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
Abstract: This paper presents a generic tool, named PLIO, that allows to implement the real-time 

operational control of water networks. Control strategies are generated using predictive optimal 

control techniques. This tool allows the flow management in a large water supply and distribution 

system including reservoirs, open-flow channels for water transport, water treatment plants, 

pressurized water pipe networks, tanks, flow/pressure control elements and a telemetry/telecontrol 

system. Predictive optimal control is used to generate flow control strategies from the sources to the 

consumer areas to meet future demands with appropriate pressure levels, optimizing operational 

goals such as network safety volumes and flow control stability. PLIO allows to build the network 

model graphically and then to automatically generate the model equations used by the predictive 

optimal controller. Additionally,  PLIO can work off-line (in simulation) and on-line (in real-time 

mode).  The case study of Santiago-Chile is presented to exemplify the control results obtained using 

PLIO off-line (in simulation).  
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1. INTRODUCTION 


Drinking water management in urban areas is a subject of increasing concern as cities grow. Limited water 

supplies, conservation and sustainability policies, as well as the infrastructure complexity for meeting consumer 

demands with appropriate flow pressure and quality levels make water management a challenging problem.  

Many modern water systems are operated through centralized or distributed telemetry and telecontrol systems. 

In most cases, network operation is carried out using empirical rules and ‘historic’ strategies, which were  result 

of years of operational experience and empirical results. While these may generally be adequate, the best 

operational policies may be very complex to determine in large-scale interconnected systems.  Thus, decision 

support systems for operational control, which are based on mathematical models of network operation and 

optimal control techniques, provide useful guidance for efficient management of water networks. Analysing the 

literature, optimal control based techniques have been shown to be very useful for strategy computation in 

drinking water management, at different levels, namely, as for the integrated water resources/watershed 

planning and management with medium or long-term horizons (e.g. Westphal, et al. 2003; Nitivattananon et al. 

1996;  Tu et al.  2005) and for water distribution network 24-hour operation and pump scheduling. (e.g. Brdys 

and Ulanicki 1994; Maksimovic et al. 2003; Cembrano et al. 1999; 2000; Butler and Memon, 2006; Jamielson 

et al. 2007, Shamir and Salomons, 2008). 

A review of existing software tools related to operational planning and control of water systems shows a few 

interesting contributions, such as: 

- SAPHIR, a decision-making support tool developed by CIRSEE and DERCETO AQUADAPT (Bunn and 

Wooley, 2001). This is a real-time pump scheduling software for a 24-hour horizon developed by Derceto 

Ltd (UK) and intended for energy minimization in pressurized pipe networks, based on dynamic 

programming and linear modelling.  

 
- SCA-Red, a software developed by the REDHISP group (Hydraulic Network and Pressure System Group), 

Polytechnic University of Valencia (Spain) (Bou et al., 2006), for pressurized networks, based on the use of 

EPANET hydraulic models and a the software, ENCOMS (Rao, 2005). This last is an optimization system 

for energy cost minimization, based on adaptive genetic algorithms and neural networks, with a 24 to 48-

hour horizon.  

 
- Other related tools, such as WEAP (USA) (Yates et al., 2005), WATHNET (Australia) (Kuzcera, 1997), 

AQUATOOL (Spain) (Andreu et al., 1996) and AQUARIUS (USA) (Díaz et al., 2000), are concerned with 

the problem of long-term planning of water resources in open channels at a watershed scale, and therefore 

do not address the operational 24-hour optimal control. 



     

The main contribution of this paper is to present a general-purpose decision support tool, named PLIO, that 

allows to apply and implement in real-time predictive optimal control techniques in large-scale water systems. 

An important feature of this tool as compared to the existing tools mentioned above is the application of a 

unified approach to the complete drinking water system including supplies, production, transport and 

distribution and, therefore pressurized and open-channel dynamics, simultaneously. The modelling and 

predictive control problem solution algorithm in PLIO are designed for real-time decision support, in connection 

with a supervisory control and data acquisition system. The hydraulic modelling relies on simple, but 

representative enough, dynamic equations whose parameters are recalibated on-line using recursive parameter 

estimation and  real data obtained from sensors in the network. Demand forecast models, based on time series 

analysis, are also dynamically updated. The real-time calibration using recursive parameter estimation methods 

contributes to dealing with hydraulic uncertainty. This modelling choice, as well as the optimization method 

selection allows PLIO to deal with very large scale systems. Another distinguishing feature in PLIO is its 

capability to accommodate complex operational goals.  PLIO tool has been developed in a project carried out 

cooperatively by the AGBAR Group (Aguas de Barcelona) at CLABSA, Barcelona, and  SAC (the Advanced 

Control Systems Group) at UPC (Universitat Politècnica de Catalunya), for  Aguas Andinas, the water supply 

and distribution company in Santiago-Chile.  

The structure of the paper is the following: In Section 2, the operational control of water networks is reviewed 

and PLIO tool is introduced. Section 3 presents the control oriented modelling approach used in PLIO for the 

different network elements as well as the methodology used for demand forecasting. Section 4 presents the 

implementation details of the predictive optimal strategy embedded in PLIO. Section 5 illustrates how this tool 

works through the application to the Santiago-Chile water network using several selected real scenarios using 

PLIO off-line (in simulation). Conclusions and on-going work are outlined in Section 6. 

 

2. PLIO: A TOOL FOR OPERATIONAL CONTROL OF WATER NETWORKS  

 

2.1 Operational control of water network using model predictive control 

In most water networks, the operational control is managed by the operators from the telecontrol centre using a 

SCADA system. They are in charge of supervising the network status using the telemetry system and setting the 

set-points for the local controllers.  The main goal of the operational control of water networks is to meet the 

demands at consumer sites, but at the same with minimum costs of operation and guaranteeing pre-established 

volumes in reservoirs (to preserve the satisfaction of future demands) and stable operation of actuators (valves 

and pumps) and production plants. 



     

Model predictive control (MPC) (Camacho and Bordons, 2004; Maciejowski, 2002) provides suitable 

techniques to implement the operational control of water control since it allows to compute optimal control 

strategies ahead in time for all the flow and pressure control elements of a water system. Moreover, MPC allows 

to take into account physical and operational constraints, the multivariable and large-scale nature, demand 

forecasting requirement, and complex, multi-objective operational goals of water networks. The optimal 

strategies are computed by optimizing a mathematical function describing the operational goals in a given time 

horizon and using a representative model of the network dynamics, as well as demand forecasts. As discussed in 

(Marinaki and Papageorgiou, 2005) (Ocampo-Martínez, 2008) (Brdys et al., 2008), among others, MPC is very 

suitable to be used in the global control of networks related to the urban water cycle within a hierarchical control 

structure. In this global control structure, the MPC determines the references for the local controllers located on 

different elements of the network. The management level is used to provide MPC with the operational objective, 

which is reflected in the controller design as the performance indexes to be optimized.  

 

2.2 The PLIO tool 

PLIO is a graphical real-time decision support tool for integral operative planning of water systems covering 

supply, production, transport and distribution networks. PLIO has been developed using standard GUI 

(graphical user interface) techniques and object oriented programming using Visual Basic.NET (Microsoft, 

2002). PLIO uses a commercial solver, GAMS (GAMS, 2004), to determine the optimal solutions of the 

optimization problem associated to the predictive optimal control using nonlinear programming techniques. The 

tool has four modes of operation: edition, simulation, monitoring and reproducing modes (Fig. 1a). 
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Fig. 1.  (a) PLIO operation modes. (b) PLIO in edition mode 

 

Edition mode. This mode allows to graphically build and parameterize the network using the palette of building 

blocks, define the control objectives and generate the optimization model equations  (Fig. 1b). PLIO has 

different element libraries which allow the user to easily model the network. Elements include  reservoirs, tanks, 

water demands, sensors and actuators. The user may place these elements in the model using drag and drop and 

then connect them using pipes, aqueducts, etc. Each element in PLIO has a number of properties, which are 

grouped in trees. These identify the element, parameterize its characteristics, provide goals to the optimizer, 

define SCADA data links and database presence, etc. Once the network has been built, PLIO tests it for 

consistency and creates the set of optimization equations using the goals and constraints defined in each 

element.  

 

Simulation (or off-line) mode. This mode allows network optimization off-line using the model of the controller 

as the simulation model and the demands from the PLIO database corresponding to a recorded real scenario as 

inputs. PLIO generates the optimal controls which are applied to the same network model (as a substitute of the 

real network). Graphical evolution of the main network variables and controls can be represented and registered 

in PLIO database for further study. 



     

 

Monitoring (or on-line) mode. Network optimization in real time is carried out  in monitoring mode, using the 

demands and measurements from network real state coming from the telemetry system, provided by the 

SCADA system. PLIO generates the optimal controls, which are applied to the real network only after 

confirmation by an operator.  Graphical evolution of the main network variables and controls can be represented 

and registered in PLIO database for further study. 

 

 Reproduction  mode. This mode allows the reproduction of network state evolution under specified operation 

conditions and control set-points (optimal or other). PLIO provides a graphical representation of  the main 

variable evolution in a real or simulated scenario. 

 

3. NETWORK AND DEMAND MODELLING IN PLIO 

 

3.1 Network model in PLIO 

The control oriented model of a water network allows to predict the effect of control actions on all the network 

elements.  This model should be representative of the hydraulic dynamic response while at the same simple 

enough to allow for a large number of evaluations in a limited period of time, imposed by real-time operation. 

Following this spirit, the following subsection shows a summary of the modelling methodology used in PLIO.  

 

3.1.1 Network model and variables 

The dynamic model of the network may then be written, in discrete time, as: 

( 1) ( ( ), ( ), ( ), ( ))x k f x k u k d k k                                                            (1) 

This expression describes the effect on the network, at time k+1, produced by a certain control action u(k), at 

time k, when the network state was described by x(k). Function  f  represents the mass and energy balance in the 

water network and k denotes the instantaneous values at sampling time k,  d(k) is the demand prediction at time 

k and ( )k  are the parameters of the network at time k. 

 

3.1.2 Elementary models of the network elements 

 

Flow and pressure variables in a water network have hydraulic couplings. For example:  

a) Open channels: In these elements, upstream and downstream flow are coupled through hydraulic 

relationships. In particular, the effect of a flow change upstream produces an effect downstream with a 



     

certain time-delay and dynamics. For the purpose of on-line control a simpler but efficient representation 

consists of expressing the relationship between downstream and upstream flow as a finite-impulse-response 

(FIR) input-output model with a time delay: 

0 1( ) ( ) ( 1) ... ( )out in in s inq k a q k a q k a q k s                                                    (2) 

where: qin is the upstream flow value; qout is the downstream flow value; τ  is the average time-delay 

between the upstream and downstream points, which must be estimated using historic data; s the order of 

the dynamic model; a0, a1,…,as are parameters of the response dynamics, which must be estimated using 

data from telemetry. 

 

b) Pressurized pipes: Instantaneous flow in pipes is related to head-loss between the extremes and this 

relationship is usually modelled through well-known nonlinear approximations, such as the Hazen-Williams  

equations (see e.g. Jeppson, 1983, Johnson,1998) 

 

       ( ) ( ( ) ( ))l
ij ij i jq k c h k h k                                                                (3) 

where: qij is the flow through a pipe between nodes i and j; hi and hj are the head  values at nodes i and j 

respectively; cij is a parameter depending on pipe characteristics that should be calibrated using 

measurements from the telemetry system and  historic data; l is the exponent representing the nonlinearity 

of this relationship. 

 

c) Reservoirs: In the reservoirs, the following mass balance is established between the volume and 

input/output flows 

, ,( 1) ( ) ( ( ) ( ))i i i in i outV k V k t q k q k                                                    (4) 

where: Vi is the water volume stored in the reservoir i; qi,in and qi,out are respectively the input and output 

flows of  the reservoir i; t is the discretization step control sampling time.  

Taking into account the geometry of the reservoir, an experimental relation between the volume and the 

reservoir level/head can be established what allows to estimate the volumes (states). 

 

d) Treatment plants: Although sophisticated models exists for treatment plants, they are  fairly complex. Thus 

for operational control purposes a simple black-box input/output model is usually used (Brdys and Ulanicki 

1994). This can be done because the plant is separated from the rest of the distribution system by a contact 

tank and the treatment plant has much faster dynamics that the rest of the system. This leads to the 

following relation reflecting the two main phenomena (processing time and water loss): 



     

      , ,( ) ( )i out i i in iq k K q k                                                              (5) 

where: qi,in and qi,out  are respectively the input and output flows of the treatment plant i; Ki is the plant gain 

and (1-Ki ) measures the water loss; i is the time-delay between the input and output points associated to 

the treatment time, which must be estimated using measurements from the telemetry system and historic 

data. 

 

e) Network structure: The structure in a water network imposes flow and pressure relationships between 

different elements, e.g. mass conservation in nodes  

, ,( ) ( )in i in j
i j

q k q k                                                          (6) 

where qin,i(k) and qout,j(k) correspond to the i-th node inflows and the j-th node outflows, respectively, given 

in m3/s . 

f) Control elements:  Control elements such as valves or pumps impose relationships between the flows and 

pressures of their upstream and downstream conduits. PLIO provides the flow set-points for the control 

elements assuming that a local controller is already operating in the field. 

 

3.2 Model for predicting the water demand 

 

The demand forecasting algorithm used in PLIO consists of two levels. At the upper level, a time-series 

modelling  to represent the daily aggregate flow values. At the lower level, a set of different daily flow demand 

patterns according to the day type to cater for different consumption during the weekends and holidays periods. 

Every pattern consists of 24 hourly values for each daily pattern.   This algorithm runs in parallel with the MPC 

algorithm. The daily series of hourly flow predictions are computed as a product of the daily aggregate flow 

value and the appropriate hourly demand pattern (Quevedo, 2010). 

 

3.3 Model calibration 

Some of the functional elements in PLIO require a specific parameter calibration; namely:  open channels (see 

Eq. (2)), pressurized pipes (see Eq. (3)) and treatment plants (see Eq. (5)). This is carried out in two steps. 

Initially, an off-line calibration is performed with field data and historic records. Additionally, in order to reduce 

the modelling uncertainty, an on-line calibration procedure, based on the recursive least-squares estimation 

algorithm with forgetting factor (Ljung, 1999) is used to update the parameter calibration as new data become 

available.  

 



     

4. MPC CONTROL OF WATER SYSTEMS IN PLIO  

 

4.1 Operational goals and constraints 

 

The operation control goals that can be considered using PLIO are following: 

 Water production and transport cost reduction. The main economic costs associated to drinking water 

production (treatment) are due to: chemicals, legal canons and electricity costs. Delivering this drinking 

water to appropriate pressure levels through the water transport network involves important electricity 

costs in pumping stations. This control objective can be described by the expression 

1( ) ( ( )) ( ( ) ( ))J k W u k W k u k   
                                                

(7) 

where  corresponds to a known vector related to the economic costs of the water according to the 

selected source (treatment plant, well, etc.) and (k) is a vector of suitable dimensions associated to the 

economic cost of the flow through certain actuators (pumps only) and their control cost (pumping). 

Note the k-dependence of  since the pumping effort has different values according to the time of the 

day (electricity costs). Weight matrices W  and W  penalize the control objective related to 

economic costs in the optimization process.  

 

 Safety storage term. The satisfaction of water demands should be fulfilled at any time instant. This is 

guaranteed through the equality constraints of the water mass balances at demand sectors. However, 

some risk prevention mechanisms should be introduced in the tank management so that, additionally, 

the stored volume is preferably maintained over safety limit for eventual emergency needs and to 

guarantee future availability. A quadratic expression for this objective is used, as follows: 

 

2

0 ( )
( )

( ( ) ) ( ( ) ) ( )T
x

if x k
J k

x k W x k if x k



  

 
                                                   

(8) 

where  is the security volume to be considered for the control law computation and matrix Wx  

defines the weight of the objective in the cost function.  

 

 Set-point stability for equipment conservation: The operation of water treatment plants and main valves 

usually requires smooth flow set-point variations, to avoid overpressures which can cause structural 

damage and leaks. To obtain such smoothing effect, a third term in the objective function to penalize 

control signal variation between consecutive time intervals, i.e., this term is expressed as 



     

3( ) ( ) ( )T
uJ k u k W u k                                                        (9)  

 

 Pressure control: Controlling pressure is a good means to minimize leaks. To this aim, PLIO allows 

the user to define pressure set-points at any desired locations in the network to avoid overpressures by 

introducing an additional term in the objective function as follows: 

 

4 ( ) ( ( ) ) ( ( ) )T
pJ k u k W u k   

                                                
(10) 

where γ  is the desired pressure set-point at the considered control point and matrix pW  defines the 

weight of the objective in the cost function.   

 

Therefore, the performance function J(k), considering the aforementioned control objectives has the form 

1 1

1 2 3 4
0 1 0 1

( ) ( ) ( ) ( )
p p p pH H H H

k k k k

J J k J k J k J k
 

   

             

                             

(11) 

where Hp corresponds to the prediction horizon, respectively. In this equation, index k represents the current 

time instant while index i represents the time along the prediction and control horizons.  

 

Additionally, operational “good-practice” bounds on these variables may exist.  For example, for safety reasons, 

water tanks are usually operated between minimum and maximum volume values other than the physical limits.  

Similar operational bounds may apply in boreholes, reservoirs or river supply sources for water conservation or 

other policies. 

 

4.2 Control strategy computation 

The control strategy computation is based on the implementation on a receding horizon control strategy as in 

MPC using Algorithm 1 that poses and solves an optimal control problem at each time k (Camacho and 

Bordons, 2004).  According to this algorithm, at each time step, a control input sequence  of present and future 

values is computed  to optimize the performance function J , according to a prediction of the system dynamics 

over the horizon pH . This prediction is performed using demand forecasts and the network model. However, 

only the first control input of sequence  is actually applied to the system, until another sequence based on more 

recent data is computed. The same procedure is restarted at time k+1, using the new measurements obtained 

from sensors and the new model parameters obtained from the recursive parameter estimation algorithm that is 

working in parallel. Feedback from the telemetry system is used, and the optimal control strategy is re-computed 

at each time k. 



     

Algorithm 1. PLIO Control Algorithm 

1: k=0 
2: loop 

3: x( k 0) ¬ Estimate network state from measurements using an Kalman Filter (Simon, 2006). 

4: ( )k ¬ Estimate network parameters from measurements using the Recursive Least Squares (RLS) 

algorithm (Ljung, 1999) . 

5:   k p 1d d( k 0 ),d( k 1), ,d( k H )  ¬ Estimate demands from measurements and time series demand 

forecast model described in (Quevedo, 2010). 

6:  k p 1u u( k 0 ),u( k 1), ,u( k H )  ¬ Solve optimal control problem given by  

 
p p p p

k

H 1 H H 1 H

1 2 3 4
u

k 0 k 1 k 0 k 1

min J ( k ) J ( k ) J ( k ) J ( k )
 

   

     
 

subject to:  

p

p

x( k j 1) f ( x( k j ),u( k j ),d( k j ), ( k ))

u( k j ) j 0, ,H 1

x( k j ) j 1, ,H

  
   
  







 

where: 

 
 

m
min min

n
min min

u u u u

x x x x

   

   








 

 
and obtain 

   
   
   

p 1

p

p 1

H
k p 1j 0

H
k pj 1

H
k p 1j 0

u u( k j ) u( k 0 ),u( k 1), ,u( k H )

x x( k j ) x( k 1),x( k 2 ), ,x( k H )

d d( k j ) d( k 0 ),d( k 1), ,d( k H )











 

 

 

 

 

 

 

7: Apply control action  u k 0   

8: k=k+1 
9: end loop 
 

 

5. APPLICATION: THE SANTIAGO WATER NETWORK 

 

As application case study to show the performance of the PLIO tool results of its application off-line (in 

simulation) in several real scenarios are presented. 

 

5.1 Network description 

 

The Santiago water network supplies water to approximately 5 million consumers. The main supplies come 

from a number of mountain sources, such as natural or man-made reservoirs. Water from the mountain supplies 

is transported to 6 main treatment plants through a network of some 65 km of rivers and open channels. It takes 

an average of 12 hours for water to go from the sources to the plants. After treatment, water is delivered to the 

consumer areas by means of three parallel (open channel) aqueducts spanning a distance of approx. 20 km. 



     

Water is drawn from the aqueducts through valves or pumps into pressurized sections to meet consumer 

demands. Pressurized areas contain tanks to store water at appropriate pressure levels to meet demands. 

Alternative water sources, such as boreholes exist in most of the consumer areas and pressure control is 

achieved through the use of valves or booster pumps.  

 

The complete supply and transport network has been modelled using: 2 mountain reservoirs, 6 treatment plants, 

186 open channel sections, 281 pressure mains, 99 tanks, 88 valves and 39 pumping stations (Fig. 2). The 

network is controlled through a SCADA system with sampling periods of 1 hour.  For the predictive control 

scheme a prediction horizon of 24 h is chosen. Additionally, a historic record of the previous 24 h is used to 

account for delays in the open channel sections. This record is updated at each time interval. 

 

The network model and its predictive optimal control have been implemented using PLIO tool described in this 

paper. As discussed in Section 3.3, the parameters of the network element model are calibrated off-line using 

real data and the  obtained from the telemetry system and historic records. Figure 3 shows the results of the 

calibration of the model of the open-channel model (see Eq. (2)) corresponding to one reach of one of the main 

aquaducts: Acueducto Paralelo. From this figure it can be observed that the control oriented model approximates 

quite accurately the real flow.   

 

The predictive optimal control of the Santiago network has been solved successfully off-line using PLIO in a 

number of scenarios based on real operation situations and data. PLIO has recently been implemented on line in 

Santiago and its testing and validation phase is currently underway. At each 1-hour interval, state-variable 

values are read from the SCADA, the optimization problem for 24 hours is created and solved and control-

element set-points and results are stored in a database for validation, as compared to manual operation. 

 

5.2 Test scenarios 

 

Two scenarios were chosen to show the potential of the PLIO tool for computing optimal control strategies in 

complex operational situations. Each scenario contains 3-day data, gathered from real historic records of the 

Santiago network.  The first scenario (referred to as Scenario 0), was built using data of one standard operation 

work day, with no special incidences, reproduced for three consecutive days. The second scenario (named 

Scenario 1) reproduces a sudden drop in the demand, which occurs due to an unexpected rain in summer (people 

drinks less because temperature decreases).   

 



     

5.3 Results 

Figure 4 shows the hourly demand curve at one consumer point for three days corresponding to Scenario 0 

(thick line) and Scenario 1 (dash line). This last scenario presents a demand decrease on the second day and a 

return to a normal demand on the third day. 

 

As result of this drop in the demand, Figure 5 shows how the PLIO system generates a control strategy that  

produces a lower water flow in one of the aqueducts (dash line) during the lower-demand period, as compared to 

the normal-demand flow strategy (thick line).  

 

Moreover, there is an increase in storage volume in tanks. Figure 6 shows the volume at one important reservoir 

due to reduced demand (dash line)  compared to the normal situation (thick line). The dash line shows the 

“safety volume threshold”. Solutions producing much lower storage volumes are penalized in the optimization 

process.  

 

Finally, the control strategy corresponding to this scenario for a valve regulating the inlet to a consumer area is 

shown in Figure 7 (dash line). A reduced inlet, as compared to the normal situation may be observed (see Figure 

7 (thick line)) as a consequence of the demand reduction. 



     

 

Fig. 2 Santiago water network description using PLIO elements 
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Fig. 3. Modelled vs. real downstream flow at Acueducto Paralelo  
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Fig. 4. Demand curve at a Antonio Varas consumer area  
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Fig. 5. Flow at Tercer Acueducto 
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Fig. 6.  Volume at the Antonio Varas Reservoir 
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    Fig. 7. Flow at the Input Valve of Tocornal Reservoir 



     

 

 

6. CONCLUSIONS 

 

This paper has presented a generic tool, named PLIO, that allows to implement the real-time operational 

control of water networks using predictive optimal control techniques. This tool is able to manage  large 

water systems including reservoirs, open-flow channels for water transport, water treatment plants, 

pressurized water pipe networks, tanks, flow/pressure control elements and a telemetry/telecontrol system. 

Predictive optimal control is used to generate flow control strategies from the sources to the consumer areas 

to meet future demands with appropriate pressure levels, optimizing operational goals such as network 

safety volumes and flow control stability. PLIO allows to build the network model graphically and then to 

automatically generate the model equations used by the predictive optimal controller. Additionally,  PLIO 

can work off-line (in simulation) and on-line (in real-time mode).  The case study of Santiago-Chile is 

presented to exemplify the control results obtained using PLIO off-line (in simulation).  Now being starting 

to be applied in Murcia, Barcelona and Almería, all in Spain. 
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