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Abstract

We report in the present work a new method for exploring conformational energy landscapes.
The method, called T-RRT, combines ideas from statistical physics and robot path planning
algorithms. A search tree is constructed on the conformational space starting from a given state.
The tree expansion is driven by a double strategy: on the one hand, it is naturally biased towards
yet unexplored regions of the space; on the other, a Monte Carlo-like transition test guides the
expansion toward energetically favorable regions. The balance between these two strategies is
automatically achieved thanks to a self-tuning mechanism. The method is able to efficiently find
both, energy minima and transition paths between them. As a proof of concept, the method is
applied to two academic benchmarks and to the alanine dipeptide.

Keywords : energy landscape exploration, robot path planning algorithms, Monte Carlo meth-
ods, conformational transition paths, peptides.
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1 Introduction

There is a strong body of evidence that the physicochemical properties of molecules are related to
their atomic structure. Since structural-dependent molecular properties can not always be deter-
mined by experimental methods, computational methods represent a reliable alternative to obtain
properties of matter at the molecular level. The accurate prediction of molecular properties with
computational methods requires an adequate sampling of the states of interest. This is a challeng-
ing task since the number of states grows exponentially with the size of the system, hampering the
performance of search methods, and consequently, the accuracy of the predictions. The problem
of performing a significant search of the molecular energy landscape has attracted the interest
of the scientific community for decades [1, 2, 3]. Basically, there are two approaches to tackle
the problem: i) to sample the conformational space, producing Boltzmann-weighted ensembles;
ii) to characterize stationary points and transition paths on the conformational energy surface.
In the former category, methods like the Metropolis Monte Carlo (MC) or Molecular Dynamics
(MD) [4, 5] are used to compute the thermodynamic properties of a system and, in the case of MD,
also its dynamical properties. The drawback of these methods is the long sampling/simulation
times required to surmount energy barriers that separate relevant conformations and perform an
efficient sampling. In order to overcome this difficulty, methods such as the replica exchange [6, 7],
umbrella sampling [8, 9], the activation-relaxation technique [10], or metadynamics [11] have been
designed to bias the sampling process, enhancing it on specific degrees of freedom or infrequent
events [12]. The latter category of methods includes algorithms that explore the topography of
the conformational energy surface aiming to find energy minima corresponding to stable states
and probable transition paths between such states. Methods to find energy minima [13] usually
combine conformational sampling and energy minimization. The most widely used methods are
based on genetic algorithms [14], the simulated annealing procedure [15], the basin hopping strat-
egy [16], and taboo search [17]. Very diverse methods have been proposed to find transition paths
between two given stable states. In general, the idea is to start from a trivial path and to deform
it locally and iteratively in order to improve its energy profile. Examples of such methods are the
nudged elastic band [18, 19], the zero-temperature string method [20], and its extension for rough
energy landscapes: the finite-temperature string method [21]. A recent approach called forward
flux sampling [22] does not require an initial path, but needs to define series of interfaces between
the initial state and the target state. An alternative method is transition path sampling [23], which
develops MC specific procedures to produce a set of reactive trajectories describing the dynam-
ical pathways that bridge stable states. Methods for computing conformational transitions have
also been developed based on biased or targeted MD [24, 25] and on normal mode analysis [26].
Finally mention a category of methods, including the lid algorithm [27] (for discrete spaces) and
the threshold algorithm [28] (for continuous spaces), originally devoted to explore exhaustively
the regions around a given set of energy minima, and which, by extension, are able to characterize
conformational transitions between minima without prior information about their connectivity.

All the aforementioned methods present specific advantages and drawbacks, which make them
more or less suitable to particular applications. Nevertheless, there is still room for the devel-
opment of efficient and general methods to explore energy landscapes. Recent works show that
algorithms originating from robotics can be the basis for the development of efficient conforma-
tional sampling and exploration methods in computational biochemistry. For instance, methods
based on robotics algorithms have been proposed to analyze protein loop mobility [29, 30], to
compute large-amplitude conformational transitions in proteins [31, 32], to investigate protein
and RNA folding pathways [33, 34], or to simulate ligand diffusion inside proteins considering flex-
ible molecular models [35, 36]. The present work proposes a conformational exploration method,
called Transition-RRT (T-RRT) [37], which is inspired by robotic path planning algorithms and
by methods in statistical physics. T-RRT can be seen as a non-canonical sampling method to
identify interesting points on the energy landscape (i.e. minima and saddle-points) and/or as
a method to compute energetically favorable conformational transition paths. Similarly to MC
methods, T-RRT applies small moves to the system and uses a probability transition test based
on the Metropolis criterion. However, instead of generating a single path on the conformational
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space, it constructs a tree with a specific expansion mechanism that provides better coverage
properties. Such a data structure enables the simultaneous exploration of different regions of the
space. Moreover, in contrast to MC methods, it avoids to waste time getting back to regions of
the space already explored. Finally, T-RRT is a reactive search method [38] that uses a self-tuning
mechanism to improve its overall efficiency. Starting from a given conformation, the tree branches
grow first on the more favorable regions (the valleys of the landscape), and tend to cover the whole
search-space while the number of iterations increases. Such exploration enables to find the local
minima and the saddle-points of the landscape. Furthermore, paths extracted from the tree can
be directly exploited as a good approximation of transition paths between stable conformations.

2 Methods

This section describes the Transition-RRT algorithm (T-RRT), whose pseudo-code is sketched
in Algorithm 1. T-RRT extends the Rapidly-exploring Random Tree (RRT) algorithm [39] by
incorporating a stochastic state-transition test, similarly to MC methods. RRT is a randomized
space-filling method that was initially developed for path planning in robotics. Its most interesting
feature is the implicit bias of the tree expansion toward yet unexplored regions of the space.

The proposed variant, T-RRT, also holds this interesting property. In addition, it integrates a
transition test that filters some of the states generated when they do not correspond to energetically
acceptable moves. Thus, the expansion is biased toward both unexplored and low energy regions.
The appropriate balance between these two types of bias relies on a reactive scheme as described
below. Also, a filtering procedure rejects new states if they are too close to states already stored
within the tree, which improves the space-covering property of the method. Overall, T-RRT is
an effective and general exploration method that can be used to find stable states, or to compute
probable transition paths between given pairs of states.

2.1 RRT Principle: Bias Toward Unexplored Regions

The core of the T-RRT algorithm (Algorithm 1) is inherited from the basic RRT [39]. RRT is
an efficient path planning method able to tackle complex problems in high-dimensional spaces.
It has been successively used in several disciplines such as robotics, computer animation, and
computational biochemistry [35, 32]. The idea is to iteratively construct a tree data structure made
of nodes and edges that correspond to states and small-amplitude motions between neighbor states,
respectively. At each iteration, a state (i.e. a molecular conformation in the present context) is
randomly sampled (SampleConf function). The nearest state already contained in the search tree
is then searched (NearestNeighbor function). Finally, a new node is created by extending the
nearest neighbor toward the random sample (Extend function). Employing the simplest expansion
strategy (called RRT-Extend in related literature [39]), the extension step-size δ remains constant
for all the iterations. The main interest of such a construction procedure (illustrated in Figure 1)
is that the tree expansion is implicitly biased toward yet unexplored regions. This behavior comes
from the probability for a node to be extended, which is proportional to the volume of its Voronoi
cell (i.e. the set of points closer to this node than to any other node). Note that this property
does not require the explicit construction of the Voronoi cells, which would be computationally
expensive.

Classically, RRT has been used to search paths in a continuous state-space composed of feasible-
state and unfeasible-state subsets. In this context, RRT has been proved to be much more effi-
cient than a simple random walk method, since it avoids wandering around in already explored
regions [40]. By inference, T-RRT is expected to be more effective than standard MC methods to
explore molecular energy landscapes.
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2.2 Transition Test: Hindering Steep Climbing

T-RRT extends RRT by integrating a transition test to hinder the tree expansion toward ener-
getically unfavorable regions of the space (TransitionTest function). Similarly to MC methods,
the acceptance rule of a local move is defined by comparing the energy Ej of the new state with
the energy Ei of the previous state (i.e. the parent node in the tree). This test is based on the
Metropolis criterion, with a transition probability pij defined as follows:

pij =

{

exp(−∆Eij

kT
), if ∆Eij > 0

1, otherwise

where ∆Eij = Ej−Ei is the energy variation between the two states, k is the Boltzmann constant,
and T is the temperature. Note however that T-RRT is a non-canonical sampling method, which
is not expected to produce a Boltzmann weighted set of conformations, but to efficiently find
energy minima and probable conformational transition paths. Consequently, T can be considered
as a parameter of the algorithm, and does not necessarily carry any physical meaning.

Within search methods involving the Metropolis criterion, the temperature is usually kept
constant (e.g. MC simulation) or is subject to predefined variations (e.g. heating and cooling
phases in simulated annealing). In the case of T-RRT, the TransitionTest function incorporates
a reactive scheme to dynamically tune this parameter. It allows controlling the level of difficulty
of the transition test, according to the information acquired during the exploration.

2.3 Automatic Temperature Tuning

During the construction of the search tree, the number of attempts necessary to add a new node is a
good indicator to measure the evolution of the exploration process. A large number of consecutive
transition failures means that the exploration is stuck because the tree cannot be further expanded
toward favorable regions. Within T-RRT, this information is used to regulate the temperature
that determines the difficulty of the transition test.

At the initialization, T is set to a low value in order to only permit the tree expansion on
very easy positive slopes (in addition to flat and negative ones). Then, during the exploration,
the number of consecutive times the Metropolis criterion discards a state is recorded and used
for temperature tuning. When the T-RRT search reaches a maximum number of consecutive
rejections Failmax, the temperature increases by a factor λ, which increases the probability to
succeed the transition test in subsequent iterations. Contrarily, each time an uphill transition
test succeeds, the temperature decreases by the same factor λ, therefore increasing the severity
of the transition test. Thus, the temperature is automatically regulated along the exploration in
function of the energy landscape profile. This temperature regulation strategy is a way to balance
the search between unexplored regions and low energy regions.

2.4 Exploration Guarantee

The adaptive temperature tuning introduced above may however lead to bottleneck situations.
The temperature T may be reduced by the insertion of new states very similar to the ones already
contained in the tree, whereas the expansion toward new regions of the space would require an
increment of T . The insertion of such states only contributes to the refinement of the exploration
in regions already reached by the tree. This situation is illustrated on a 2D fictive energy landscape
in Figure 2-a.

To overcome this drawback, the selected state qnear is not extended if the distance to the
random state qrand is smaller than the extension step-size δ (ExploGuarantee function). Such
a simple filtering avoids an excessive refinement of low-energy regions, therefore facilitating the
tree expansion toward new regions of the space. Furthermore, it limits the size of the tree (in
number of nodes), which reduces the computational cost of operations such as neighbor search.
The improvement provided by this filtering process is illustrated in Figure 2-b.
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2.5 T-RRT Operating Modes

2.5.1 Main Minima Search Method

The proposed method can be used to find the main minima of a conformational landscape. Here-
after, this type of operating mode is called T-RRTmin. Starting from a given conformation, the
method builds a tree that explores the landscape until a stop condition is reached. This condition
can be defined by an amount of computing time, a maximum number of created conformations,
or from an estimation of the space coverage. Once the search is stopped, a minima extraction
method can be applied to the conformations contained in the tree. In the current implementation,
we apply a method based on the the root mean square deviation (RMSD) between conformations:
the main minima are the conformations whose energy is lower than the energy of all their neighbors
for a given RMSD threshold.

2.5.2 Transition Path Search Method

The previous application, for which other effective methods are available (e.g. [16, 17]), is nev-
ertheless not the most suitable use of T-RRT. Rather, T-RRT is particularly well suited to find
low-energy paths between a given pair of stable conformations, and to identify the transitions
states associated with. This operating mode is called T-RRTtrans. For such a search, the tree is
rooted at one of the stable conformations, and the algorithm is iterated until one of the tree leaves
reaches the target conformation (i.e. the distance between both conformations is less than the
extension step-size δ). The transition path is then extracted from the tree structure, by following
the branches from the leaf to the root. The quality of the computed path relies on two points.
First, the Voronoi bias avoids backtrack motions, contrarily to basic MC techniques that propa-
gate a single state. Second, the temperature is regulated all over the tree construction process,
so that heating phases only occur when necessary for passing through higher energy barriers in
order to reach other conformational regions. Consequently, paths computed by T-RRT tend to
minimize the total amount of positive energy variation (empirical proofs have been provided by
Jaillet et al. [37]). Therefore, such paths are good candidates to represent transitions between
pairs of stable conformations.

The approach could be extended to find connections between a given set of n minima. This
will require the implementation of a multi-tree variant of T-RRT, sharing ideas with methods
that generalize the basic RRT algorithm to multiple trees [41]. A tree could be constructed to
explore the space around each of the n minima. Connections between leaves of nearby trees
will permit to identify possible conformational transitions between minima. The result will be
a graph of transition paths between the set of n minima. Such a possible extension of T-RRT
presents similarities with the threshold algorithm [28]. Note however that previous work [37] shows
that T-RRT outperforms a method that introduces a threshold-based strategy within the RRT
algorithm [42] for robot path planning on rough terrains. Nevertheless, the implementation of such
a multi-tree variant of T-RRT, as well as its comparison with related methods in computational
chemistry, remain for future work.

3 Results

As a proof of concept, this section first presents results on two academic benchmarks, for which
the energy landscape is represented by a two-parameter analytic function. Then, the method is
applied to study the energy landscape of the alanine dipeptide using an implicit description of the
solvent.

For each problem, T-RRT is first used to find the main energy minima (T-RRTmin search),
and then to find the transition paths between these states (T-RRTtrans search). The algorithm
parameters are the following. The Boltzmann constant k being 3.297 · 10−27 kcal/K, the initial
temperature is set to T = 70 K. This value imposes that, at the initialization of the algorithm,
the probability of accepting an energy increment of 0.1 kcal/mol is around 50%. The maximum
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number of consecutive expansion failures before a temperature increase is set to Failmax = 10
and Failmax = 100 for T-RRTmin and T-RRTtrans, respectively. With these settings, T-RRTmin

covers the space more rapidly than T-RRTtrans, while T-RRTtrans finds the saddle-points more
accurately. The temperature variation factor is λ = 0.1 in all the cases.

3.1 2D Academic Benchmarks

The apparently simple landscapes1 described below represent tricky test systems for benchmarking
methods that search for conformational transition pathways.

The Zorro potential, represented in Figure 3, involves two low-energy regions with respective
minima A and B. The pathway connecting these minima needs to circumvent two energy barriers
and passes through a saddle-point located in the middle part of the landscape. The analytic
expression of this energy landscape is:

E(x, y) = 0.2((x/8)4 + (y/8)4)

− 3e−0.2(0.05(x+5)2+(y+5)2) − 3e−0.2(0.05(x−5)2+(y−5)2)

+ 5e−0.2(x+3(y−3))2/(1 + e−x−3)

+ 5e−0.2(x+3(y+3))2/(1 + ex−3) + 3e−0.01(x2+y2)

+ 0.06 ∗ (sin (5x+
√
2y) + cos (

√
5x+

√
3y)

+ sin (3 ∗ y −
√
2x) + cos (3 ∗ x−

√
5y)).

The variation of parameters x and y is limited to the interval [−15, 15]. Within these bounds,
the energy varies from 0.5 up to 9.7 (in arbitrary units).

The Alien potential is represented in Figure 4. Like the previous benchmark, it involves two
low-energy basins with respective minima A and B. These regions are connected through two
main pathways, which we refer to as lower and upper (l and u in Figure 4). The energy value of
the transition states for these two pathways is very similar. However, the upper pathway is much
larger than the lower one. The analytic expression of this energy landscape is given by:

E(x, y) = 3 +
3

e5(
x2

4 +
(2+

y
2
)2

10 )
− 3

e5((−2+ x
2 )

2+(2+ y

2 )
2)

− 3

e5((2+
x
2 )

2+(2+ y

2 )
2)

+
(x

2

4 + y2

8 )4

10000
+

1 + erf (1 + y

2 )

2

+
3

50

(

cos(
√
5x+

√
3y) + cos(3x−

√
5y))

)

+
3

50

(

sin(5x+
√
2y)− sin(

√
2x− 3y)

)

.

Like in the previous example, the variation of parameters x and y is limited to the interval
[−15, 15]. Within these bounds, the energy varies from 0.1 up to more than 5000 (in arbitrary
units).

The low-dimensionality of these benchmarks enables comparison of results with those obtained
by exhaustive search. A 128 × 128 grid discretizing the search-space was used to perform such a
search. In order to analyze the variability of T-RRT results (due to the randomized exploration),
the algorithm was run several times on each problem. Results presented below show the average
and the standard deviation over 100 runs.

3.1.1 T-RRTmin Search

Table 1 shows results of the T-RRTmin search for the Zorro and the Alien benchmarks. In both
cases, the minima found are very similar (in position as well as in energy) to those extracted from
an exhaustive grid search method. Moreover, the low values of the standard deviation confirm the
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Zorro

T-RRTmin Grid
A B A B

x 7.6 ± 0.2 -5.6 ± 0.1 7.7 -5.6
y -5.1 ± 0.2 5.1 ± 0.1 -5.1 5.1
E 0.59 ± 0.03 0.60 ± 0.02 0.55 0.57

Alien

T-RRTmin Grid
A B A B

x -4.0 ± 0.2 4.1 ± 0.2 -3.9 4.1
y -4.0 ± 0.2 -4.1 ± 0.2 -4.1 -3.9
E 0.30 ± 0.18 0.51 ± 0.18 0.14 0.34

Table 1: Energy minima for the academic benchmarks.

Zorro

T-RRT Grid
A → B A → B

x -0.9 ± 0.6 0.5
y 0.7 ± 0.6 -0.6
E 4.96 ± 0.02 4.95

Alien

T-RRT Grid

A
l−→ B A

u−→ B A
l−→ B A

u−→ B
x 0.2 ± 0.1 0.8 ± 2.3 0.1 -0.9
y -8.6 ± 0.2 3.3 ± 2.4 -8.2 0.5
E 3.98 ± 0.03 4.13 ± 0.08 3.96 4.07

Table 2: Transition states for the academic benchmarks.

reliability of T-RRT despite the random nature of the search process. For these experiments, the
T-RRT iteration was stopped after the insertion of 1000 nodes. The extension step-size (i.e. the
Euclidean distance between two connected states in the tree) was set to δ = 0.5.

3.1.2 T-RRTtrans Search

The localization of the minima being worked out, T-RRT was used to find transition paths between
them. Table 2 shows the position and the energy of the associated transition states found for the
two benchmarks. In both cases, the transition states computed with T-RRT are very close to
the ones found by exhaustive search. Moreover, in the case of the Alien, both the lower and the
upper pathways were found with T-RRT. Over the 100 computed paths, 66 passed through the
upper region whereas only 34 passed through the lower one. This result shows that, for energy
barriers of similar height, T-RRT exhibits a higher probability to pass through wider transition
regions than through narrow passages. In other words, T-RRT solutions do not only depend on
the potential energy of the explored states, but also on the number of possible equivalent paths
to reach the other minimum. Consequently, results indicate that the method tends to search for
the lowest free energy route.
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PII αR αL Cax
7 αP C5

φ -67 -63 47 50 -148 -146
ψ 144 -44 51 -138 -70 162
E 0.3 1.1 4.4 4.2 1.7 0.0

Table 3: Energy minima of alanine dipeptide obtained by T-RRT.

3.2 Alanine Dipeptide in Implicit Solvent

The alanine dipeptide refers to the alanine residue acetylated in its N-terminus and methylami-
dated in its C-terminus (see Figure 5). It is a relatively small biomolecule with a complex energy
landscape characterized by several local minima and intermediates connected by multiple path-
ways, being a frequent test-model molecule for theoretical studies [43, 44, 45, 46, 47, 48, 49, 50,
51, 52, 53]. Despite its small size, alanine dipeptide shares some structural features with larger
peptides and proteins. In particular, due to the flexibility of the φ and ψ angles, the molecule is
able to form internal hydrogen bonds. However, it should be noted that the overall shape of the
conformational energy landscape of alanine dipeptide (i.e. the number of minima, the energy of
transition states, ...) is very sensitive to simulation conditions [49, 53]. Such a sensitivity hampers
a direct comparison of results to those available in the literature. In this work, we have used the
AMBER parm96 force-field [54] together with an implicit representation of the solvent using the
Generalized Born approximation for convenience. The values of the internal and external dielectric
constants were set to 1.0 and 78.5, respectively.

For facilitating the analysis of results obtained with T-RRT, an energy map on the {φ, ψ}
coordinates of the peptide (i.e. the Ramachandran map) was generated using a systematic proce-
dure. The two dihedral angles were varied with constant 10◦ step-size. For each {φ, ψ} value, the
conformation was energy-minimized using a steepest descent method. In order to fix the {φ, ψ}
angles during the minimization, we used an additional {φ, ψ}-harmonic potential whose minimum
was equal to the desired values of the two angles. The optimization was stopped when the RMSD
for consecutive iterations reached 1 · 10−3Å. The computed energy map appears in background in
Figures 6 to 10.

The conformational exploration with T-RRT was performed on an internal-coordinate represen-
tation of alanine dipeptide with constant bond lengths and bond angles. Thus, the conformational
parameters are the seven bond torsions associated with the dihedral angles φ, ψ, ω1,2, and χ1,2,3

represented in Figure 5. Note that, since the peptide bond torsions ω1,2 are known to undergo
small variations, they were allowed to vary only ±10◦ from the planar trans conformation.

3.2.1 T-RRTmin Search

The energy landscape exploration with T-RRT yielded six minima that correspond to the PII ,
αR, αL, C

ax
7 , αP and C5 stable states of the alanine dipeptide [48]. Their position and energy

are presented in Table 3 (for reference, the energy of the minimum-energy conformation is set to
zero). Figure 6 shows these minima projected on the {φ, ψ} energy map. It appears that T-RRT
solutions fit very well the minimum energy regions of the map. This result shows the capacity of
the method to find multiple minima in multidimensional landscapes. For obtaining these results,
T-RRTmin was iterated until the insertion of 8000 nodes in the tree. The exploration step-size δ
was set such that the maximal angular variation was of 5◦. Once the tree was constructed, the six
minima were identified by applying the minima extraction method based on RSMD, described in
Section 2.5. Finally, these minima were locally optimized by a steepest descent method with the
same stop criterion than that used for the construction of the {φ, ψ} energy map.

For comparison, the search of minima was also performed using an iterative simulated annealing
(SA) protocol [55]. The initial minimized structure was quickly heated up to 900 K at a rate of
100 K/ps, in order to force the molecule to jump to a different region of the conformational space.
Subsequently, the 900 K structure was slowly cooled to 200 K at a rate of 7 K/ps and then
minimized. The minimization was carried out with a steepest descent algorithm and with the
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PII αR αL Cax
7 αP C5

φ -65 -62 43 45 -143 -145
ψ 148 -49 61 -116 -70 160
E 0.3 1.0 3.9 3.3 1.6 0.0

Table 4: Energy minima of alanine dipeptide obtained by a simulated annealing protocol.

S1 S2 S3 S4 S5 S6

φ 0 3 72 74 -111 -142
ψ 95 -90 137 -8 10 -118
E 7.3 7.7 7.3 7.7 3.4 2.6

Table 5: Main transition states of alanine dipeptide found by T-RRT.

convergence criterion set to 0.001 kcal·mol−1·Å−1. The structure obtained at 200K was stored
and used as the starting conformation for a new cycle of SA. The SA procedure was run for 2000
cycles, which yielded a list of 2000 structures that was ordered by energy. These conformations
were then checked for uniqueness, and those for which none of the backbone dihedral angles were
different from at least 60◦ with respect to lower-energy conformations were excluded from the
list. This process yielded 6 energy minima, whose values and positions are presented in Table 4.
These results are very similar to those obtained by T-RRTmin. The differences are slightly more
significant for the two minima with higher energy: Cax

7 and αL. One explanation for these
minor differences would come from the use of different coordinates to perform the search with
SA (Cartesian coordinates) and T-RRT (internal coordinates with fixed bond lengths and bond
angles). Finally mention that the computing time required by the SA protocol for finding the
6 minima was of 660 minutes, whereas the T-RRT search took only 15 minutes using the same
force-field and solvent model.

3.2.2 T-RRTtrans Search

T-RRT was used to compute transition paths between several pairs of minima. For facilitating the
analysis of results, the positions and energy of the main transition states (saddle points), extracted
from the total set of computed paths, are presented in Table 5, and they are located on the map
in Figure 6. The algorithm was run 100 times for each transition in order to perform a statistical
analysis on the probabilities associated with different classes of transition paths. However, only
the first 50 computed paths are shown in the figures for clarity of presentation.

Figure 7 and Figure 8 show transition paths for the direct and reverse transition between
pairs of minima {αL, C

ax
7 } and {αR, PII}, respectively. These transitions, that are known to be

fast transitions [52], do not require to cross the lines φ = 0◦ or φ = 120◦. They mainly involve
the variation of bond torsion ψ, and the paths lead from one minima to the other via a single
saddle-point in all the cases. In the case of αL ↔ Cax

7 transitions, class-I paths go across S3,
while class-II paths go across S4. The number of paths of each class found after 100 runs of
T-RRTtrans are given in Table 6. The higher probability to find class-I paths, for both the direct
αL → Cax

7 transition and the reverse Cax
7 → αL transition, can be explained by a lower energy

barrier to cross S3 than to cross S4. The variability of the paths within each class is very low,
due to the narrowness of the corridors that connect the two minima. Two classes of transition
paths are also found between αR and PII . However, contrarily to αL ↔ Cax

7 transitions, the
distribution of the paths depends on the direction (see Table 6). Class-II paths are more frequent
than class-I paths for the αR → PII transition, whereas the probabilities are inverted for the
reverse PII → αR transition. Such a different behavior can be explained through an analysis of
the local topography of the landscape around these minima. Paths starting from αR have a higher
tendency to reach αP (αR and αP are separated by a relatively low energy barrier that is not
indicated in the figures) than to reach directly the PII/C5 region going across S5. From αP , the
PII/C5 region is reached passing through S6, which requires lower energy than crossing S5. On
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I II
αL → Cax

7 62% 38%
Cax

7 → αL 60% 40%

αR → PII 34% 66%
PII → αR 64% 36%

Table 6: Distribution of T-RRT solutions into path classes for conformational transitions of alanine
dipeptide that do not require to cross φ = 0◦ or φ = 120◦.

I II III IV V VI
αR → Cax

7 21% 54% 2% 8% 2% 13%
Cax

7 → αR 9% 17% 31% 27% 11% 5%

C5 → Cax
7 33% 16% 2% 34% 1% 14%

Cax
7 → C5 53% 9% 32% 1% 4% 1%

Table 7: Distribution of T-RRT solutions into path classes for conformational transitions of alanine
dipeptide that need to cross φ = 0◦ or φ = 120◦.

the other hand, the topography of the landscape viewed from PII/C5 is rather different. Although
the potential energy of S5 is slightly higher than for S6, the valley leading from PII/C5 to the
latter transition state is steeper, which means that energy variation associated to small moves is in
average larger when moving from PII/C5 toward S6 than when moving toward S5. The steepness
of these valleys, which mainly involves the variation of ψ, is approximately 0.03 kcal/mol per
angular degree for PII/C5 → S6 and approximately 0.02 kcal/mol per degree for PII/C5 → S5.
Since the T-RRT tree expands more favorably on easy slopes, transitions across S5 are more
probably found. In addition, the valley mounting from PII/C5 to S5 is wider than the one from
PII/C5 to S6. The width of the former pathway is reflected by the more significant variability
of class-I paths compared to class-II paths. As explained for the Alien benchmark, T-RRT has a
higher probability to find paths through large passages than through narrow corridors. Since the
width of a pathway is related with the entropy, we can argue that, for relatively similar variations
of potential energy, T-RRT reaches more easily transition states through pathways that exhibit a
larger entropic term.

Transition paths were also computed between pairs of minima {αR, C
ax
7 } and {C5, C

ax
7 }. The

solutions are represented in Figures 9 and 10, respectively. Table 7 presents the distributions of
paths classes. These transitions, which require to go across energy barriers around φ = 0◦ or
φ = 120◦, are more complex than the two analyzed above, and a larger variety of transition path
classes is propounded in related literature [44, 46, 47, 49]. Results obtained with T-RRT show
the ability of the algorithm to capture such a variety of possible transition paths. Overall, the
projection of the computed paths on the {φ, ψ} map shows a good fitting with the valleys of the
energy landscape (remind that the figures shows a two-dimensional projection of the results, while
the exploration takes place in a seven-dimensional space). The figures and the table highlight
significant differences on the paths distributions between direct and reverse transitions for the two
pairs of minima. Paths from αR and C5 (in the negative range of φ) toward Cax

7 (in the positive
range of φ) have a higher probability to traverse the energy barriers at φ ≈ 0◦ across S2, while
the reverse transitions Cax

7 → αR and Cax
7 → C5 go more frequently across S1. Note that such

a behavior has also been reported in related works [44, 47], where conformational transitions of
alanine dipeptide are computed with variants of MD methods. For the transitions αR → Cax

7 ,
class-II paths seem the most natural ones, since they only require crossing one transition state
(S2), and they are the shortest ones. The most probable alternative paths are class-I paths.
Although the energy barriers along these paths are lower that for class-II paths, three transition
states (S6, S1 and S3) need to be traversed, instead of only one. The picture is different for
the reverse Cax

7 → αR transition. Paths starting at Cax
7 have a higher probability to reach αL

across S3 or S4 than to reach directly αR across S2. We attribute this phenomenon to the local
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shape of the landscape, as explained above for the case of the PII → αR transition. Indeed,
the three transition states have relatively similar energies, but the valleys leading from Cax

7 to
S3 or S4 are much easier than the one leading to S2. Note that the overall shape of the low-
energy region around Cax

7 is significantly wider in the ψ direction than in the φ direction. Once
in αL, the most probable transition paths to αR go across S1 and S5, or alternatively S1 and S6.
Results for the C5 ↔ Cax

7 transitions are coherent with respect of those for αR ↔ Cax
7 . For the

direct transitions, paths though S2 are slightly more probable than paths though S1, since the
transition energy associated to pathway C5 → S5 → αR → S2 → Cax

7 is slightly lower than that
of pathway C5/PII → S1 → αL → S3 → Cax

7 (10.1 kcal/mol and 10.7 kcal/mol, respectively), and
because the steepness and the width of the valleys mounting from C5/PII to S1 and from αR to
S2 is comparable. For the reverse transition, however, the great steepness of pathway Cax

7 → S2

compared to Cax
7 → S3 or Cax

7 → S4 seems to hinder transitions across S2. Finally mention that,
in all the cases, transitions across barriers at φ ≈ 120◦ are infrequent compared to transitions
across φ ≈ 0◦. These infrequent pathways have also been obtained with other methods [44, 49].

4 Conclusion

We have proposed a novel method, called T-RRT, to explore conformational energy landscapes.
The method combines recent path planning algorithms from the field of robotics with basic con-
cepts of statistical physics. The T-RRT algorithm can be applied to find reachable energy minima
from an arbitrary conformation. More interestingly, the same algorithm (possibly with a differ-
ent parameter setting for improving performance) can also be applied to compute conformational
transition paths between pairs of minima. T-RRT can be advantageous compared to many path
sampling methods based on an initial trajectory, or requiring a reaction coordinate that biases
the search. Simple benchmarks have been used in this work to validate the approach, and to
facilitate the interpretation of the main features of the method. Results show that paths com-
puted by T-RRT do not only depend on the potential energy of the explored states but are also
affected by the overall shape of the energy landscape. Apparently, the exploration tends to favor
the lowest free energy routes. However, it is difficult to quantify accurately the importance of
energetic and entropic contributions within the conformational exploration. This would require
further theoretical studies and a deeper analysis or results that remain for future work.

Finally, this paper aims to provide a basic algorithmic framework that could be extended for
treating more complex systems. Similarly to MC-based methods, more sophisticated sampling
schemes could be devised to enhance the efficiency of the exploration. Additionally, when a target
conformation is specified, a biased scheme could be used to drive more quickly the tree toward the
final conformation. In the short future, we expect to investigate extensions of T-RRT to yield a
more efficient exploration of the conformational space of longer polypeptides.
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Footnotes

1 These benchmarks were first proposed at the 2005 Workshop on Conformational Dynamics
in Complex Systems.
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[32] Raveh, B.; Enosh, A.; Schueler-Furman, O.; Halperin, D. PLoS Comput. Biol. 2009, 5,
e1000295.

[33] Chiang, T. H.; Apaydin, M. S.; Brutlag, D. L.; Hsu, D.; Latombe, J.-C. J. Comput. Biol.
2007, 14, 578.

[34] Amato, N. M.; Dill, K. A.; Song, G. J. Comput. Biol. 2003, 10, 239.
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Figure Captions

Algorithm 1: Transition-based RRT.

Figure 1: RRT construction scheme. In blue/thin lines, the RRT tree. In red/bold lines, the Voronoi
cells associated with the states contained in the tree. At each step, a state qrand is randomly
sampled, and its nearest neighbor in the search tree qnear is selected. It corresponds to the
node in the Voronoi cell where qrand has been sampled. A new node qnew is created by
moving from qnear a distance δ in the direction of qrand. The Voronoi bias favors the tree
expansion toward unexplored regions of the space.

Figure 2: Impact of the Exploration Guarantee on the performance of T-RRT. The trees in both
pictures have the same size (800 nodes), and are rooted at the same coordinate (-30, -30).
Without this filtering process (a), the insertion of nodes very close to existing ones tends to
slow down the exploration by decreasing the temperature. With filtering (b), the exploration
of new regions of the space is favored.

Figure 3: Zorro potential. In bold black, a T-RRT transition path found between minima A and B.
It circumvents two energy barriers and passes through a higher energy saddle-point. In thin
black, other branches of the associated search tree.

Figure 4: Alien potential. Minima A and B can be connected through two pathways, u and l. In bold
black, two paths found with T-RRT. In thin black, branches of the associated search trees.

Figure 5: Alanine dipeptide and the seven conformational parameters used for the exploration.

Figure 6: Energy minima and main saddle points found by T-RRT for the alanine dipeptide projected
on the {φ, ψ} energy map.

Figure 7: Fifty representative paths for αL → Cax
7 (left) and Cax

7 → αL (right) transitions obtained
with T-RRT.

Figure 8: Fifty representative paths for αR → PII (left) and PII → αR (right) transitions obtained
with T-RRT.

Figure 9: Fifty representative paths for αR → Cax
7 (left) and Cax

7 → αR (right) transitions obtained
with T-RRT.

Figure 10: Fifty representative paths for C5 → Cax
7 (left) and Cax

7 → C5 (right) transitions obtained
with T-RRT.
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Algorithm 1: Transition-based RRT

input : the Conformational Space CS;
the energy function E : CS → R

∗

+;
the initial conformation qinit ;
the target conformation qgoal (optional);

output : the tree T ;

begin

T ← InitTree(qinit);
while not StopCondition(T , qgoal) do

qrand ← SampleConf(CS) ;
qnear ← NearestNeighbor(qrand, T );
if ExploGuarantee(T , qnear, qrand) then

qnew ← Extend(T , qrand, qnear);
if TransitionTest(E(qnear), E(qnew)) then

AddNewNode(T , qnew);
AddNewEdge(T , qnear, qnew);

end

Figure 1:
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