T, calculated with pseudo anchor
points, will always be diagonal with elements

Viel...q (15)

i = oN _u
Fj — Fj
3.2 Normalised Weighted Sum

In the Normalised Weighted Sum (NWS) method, each
point is defined as

J =w/F, (16)
with the condition
q
j=1
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Fig. 1. Decision making strategy graphically explained.

where w;, denotes a vector of p weights, and F is the vector
of normalised functions calculated by using the approach
previously presented and w;(j), j € 1,...,q, is the j-th
element of the w; vector.

4. DECISION MAKING AND TUNING STRATEGIES
4.1 Deciston Making Based on a Management Point

Picking a desirable point out of the Pareto optimal solu-
tions involves a decision maker. The decision maker is a
person who has insights into the problem and who is able
to express preference relations between different solutions.
The task of the decision maker can be automated using a
decision making algorithm.

A decision making (DM) strategy, based on the minimum
distance to a point over the normalised design space, is
proposed. The main idea is to define this point, from
now on called the Management Point (MP), and calculate
the minimum Euclidean distance from the solutions of
the Pareto front and the MP. The selected solution is
calculated in the following way:

(18)

where 7' is the i-th point of the obtained Pareto front. An
example could be the point [0 0 0]T, supposed to yield
the best trade-off for equality among the objectives.

Xup = argmin||ji -MP||, i=1...7

In order to establish a prioritisation scheme, an MP
based on prioritisation percentages (PP) has been de-
fined as mathrmMP = [mpy mps ... mp,|', where
mp; is the i-th coordinate of the MP, defined as (100 —

ppi)Ffv /100; pp; is the priority percentage of the objective
function ¢ (100 is the maximum priority percentage), de-
fined by the user as mathrmPP = [pp1  pp2 PPql;

=N
and F'; is the ¢-th normalised nadir point.

In Fig. 1, a graphical explanation of the decision making
scheme is presented. The applied control action corre-
sponds to the solution point, which is the one that has
the minimum distance to the MP.

Remark 4.1. The introduced DM strategy was an a pos-
teriori articulation of preferences as a solution point is
selected after the calculation of Pareto points (see Marler
and Arora (2010)).

Remark 4.2. If this DM strategy is used in an on-line
implementation, the calculation time must be taken into
account because the computational cost of calculating the
Pareto front at each sampling time may be high.

4.2 Tuning Strategy

In this section two simple tuning strategies, derived from
the DM strategy, are presented.

The main idea is to avoid the calculation of the entire
Pareto front at each MPC iteration by creating a model
between the weight combination, used in the solution point

J", and an average of the sectors of demand, d.

In the following two subsections, the steps to calculate the
MPC weighting factors are described.

Histogram Based Weighting Factors Combination.

(1) Calculate the Pareto front of the problem using the
NWS method;

(2) Using the proposed DM strategy, relate the selected
solution points with its corresponding weighting com-
binations, that is, a column of matrix W, which
contains all the possible weighting combinations. The
columns of matrix W related with the solution points
must be stored in a vector of weighting combination
indices (w;q.); and

(3) Calculate the histogram of w;q, and select the most
used weighting combination.

This simple tuning strategy can be used as a starting point
for an empirical tuning of MPC weights.

Model Based Weighting Factors Combination.

(1) Steps (1) and (2) of the previous tuning strategy;
(2) Calculate a regression model of w;q, as a function of

the average of water demands (d); and
(3) Use the regression model from the previous step, from

NOW Wyreq(d) : R — Z, for the calculation of weighting
combinations in the online MPC application.

5. SIMULATION AND RESULTS

In this section, simulation results are presented. The
selected case study is the aggregate model of the Barcelona
DWN, see Toro (2010) for details. All the simulations
have been done over a time period of three days with a
prediction and control horizon of eight hours. The selected
sampling time is one hour.

Simulations have been done using the TOMLAB/CPLEX op-
timisation package for Matlab, and the TomSym modelling
tool (see Holmstrom et al. (2009)).

5.1 Pareto Front Generation

The interesting feature about obtaining the Pareto front
in an MPC problem is that, at each iteration, the front
changes as a function of the disturbances.

Figure 2 shows the obtained Pareto front for the 3-days
simulation considering the NWS approach presented in
Section 3.2. It can be seen that the obtained Pareto front
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is compatible with the proposed DM algorithm, because
all the Pareto points are positive. The explored space is
notably smaller than the one explored with methods based
on normal constraints (see Toro (2010) for further details).

5.2 Weighting Combinations Model

In this section, results from the method proposed in
Section 3.2 are presented. Figure 3 shows the temporal
responses of the weighting combination index, w;q,, and
the average demand, d. In Fig. 4, a linear regression
between the two variables is shown. The correlation index
of w;iq, and d is 0.83. Taking into account the results
and the correlation between the variables, a sufficiently
accurate linear regression model can be calculated.

5.8 Tuning Comparisons
Four tuning strategies have been compared for a predictive

control scheme over the aggregate model of the Barcelona
DWN. In the first place, the original MPC implementation,
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without normalisation, is simulated and is used as baseline
for comparison purposes. Then, an MPC implementation
with normalisation of the objective functions (using the
method discussed in Section 3.1), is compared. Next, the
histogram-based tuning strategy, and finally, the model-
based tuning scheme results are presented. The first two
MPC implementations have been tuned with equitable
weighting factors, such that, w =[1/3 1/3 1/3]".

In order to compare results obtained from the differ-
ent tuning strategies, three Key Performance Indicators
(KPIs) have been defined based on the DWN objective
functions. In this section, a brief description of the KPIs
is presented.

FEconomic KPI.  This performance indicator is related to
the water costs and has been defined based on the Water
Production and Transport Cost (6) as
At &
KPlg=— ];(al + az(k))u(k),
where N is the number of samples considered in the
evaluation.

(19)

Safety KPI.  This performance indicator is related to
volume-regulation strategy of the tanks. The main idea
is to evaluate the mean value of the soft constraint limit
violations . Therefore, the safety KPI has been defined as
1N

KPlLuage = 5 ; e(k),
where e(k) denotes the amount of the soft constraint
violation at time k.

(20)

Smoothness KPI.  This performance indicator is related
to the smoothness of control movements and is defined as
N

1
—_— Au(k))?
-1 kZ_z( u(k))”,
where Au(k) is the incremental control movement applied
at time k.

KPIn, = (21)

Remark 5.1. In all the presented KPIs, a reduction of their
values implies better results.



Table 2. Tuning Strategies Comparison

Tuning Strategy Economic KPI Safety KPI Smoothness KPI

Day 2 Day 3 Day 2 Day 3 Day 2 Day 3

Original MPC 34.4477  34.5007 3921.7 3912.3 0.0105 0.0103
Normalised MPC 34.5643 34.6338 3837.6 3838.3 0.0026 0.0025
Histogram-based Weighting  34.1424  34.2004 3324.7 3337.2 0.0017 0.0017
Model-based Weighting 34.1129  34.1618 3305.1 3307.7 0.0019 0.0019

Table 2 shows the obtained results for a three day simula-
tion, where only the key performance indicators of days
2 and 3 have been considered in order to avoid tran-
sient responses. Regarding the results, note that the two
proposed MPC tuning strategies outperform the equally
weighted MPCs in all the indicators. Moreover, the MPC
with adaptive weighting combinations has shown the low-
est KPIs. Note that the main improvements have been
reflected in the KPIs related to dynamical issues of the
system rather than in the economic aspects. This fact
is due to the absence of management criteria enough to
reflect real-system conditions.

6. CONCLUSIONS

Reviewing the results, the following observations can be
highlighted: the study of the methods based on the nor-
malised normal constraints idea has been useful to find an
effective and robust normalisation scheme for the objective
functions. The main advantages of the NWS are that the
MOO problem remains convex and, hence, the solver time
is smaller. In the first DM simulation, it can be seen
that the best result is the one obtained with the best
trade-off between the objectives (used as baseline for the
performance metrics). A better economic result can be
obtained but the smoothness is sacrificed. This is a typical
behaviour of multi-objective optimisation problems. The
histogram-based MPC tuning strategy has proved to work,
and it can be used without regrets as a starting point for
empirical tuning. The model-based MPC tuning strategy
shows the best results. The two presented MPC tuning
strategies can be classified as explicit, because they give
the weighting factors in an explicit way. It is important to
highlight that a compatible online Pareto front calculation,
like ENNCP or NWS, together with the DM algorithm
constitutes an implicit MPC tuning strategy, because an
MPC solution that goes in line with the management cri-
teria is selected at each sampling time, without an explicit
calculation of the MPC weighting factors.
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