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Abstract

In this paper, a hierarchical and decentralised model predictive control (DMPC) stra-
tegy for drinking water networks (DWN) is proposed. The DWN is partitioned in a set of
subnetworks using a partitioning algorithm that makes use of the topology of the network,
historic information about the actuator usage and heuristics. A suboptimal DMPC stra-
tegy was derived, which consists in a set of MPC controllers, whose prediction model is a
plant partition, where each element solves its control problem in a hierarchical order. A
comparative simulation study between centralised MPC (CMPC) and DMPC approaches
is developed using a case study, which consists in an aggregate version of the Barcelona
DWN. Results have shown the effectiveness of the proposed DMPC approach in terms of
the scalability of computations with an acceptable admissible loss of performance in all the
considered scenarios.

1 Introduction

Drinking water management in urban areas is a subject of increasing concern as cities grow.
Limited water supplies, conservation and sustainability policies, as well as the infrastructure
complexity for meeting consumer demands with appropriate flow pressure and quality levels
make water management a challenging problem. Many modern water systems are operated
through centralised telecontrol systems. In most cases, network operation is carried out using
heuristic rules and “historic” strategies, which were the product of years of operational experience
and empirical results. While these strategies may generally be adequate, the best operational
policies may be very complex to determine in large-scale interconnected networks. Thus, decision-
support systems for operational control, which are based on mathematical models of network
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operation and optimal control techniques, provide useful guidance for efficient management of
water networks.

Model-based Predictive Control (MPC) has been proved to be one of the most widely accepted
advanced control technique for the operational control of water systems [1, 2, 3]. The main
reason is that, once the network dynamical model is available, the MPC design just consists
in expressing the desired performance specifications through different control objectives and
constraints on system variables (e.g., minima/maxima of selected process variables and/or their
rates of change), which are necessary to ensure process safety and asset health. The rest of the
MPC design is automatic: the given model, constraints and weights define an optimal control
problem over a finite time horizon in the future (for this reason the approach is said predictive).
This is translated into an equivalent optimisation problem and solved on line to obtain an optimal
sequence of future control moves. Only the first of these moves is applied to the process, as at
the next time step a new optimal control problem is solved, to exploit the information coming
from fresh new measurements using in a receding horizon strategy. In this way, an open-loop
design methodology (i.e., optimal control) is transformed into a feedback one.

Nevertheless, the main hurdle for MPC control, as any other control technique, when applied
to large-scale networks in a centralized way, is the non-scalability. The reason is that a huge
control model is required along with the need of being rebuilt on every change in the system
configuration as, for example, when some part of the network should be stopped because of
maintenance actions or malfunctions. Subsequently, a model change would require re-tuning the
centralised controller. It is obvious that the cost of setting up and maintaining the monolithic
solution of the control problem is prohibitive. A way of circumventing these issues might be
by looking into decentralised MPC (DMPC) or distributed MPC techniques, where networked
local MPC controllers are in charge of controlling each one a part of the entire system. The
main difference between distributed and decentralized MPC is that the former uses negotiations
and recomputations of local control actions within the sampling period to increase the level of
cooperation, whereas the latter does not (at the benefit of computation time, but at the cost of
optimality), for further details see [4].

The success of centralised MPC (CMPC) drives now a new interest in this old area of dis-
tributed control, becoming DMPC one of the hottest topics in control during the early 21st

century. Thus, two research projects (HD-MPC and WIDE) are currently being carried out
in Europe, both focused on the development of decentralised and distributed MPC techniques.
Few works have been recently published in this area; see, e.g., [5, 6, 7, 8, 9, 10], among others.
However, there is a prior problem to be solved: the system decomposition into subsystems. The
importance of this issue has already been noticed in classic-control books addressing the decen-
tralised control of large-scale systems (LSS); see, e.g., [11] or [12]. These references propose some
approaches for dealing with the decomposition of dynamical networked systems under certain
assumptions, which are related to the level of coupling of the constitutive elements belonging to
the considered LSS.

The main contribution of this paper consists in presenting the application in simulation of
a hierachical-like DMPC approach to the Barcelona drinking water network (DWN). The aim
of DMPC is to reduce the computational burden and increase scalability and modularity with
respect to the centralised counterpart, but still maintaining a convenient level of suboptimality
with respect to the desired control objectives. Moreover, the advantage of the hierarchical-like
DMPC approach is the simplicity of its implementation given the absence of negotiations among
controllers which allows for a simple implementation from the networking viewpoint. This fact
involves much shorter computational times since only one optimization problem should be solved
for each subsystem. Furthermore, each local MPC controller could be converted into its explicit
form [13] leading to a low online complexity. To apply the proposed DMPC approach, the
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DWN is partitioned in a set of subnetworks using a partitioning algorithm that makes use of the
topology of the network, the information about the actuator usage and heuristics. The partition
approach finds a set of non-overlapping subsystems weakly interconnected.

The paper is structured as follows: Section 2 describes the case study considered in the paper.
Section 3 briefly introduces the partitioning approach for dynamical systems used with the case
study of this paper. Section 4 presents and discusses the hierarchical-like DMPC strategy applied
to the case study. Section 5 discusses the main simulation results derived from the application of
the proposed control approach over the considered case study. Finally, conclusions and directions
for further work are reported in Section 6.

2 Case-study Description

2.1 System description

The Barcelona DWN, managed by Aguas de Barcelona, S.A. (AGBAR), not only supplies drink-
ing water to Barcelona city but also to the metropolitan area. The sources of water are the Ter
and Llobregat rivers, which are regulated at their head by some dams with an overall capacity
of 600 cubic hectometres. Currently, there are four drinking water treatment plants (WTP): the
Abrera and Sant Joan Desṕı plants, which extract water from the Llobregat river, the Cardedeu
plant, which extracts water from Ter river, and the Besòs plant, which treats the underground
flows from the aquifer of the Besòs river. There are also several underground sources (wells) that
can provide water through pumping stations. Those different water sources currently provide
a flow of around 7 m3/s. The water flow from each source is limited and with different water
prices depending on water treatments and legal extraction canons.

The Barcelona DWN is structurally organised in two layers. The upper layer, named as
transport network, links the water treatment plants with the reservoirs distributed all over the
city. The lower layer, named distribution network is sectorised in subnetworks. Each subnetwork
links a reservoir with each consumer. This paper is focused on the transport network. Thus, each
subnetwork of the distribution network is modelled as a demand sector. The demand of each
sector is characterised by a demand pattern, which can be predicted by using a time-series model
[14]. The control system of the transport network is also organised in two layers (see Figure 1).
The upper layer is in charge of the global control of the network, establishing the set-points of
the regulatory controllers at the lower layer. Regulatory controllers are of PID type, while the
supervisory layer controller is of MPC type. Regulatory controllers hide the network non-linear
behaviour to the supervisory controller. This fact allows the MPC supervisory controller to use
a control-oriented linear model.

2.2 System management criteria

AGBAR has provided the management policies for the Barcelona DWN, given their knowledge
of the system. These management criteria are described below.

2.2.1 Minimising water production and transport costs

The main economic costs associated with drinking water production (treatment) are due to chem-
icals, legal canons, and electricity costs. The corresponding performance index to be minimised
is expressed as

f1(t) = We (α1 + α2(t)) u(t), (1)
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Figure 1: Hierarchical structure for RTC system

where u ∈ R
m denotes the manipulated flows through the system actuators, α1 corresponds to

a known vector of dimension 1 ×m related to the economic costs of the water according to the
source (treatment plant, dwell, etc.), and α2(t) is a vector of dimension 1 ×m associated with
the economic cost of the flow through certain actuators (pumps only) and their control cost
(pumping). Note the time variance of α2 due to the fact that pumping electricity costs have
different values according to the time of the day. The weight We is the penalty associated with
economic costs with respect to the other objectives that will be included in the MPC optimisation
problem.

2.2.2 Safety storage term

The satisfaction of water demands should be fulfilled at every time instant. However, some risk
prevention mechanisms should be introduced in the tank management so that, the stored volume
is preferably maintained around a given safety value in case of emergency, and to guarantee future
water availability in case of demand forecast estimation errors. A quadratic expression for this
concept is used and written as follows:

f2(t) = (x(t) − β xmax)T Wx (x(t) − β xmax), (2)

where x ∈ R
n denotes the water volumes at network tanks, β is a term which determines the

safety volume to be considered for the control law computation and matrix Wx defines the weight
of the objective in the cost function. This term prevents the controller from keeping the lowest
possible water volumes in the tanks, which would reduce robustness to demand forecast errors.

2.2.3 Smoothness of the control actions

To smooth out the control action of MPC in order to avoid overpressures which can cause
structural damage and leaks in the network, the following third term is included in the objective
function to penalise variations ∆u(t) = u(t)− u(t− 1) of the control signal between consecutive
sampling intervals

f3(t) = ∆u(t)T W∆u ∆u(t), (3)

where W∆u is a m×m weight matrix.
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2.3 Control-oriented modelling

Control-oriented modelling principles for DWNs have been widely presented in the literature,
see [1, 15]. In order to obtain a control-oriented model of the DWN, the constitutive network
elements as well as their basic relationships should be discussed. The reader is referred to the
aforementioned references and to [16, 17] for further details of DWN modelling and specific
insights related to the case study of this paper.

2.3.1 Tanks

A water tank provides the entire system with the storage capability of drinking water. The mass
balance expression relating the stored volume x, the manipulated inflows and outflows (including
the demand flows as outflows) for the i-th tank can be written as the difference equation

xi(t+ 1) = xi(t) + ∆t





∑

i

qin,i(t)−
∑

j

qout,j(t)



 , (4)

for all discrete-time instant t, where qin,i(t) and qout,j(t) correspond to the i-th inflow and the
j-th outflow, respectively, given in m3/s. The physical constraint related to the range of volume
capacities for the i-th tank is expressed as

xmin

i ≤ xi(t) ≤ xmax

i , ∀t, (5)

where xmin
i and xmax

i denote the minimum and the maximum volume capacity, respectively, given
in m3. Since this constraint is physical, it is impossible to send more water to a tank than it can
store, or draw more water than the stored amount.

2.3.2 Actuators

There are two types of control actuators: pumps and valves. The manipulated flows through the
actuators represent the control input variables of the model, denoted in the sequel as u. Both
pumps and valves have lower and upper physical limits that are also model constraints. As in
(5), they are expressed as

umin

i ≤ ui(t) ≤ umax

i , ∀t, (6)

where umin
i and umax

i denote the minimum and the maximum flow capacity, respectively, given
in cubic meters per second. It is assumed that there is a local controller, which ensures that the
required flow through the actuator is satisfied, following the discussion done for Figure 1.

2.3.3 Nodes

These elements correspond to the network points where water flows are merged or split. Thus,
the nodes represent mass balance relations, being modelled as equality constraints related to
inflows (from other tanks through valves or pumps) and outflows, these latter being represented
not only by manipulated flows but also by demand flows. The expression of the mass conservation
in these elements can be written as1

∑

i

qin,i(t) =
∑

j

qout,j(t). (7)

1With a slight abuse of notation, the node inflows and outflows are still denoted by qin and qout, respectively,
despite they can be manipulated flows and hence denoted by u, if correspond.
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2.3.4 Sectors of Consume

A sector of consume represents the water demand made by the network users of a certain physical
area. It is considered as a system disturbance. Since the demand shows a periodic behaviour
with daily and weekly seasonalities, it can be forecasted by using methods based on time series.
In this paper, the demand forecasting algorithm used by the MPC consists in a two-level scheme
[14] composed by

• a time-series model to represent the daily aggregate flow values, and

• a set of different daily flow demand patterns according to the day type to cater for different
consumption during the weekends and holidays periods. Every pattern consists of 24 hourly
values for each daily pattern.

This algorithm runs in parallel with the MPC algorithm. The daily series of hourly-flow
predictions are computed as a product of the daily aggregate flow value and the appropriate
hourly demand pattern.

Aggregate daily-flow model The aggregate daily-flow model is built on the basis of a time
series modelling approach using an ARIMA strategy. A time series analysis was carried out
on several daily aggregate series, which consistently showed a weekly seasonality, as well as the
presence of deterministic periodic components. A general expression for the aggregate daily flow
model, to be used for a number of demands in different locations, was derived using three main
components:

• A weekly-period oscillating signal, with zero-average value to cater for cyclic deterministic
behaviour, implemented using a second-order (two-parameter) model with two oscillating
modes (p1,2 = cos(2π

7
)± jsin(2π

7
)).

• An integrator takes into account possible trends and the non-zero mean value of the flow
data.

• An autoregressive component to consider the influence of previous flow values within a
week. For the general case, the influence of seven previous days is considered. However,
after parameter estimation and significance analysis, the models are usually reduced im-
plementing a smaller number of parameters ai such as the model output y is expressed
as

y(t) = −a1y(t− 1)− a2y(t− 2)− a3y(t− 3)− a4y(t− 4).

Combining the previous components in the following way:

∆yint(t) = y(t)− y(t− 1),

∆yosc(t) = ∆yint(t)− 2 cos(2π/7)∆yint(t− 1) + ∆yint(t− 2),

yp(t) = −a1∆yosc(t− 1)− a2∆yosc(t− 2)− a3∆yosc(t− 3)− a4∆yosc(t− 4),

the structure of aggregate daily flow model for each demand sensor is therefore

yp(t) = −b1y(t− 1)− b2y(t− 2)− ...− b7y(t− 7). (8)

The parameters b1, . . . , b7 should be adjusted using least-squares-based parameter estimation
methods and historical data (after pre-processing to obtain fault-free set). In parallel with the
forecasting and control module, a data validation module should be considered, which validates
the used information.

6



3 DWN PARTITIONING APPROACH

1-hour flow model The 1-hour flow model is based on distributing the daily flow prediction
provided by the time-series model described in previous section using a one-hour-flow pattern
that takes into account the daily/monthly variation in the following way:

yp1h(t+ i) =
ypat(t, i)

24
∑

j=1

ypat(t, i)

yp(j), i = 1, ..., 24,

where yp1h(t) is the predicted flow for the current day j using (8) and ypat(t) is the prediction
provided by the one-hour-flow pattern with the flow pattern class day/month of the actual day.
Demand patterns are obtained from statistical analysis. See [14] for further details.

2.3.5 Network Model

Considering the expressions presented above, the control-oriented model of a DWN in discrete-
time state space can be written as

x(t + 1) = Ax(t) +B u(t) +Bp d(t), (9)

where x ∈ R
n is the state vector corresponding to the water volumes of the n tanks, u ∈ R

m

represents the vector of manipulated flows through the m actuators, and d ∈ R
p corresponds

to the vector of the p demands. A, B, and Bp are the system matrices of suitable dimensions.
Since the demands can be forecasted and they are assumed to be known, d is a known vector
containing the measured disturbances affecting the system. Additionally, (9) can be rewritten
as

x(t+ 1) = Ax(t) + Γ υ(t), (10a)
[

Eu Ed

]

υ(t) = 0, (10b)

where Γ = [B Bp], υ(t) = [u(t)T d(t)T ]T , and Eu, Ed are matrices of suitable dimensions.
Notice that (10a) comes from the mass balance in tanks while (10b) at the network nodes (see
(7)). Also notice that when all the network flows are manipulated, then A is an identity matrix
of suitable dimensions.

This modelling methodology has been applied to the Barcelona DWN aggregate network in
Figure 2. From this figure, it can be seen that the network is comprised of 17 tanks (state
variables), 61 actuators (26 pumping stations and 35 valves), 11 nodes and 25 main sectors of
water demand (model disturbances). The model has been simulated and compared against real
behaviour assessing its validity. The detailed information about physical parameters and other
system values are reported in [17].

3 DWN Partitioning Approach

The application of DMPC to DWN depends crucially on how the network is decomposed into
subsystems. Identifying subsystems is not an easy task in a large-scale network as it involves to
find automatically“sufficiently small” sections of the networked plant that are not “too coupled”
among them. The partitioning algorithm, proposed in this paper, aims to obtain this decom-
position automatically by identifying clusters of elements that are strongly connected with each
other but weakly interconnected with the other clusters, in order to represent the whole network
as a set of loosely coupled subsystems [18]. The current version of the algorithm is though to
be used off-line, that is, the partitioning of the system is static and is not carried out on-line. A
further improvement could be to adapt the proposed algorithm such that the partitioning could
be done on-line when, for instance, some structural change of the network appears.
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Figure 2: Aggregate case of the Barcelona Drinking Water Network

3.1 Partitioning algorithm

As a starting point, the partitioning algorithm requires the following information of the DWN:

1. The interconnection structure characterised by the matrix

M =
[

Asp Bsp

]

, (11a)

where

Asp =

[

A 0
0 0

]

, Bsp =

[

B
E

]

. (11b)

where A and B are the system matrices in (9), the subscript sp identifies the matrices
used for system decomposition, and E , [E1 E2] is the matrix related to the equality
constraints (10b). In order to take into account input bounds, new normalised inputs are
introduced ū , u/umax so that ū ∈ [0, 1]. Thus, new matrices B̄ and Ē are introduced
in (11b) to take into account the rescaling. From matrix M , the adjacency matrix Ψ of
the network graph can be obtained by replacing the non-zero elements by ones, leaving the
null elements unchanged.

2. A threshold value ε is used for determining whether a term, which takes into account the
actuator capacity (maximum allowable flow) and its usage frequency, has a negligible effect
on the entire plant. In this way the less important actuators are filtered out, in order to
reduce the coupling degree of the system and identify independent subnetworks.
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3.1 Partitioning algorithm 3 DWN PARTITIONING APPROACH

The partitioning algorithm proceeds by decomposing the matrix M into a set of submatrices,
named as partitions and denoted by Pε =

{

M1, · · · ,Mnp

}

. Then, Pε correspond to a set of
subgraphs (subsystems) obtaining by deleting the edges corresponding to elements of M with
magnitude no larger than ε. That is, the idea behind the partitioning approach is to neglect less
important elements (i.e., links) in matrix M such that the resulting M̃ is less coupled. Ideally,
M̃ should lead to a permutation matrix P such that P ′M̃P is block-diagonal. This procedure is
repeated iteratively by reducing ε until an enough number of partitions is obtained. Algorithm
1 summarises the steps of the proposed partitioning algorithm.

Partitions can be tuned by means of parameter ε of the proposed approach, which makes the
user able to attempt matching the desired number and size of subsystems.

Typically, in the first iteration, Algorithm 1 neglects a high number of elements of M , highly
reducing the matrix connectivity degree and obtaining a subsystem decomposition. Then, once
the sets of states/inputs relative to each partition are computed, the task of finding a suitable P
that block-diagonalises the matrix P ′M̃P is a matter of linear algebra implementation. Every
subsystem is composed by sets of state and input variables that are linked, meaning that are in
the same block in the P ′M̃P diagonal. Let Xi and U

i be respectively the sets of state and input
variables assigned to subsystem i, while L(Xi) and L(Ui) determine the number of variables for
each set. A subsystem is created if both numbers are different than zero. All state and input
variables that are not assigned to any of the currently created subsystems, that is, that does not
belong to X

i or Ui, respectively, are available for the next iteration. Otherwise, variables already
assigned to a subsystem, in the current or in a previous iteration, are masked2 to prevent their
reassignment to other subsystem.

Then, a new iteration of the algorithm starts by decreasing ε (e.g., halving ε). Algorithm
1 iterates until all state variables are assigned to a subsystem. Note that the algorithm may
terminate even if some inputs are not be assigned to any subsystem, which is due to automatic
threshold based neglecting process. Such issue can be managed by manually include unassigned
inputs to proper subsystem following engineering insight.

The importance of the mask arises from the structure of the algorithm. In fact, if not excluded,
all previously assigned states and inputs would be part of the next iteration partition, introducing
couplings and hence increasing the size of the resulting submodels. The aforementioned inclusion
easily follows from the decreasing of ε among sequential iterations.

Few remarks on the above algorithm:

1. At any iteration of Algorithm 1, the numerical value of ε is a crucial tuning knob of the
approach. A guideline is that the larger is the decreasing step, the larger is the size of the
obtained subsystems. Ways for automatically determining the step size are a subject of
current research.

2. Matrix E in (11b) defines a constraint among actuators that can be easily taken into
account if all the actuators belong to the same subsystem. Otherwise, since each controller
manipulates every partition independently from the others, negotiations between controllers
would be required to guarantee the fulfillment of node constraints.

3. The use of masks to prevent state reassignment avoids that submodels have overlapping
states and inputs: if a state variable is used in a model by a controller, no other controller
can use it. The main benefit of this choice is the very low level of coupling between
partitions, but the price to pay is a potential decrease of closed-loop performance.

2Let us consider a variable to be masked when it does not belong to any set since it has already been classified
in a previous iteration.
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3.1 Partitioning algorithm 3 DWN PARTITIONING APPROACH

Algorithm 1 Automatic partitioning algorithm

1: Initialise masks to a neutral value
2: Initialise the sets of unassigned variables X and U with all state and input variables, respec-

tively
3: Determine the number of unassigned states: Nx = L(X);
4: Init ε
5: while Nx > 1 do

6: Apply masks to Asp and Bsp

7: M = [Asp Bspū]
8: For all elements of M
9: if Mi,j < ε then

10: M̃i,j = 0;
11: else

12: M̃i,j = 1;
13: end if

14: Find P such that P ′M̃P is block diagonal
15: Identify parts satisfying Nxi = L(Xi) > 0 and Nui = L(Ui) > 0 and add to previous ones
16: Update Nx

17: Update masks with updated states and inputs
18: Update ε
19: end while

4. The current structure of the algorithm is unsuitable to handle state overlaps because it
relies on links between elements that present different degree of coupling. Hence, once the
stronger couplings are eliminated (using masking), the weaker ones gain relative impor-
tance. State overlaps may be introduced a posteriori based on engineering insight, in order
to increase the adherence with respect the original centralised model. Handling overlapping
in an automatic way is also a current research topic.

5. In some cases even relatively small connections, i.e., capable of carrying a minor amount
of water, are very important for demand satisfaction. A way of accounting for such an
issue is to perform a simulation using, for instance, a CMPC controller, and compute the
average percentage of use for each actuator. Thus, this information could be used to weight
ū component-wise. The main drawback of this approach is the need of (and dependence
on) simulation.

6. Note that the proposed algorithm can be customised by setting different importance levels
of states vs. inputs, by weighting the related components in M . By defining

M = [W ′
AAspWA W ′

BBspWB W ′
uūWu],

where WA, WB and Wu are weights respectively of A, B and u, it is possible to affect the
resulting partitioning outcome.

7. The structure of the proposed algorithm suggests that termination is achieved if the ε
value is decreased at each iteration. However, at the current status of development, the
algorithm cannot guarantee any property for the resulting partitioning but the assignment
of all system-state variables to a subsystem.

The decomposition process of matrix M reported here is similar to the one proposed by the ε-
decomposition method in [18]. The underlying idea in both cases is to disconnect those actuators

10
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Table 1: Dimension comparison between the subsystems and the whole network.

Elements Subsyst 1 Subsyst 2 Subsyst 3 Whole Model

Tanks 2 5 10 17
Actuators 5 22 34 61
Demands 3 7 15 25
Nodes 2 3 6 11

corresponding to interconnections with strength smaller than the prescribed ε, identifying the
disconnected subsystems. According to [18], there are s different ε-decompositions Pε that can
be obtained for different values of ε satisfying

max
i6=j

|mij | = ε1 < ε2 < · · · < εK = 0,

with K ≤ s, where s = dim(M). Moreover, such decompositions are nested, that is, the
partitions obtained satisfy: Pε1 ⊂ Pε2 · · ·PεK with Pε1 being the finest and Pεk the coarsest.
The main novelty of the algorithm presented in this paper is the matrix normalisation taking
into account actuator physical/operative limits, and the iterative threshold updating that allows
one to take into account weaker coupling without being influenced by the stronger ones.

3.2 Case study partitioning

Using the partitioning algorithm presented in this section, the aggregate model of the Barcelona
DWN is decomposed in three subsystems, as depicted in Figure 2 in different colours. The
resultant decomposition follows the scheme shown in Figure 3. The subsystems are defined by
the following elements:

• Subsystem 1: Composed by tanks xi, i ∈ {1, 2}, inputs uj , j ∈ {1 : 5}, demands dl,
l ∈ {1, 2, 3}, and nodes nq, q ∈ {1, 2}. It is represented in Figure 2 with red colour and
corresponds to Subsystem S1 in Figure 3.

• Subsystem 2: Composed by tanks xi, i ∈ {3, 4, 5, 12, 17}, inputs uj , j ∈ {7 : 16, 18, 19, 25, 26,
32, 34, 40, 41, 47, 48, 56, 60}, demands dl, l ∈ {4 : 7, 15, 18, 22}, and nodes nq, q ∈ {3, 4, 7}.
It is represented in Figure 2 with green colour and corresponds to Subsystem S2 in Figure
3.

• Subsystem 3: Composed by tanks xi, i ∈ {6 : 11, 13 : 16}, the inputs uj, j ∈ {6, 17, 20 :
24, 27 : 31, 33, 35 : 39, 42 : 46, 49 : 55, 57, 58, 59, 61}, demands dl, l ∈ {8 : 14, 16, 17, 19, 20, 21,
23, 24, 25}, and nodes nq, q ∈ {5, 6, 8 : 11}. It is represented in Figure 2 with blue colour
and corresponds to Subsystem S3 in Figure 3.

Table 1 collects the resultant dimensions for each subsystem and the corresponding compar-
ison with the dimensions of the vectors of variables for the entire aggregate network.

4 DMPC Approach

Using the Barcelona DWN decomposition which is obtained from the partitioning algorithm in
Section 3, a DMPC strategy is implemented in order to manage the networked system. This
DMPC strategy considers

11
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Subsystem S1

Subsystem S3

Subsystem S2

µ13

µ23

µ32

Figure 3: Conceptual scheme of the partitioned Barcelona DWN

• the dynamical system model in (10) split in 3 subsystems;

• the physical constraints (5) and (6) for each subsystem;

• a demand forecasting algorithm (presented in Section 2.3.4);

• a multi-objective cost function including the objectives (1), (2), and (3) and scarlarised
using weights. The function can be written as

J(t) =

Hu−1
∑

i=0

f1(t+ i|t) +

Hp
∑

i=1

f2(t+ i|t) +

Hu−1
∑

i=0

f3(t+ i|t), (12)

where Hp and Hu correspond to the prediction and control horizons, respectively, index t
represents the current time instant while index i represents the predicted time along Hp. In
this paper, the prediction horizon is related to the 24-hours demand seasonality. Regarding
the value of Hu, it has been set to be equal to Hp, following the criterion of the DWN
management company.

In order to explain and discuss the implementation of the solution sequence for the considered
hierarchical-like DMPC strategy, denote Ci as the MPC controller related to the subsystem Si

(for i ∈ {1, . . . , 3}), and µij as the set of control actions u (manipulated flows, see (10)) going
from Si to Sj (for j ∈ {1, . . . , 3}, i 6= j). Notice that µij not only contains values of each
component at time t but also all values over Hu, i.e., if µij = {ua, ub, . . . }, then

3

ua , [ua(t|t) ua(t+ 1|t) . . . ua(t+Hu − 1|t)]
T
,

ub , [ub(t|t) ub(t+ 1|t) . . . ub(t+Hu − 1|t)]
T
, (13)

...

with ua(t + i|t) denoting the value of ua at time t + i (over the control horizon) given t. Once
introduced this notation and according to the scheme in Figure 3, the particular sets µij for the

3With some abuse of the notation, the elements of vector u are denoted with the corresponding discrete-time
dependence in order to differentiate the vector from its components.

12
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case study of this paper are defined as

µ13 = u6,

µ23 = [u20, u21]
T ,

µ32 = [u18, u32, u34, u40, u47, u56, u60]
T .

According to [11], the pure hierarchical control scheme determines a sequence of information
distribution among the subsystems, where top-down communication is available from upper to
lower levels of the hierarchy. Note that, despite the subsystems coupling (given by the shared
links), the main feature of the pure hierarchical control approach relies on the unidirectionality
of the information flow between controllers.

Looking at Figure 4, where the directions of sets µij are graphically shown, it is possible
to realise that the set µ32 (red-dashed line in the figure) breaks the mentioned unidirectional
flow between MPC controllers. This fact implies that the standard hierarchical control scheme
for partitioned LSS cannot be straight applied. To solve this situation and design a DMPC
strategy, a hierarchical-like DMPC approach is proposed and conveniently implemented. This
strategy follows the hierarchical control philosophy and the sequential way of solving the optimi-
sation subproblems of the corresponding MPC controllers but also considering the appearance
of bidirectional information flows. For this purpose, additional constraints and heuristics are
taken into account in order to cope with the feature of having the double direction in the flow
of information between some of the controllers. In particular, Figure 4 presents the considered
hierarchy for the case study of this paper, where the controller at the upper level determines the
values of variables shared with controllers at lower level. Notice that Figure 4 also shows why
the pure hierarchical control approach cannot be employed since the MPC controller C2 shares
bidirectional information with C3.

Therefore, the proposed solution sequence of the described hierarchical-like control problem
for the aggregate model of the Barcelona DWN at each time step t ∈ Z≥1 is the following:

• C3 computes the control actions of S3 and sets µ13 and µ23. Set µ32 is considered as a set
of virtual demands4 within the controller C3.

• C1 computes the control actions of S1 considering µ13 as a set of virtual demands.

• In parallel, C2 computes the control actions of S2 considering µ23 as a set of virtual de-
mands. Additionally, C2 also computes µ32 to be used as a set of virtual demands for C3

at time step t+ 1.

Remark 4.1 Notice that in the proposed DMPC scheme, at the first time step (t = 1), the
initial values of the control actions belonging to set µ32 are not available. Those values can be
obtained by solving a constraint satisfaction problem (CSP) defined by the models and constraints
of subsystems S2 and S3 through the algorithm proposed in [19]. The solution of this CSP provides
feasible control actions for the set µ32, which allows starting the solution sequence described above.
For subsequent time steps, values of µ32 take values computed by C2 in the previous time step,

4Consider two subsystems S1 and S2, which share a set of manipulated flows µ12. According to the notation
employed in the paper, those flows come from S1 to S2. If the solution sequence of optimisation subproblems —
defined by the pre-established hierarchical order — determines that µ12 is computed by the MPC controller of
S1, then flows in µ12 are considered as virtual demands in the controller related to S2 since their value are now
imposed in the same way as the water demands.
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Controller C1Controller C2

Controller C3

µ32

µ13µ23

1st level of

hierarchy

2nd level of

hierarchy

Figure 4: Hierarchy of MPC controllers Ci. Their solution sequence is top-down

i.e., the elements belonging to those sets at time t are now assigned as (see (13))

u =











u(t+ 1|t− 1)
...

u(t+Hu − 1|t− 1)
u(t+Hu − 1|t− 1)











. (14)

5 Results

The results obtained by using the proposed DMPC strategy, presented in Section 4, are com-
pared with those obtained when a CMPC strategy is used. The model parameters and measured
disturbances (demands) have been supplied by AGBAR. Demands data correspond to the con-
sume of drinking water of the city of Barcelona during the year 2007. Different scenarios are
considered by modifying some controller parameters corresponding to different prioritisations of
the control objectives. These parameters are the safety volume, denoted as β, and the weight
matrices in the cost function (12). Regarding β, it has been set to the following values:

(a) 80% of xmax, that is denoted as µ = 0.8 xmax. This value is purely illustrative to show the
effectiveness of the MPC controller;

(b) 20% over the minimum tank volumes requested to satisfy the demands5 (except for tanks x5,
x6 and x8 in Figure 2, since they are considered as sources due to their strategic management
requirements and network location). This second vector of safety volumes, denoted as η, is
more convenient since it keeps the volumes of the tanks as low as possible, satisfying the
demands at each time instant. These minimum volumes are taken from previous studies
reported in [16].

In particular, consider Ω = (ωα, ωx, ω∆u) as the 3-tuple of weights associated to the matrices
Wα = ωα I, Wx = ωx I and Wu = ωu I used in (1), (2) and in (3), respectively. Thus, the
following scenarios have been stated:

5The minimum volume to satisfy the water demand is based on considering the worst-case scenario, i.e., the
minimum volume within tanks that is required to satisfy the maximum network demand with no inflow. Some
extra percentage of this volume can be added in order to take into account demand forecast inaccuracy (safety
amount).
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Table 2: Computation time and performance comparisons

Scenario CMPC DMPC∑
f1 Total Time

∑
f1 Total

Scenario 1 49.86 360.02 50.06 253.12
Scenario 2 52.95 373.25 52.99 255.16
Scenario 3 49.94 395.18 50.46 264,55
Scenario 4 49.84 394.24 50.08 279.03
Scenario 5 52.93 396.12 53.01 274.19
Scenario 6 49.97 488.79 50.52 339.84

• Scenario 1: β = µ and Ω = (1, 0.1, 10−3);

• Scenario 2: β = µ and Ω = (1, 1, 10−3);

• Scenario 3: β = µ and Ω = (1, 0.1, 0.1);

• Scenario 4: β = η and Ω = (1, 0.1, 10−3);

• Scenario 5: β = η and Ω = (1, 1, 10−3);

• Scenario 6: β = η and Ω = (1, 0.1, 0.1).

All results have been obtained considering four days real-demand scenarios (with 1 hour of
sampling time), and Hp = Hu = 24. The network has been simulated using the same
model than the MPC controller but fed with real water demands. The network model has been
calibrated and validated using real data coming from AGBAR databases. All simulations were
performed in MATLABr 7.2 implementations running on an Intelr CoreTM2, 2.4 GHz machine
with 4Gb RAM.

The hierarchical-like DMPC controller is compared with a CMPC in the considered scenarios.
The computational burden of each controller was determined as the time required for the QP
solver in obtaining the solution when the CMPC is implemented while as the sum of the time used
by all the MPC controllers in the DMPC scheme. Table 2 gathers the simulation time (in s) for all
the mentioned scenarios. This time regards to the time used for solving the optimisation problem
only. As the way of showing the minimum loss of performance, Table 2 also presents the total
economic cost related to the fourth simulation day. Notice that the simulations do not consider
a warm starting so the first simulation day corresponds to a transient of the system behaviour.
The behaviour of the rest of the days corresponds with a steady state (taking into account the
cyclic pattern of the demands). In order to clearly illustrate this feature, Table 3 collects the
complete information of the economic costs for Scenario 1, considering the discrimination by
water and electrical costs (pumping) for each control scheme. These costs have been obtained by
replacing the computed optimal actions (flows) and the expression of the economic costs in (1).
It is also important to highlight that the economic costs collected in Tables 2 and 3 are given
in economic units rather than in real values (Euro) due to confidentiality reasons. Additionally,
Figure 5 shows a comparative of the evaluation of the cost function J(t) in (12) for both control
strategies (CMPC and DMPC), without considering the first simulation day.

Notice from Table 2 that the loss of performance given when using the DMPC strategy is
never greater than 2%, what is a remarkable result given the reduction of the computation
time, which can achieve up to 35% improvement. Thus, despite the DMPC approach inevitably
leads to a small loss of performance, the benefits in terms of time and computational load are
significant enough. In this particular application, the CMPC could also satisfy the real-time
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Figure 5: Cost function evaluation for CMPC and DMPC strategies

Table 3: Complete discrimination of economic costs for the Scenario 1

Day CMPC DMPC
Water Electric Total Water Electric Total

1 29.601 22.107 51.709 44.49 18.69 63.84
2 27.733 22.141 49.874 31.99 18.07 50.06
3 27.722 22.138 49.861 31.99 18.07 50.06
4 27.722 22.138 49.860 31.99 18.07 50.06

constraint since the sampling time is one hour. Thus, the main motivation for using DMPC
in this application would not be the improvement in computation but the scalability and the
potential change adaptability easiness that the control strategy could offer. In fact, according to
discussions with the AGBAR company, the main reason for using a DMPC approach in the case
study of this paper, additionally to the easier maintenance of the (sub)system models, is that it
allows replacing the current legacy control in multiple steps, where the DMPC is implemented
on a selected network part only at each step. This ability is important for practical application
and maintenance, which allows moving some part of the network to the current legacy control
when some malfunction/fault is detected without stopping the supervisory MPC controller.

Regarding Table 3, notice that economic costs reach their steady state after the second day.
Moreover, it is worthy to highlight the inverse behaviour of the electrical costs between the
CMPC and DMPC cases. In global terms, the performance given by the DMPC is slightly
worse, but this consideration should be done with the total cost. When the system is controlled
by employing DMPC, the subsystems have no information of the water costs related to external
sources. This fact explains that the optimisation over-emphasises the reduction of pumping costs
inside the subsystem. By contrast, CMPC has the information of all water costs so it optimizes

16



6 CONCLUSIONS

0 10 20 30 40 50 60 70 80 90
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

time (hours)

fl
o
w

 (
m

3
/s

)

 

 

CMPC

DMPC

Figure 6: Computed flow related to valve 54 (VBMC)

this factor but moves the water inside the network, incrementing the electric costs. Thus, CMPC
strategy selects the optimal source regarding water costs while the proposed DMPC approach
emphasises local objectives (pumping costs) but is not able to minimize the water costs since it
requires a global vision of the system.

In particular, the results show that with a suitable tuning of the MPC controller, no mat-
ter the topology considered (centralised or decentralised), the behaviour for some volumes and
manipulated flows remain almost the same. This fact can be seen in Figures 6 and 7, where
the flow through the valve 54 and the volume in tank 10, respectively, are depicted when they
are computed for a DMPC and CMPC schemes. Notice for instance that volume behaviours
are quite similar and, given the weight tuning of Scenario 3, they smoothly oscillate around the
desired reference, thanks to a convenient compromise of the safety and smoothness terms in the
cost function.

6 Conclusions

In this paper, a DMPC strategy for DWN has been proposed. The DWN is decomposed in a
set of subnetworks using a partitioning algorithm that makes use of the topology of the network,
the information about the actuator usage and heuristics. A hierarchical structure related to
the order of execution of the DMPC controllers allows one to take into account global network
constraints. A comparative study between the CMPC and DMPC approaches has been developed
using as case study the aggregate model of the Barcelona DWN. Results have shown that the
partition algorithm, helped by an analysis of the system topology and heuristics, yields a proper
segmentation of the whole network without overlapping models. The performances of CMPC
and DMPC schemes were compared in terms of economical benefits and computational burden.
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Figure 7: Resultant volume related to tank 10 (d130BAR)

Results have shown the effectiveness of the DMPC strategy in the important reduction of such
computational burden despite the loss of performance of the control scheme, which in turn, has
resulted to be quite small.

In future research, issues related to the the possibility of allowing the subsystems to overlap
will be investigated, in addition to topics of stability of the proposed control approach. From
the point of view of the control problem, feasibility issues are not discussed, being this a topic
of ongoing research. However, the feasibility of the solution is guaranteed given the topological
design of the network, since it has been properly dimensioned to supply the water to each
demand sector from the available sources. On the other hand, the proposed partitioning approach
provides a first automatic subsystem decomposition but since the partitioning result depends on
the value of ε, which should be selected by trial and error. A further improvement would consists
in selecting the value of ε through optimisation by establishing criteria to decide whether or not
the obtained system decomposition is adequate. Moreover, some restrictions could be added
regarding the complete assignment of inputs and states to the different subsystems. Finally,
different schemes of hierarchical control and in general, strategies that deal with partitioned
systems should be designed and further investigated for being tested over this type of networked
systems.
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