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Abstract

We explain here how to perform branch switching when a singular point is found during higher-
dimensional continuation on a k-dimensional variety. This document is based on the information
given in [1, 2, 3].
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1 Introduction

A system of equations
F (u) = 0, (1)

with u ∈ R
n and F : Rn → R

n−k, defines a k-dimensional variety M. Points u∗ that satisfy (1)
but at which the Jacobian of F , Fu, is not full rank, i.e. rank(Fu(u

∗)) < n− k, are singular
points.

We will treat here the case where a higher-dimensional continuation is progressing on a
branch Γ0 of M and a singular point is found [1, 2]. This can be detected, for instance, by a
change on the sign of the determinant of the Jacobian of F . The main idea for branch switching
is that the tangent space to Γ0 is known (or estimated) and we want to compute the tangent
space to the new branch Γ1 in order to allow the continuation process to jump, or switch, to
the new branch Γ1. The advantage of computing this tangent is that a chart can be created on
the new branch, and the continuation can go on on the new branch. By doing this, there will
be two charts around the singular point, the one created on the original branch, tangent to Γ0,
and another one tangent to the bifurcating branch Γ1.

The outline of this report is as follows. First, the geometry of the solution variety near a
singular point is discussed. Next, a Lyapunov-Schmidt decomposition is applied, which allows
to split the original equations into two sets of equations. Then, an application of the Implicit
Function Theorem gives the Bifurcation Equation (BE), that must be satisfied around the
singular point. The Taylor series of the BE define the Algebraic Bifurcation Equation (ABE)
that must also be satisfied, and another application of the Implicit Function Theorem gives a
parametrized set of curves that trace out the solution variety around the singular point. Finally,
since we already know one set of solutions of the ABE, it is possible to obtain the tangent space
to the singular boundary which, in turn, allows to find a tangent to the new bifurcating branch.

2 Preliminaires

The right null space of Fu is called Φ, and satisfies

Fu(u)Φ = 0
ΦTΦ = I

}

.

At a regular point u, a basis of the right null space is also a basis of the tangent space to
the variety at that point. This tangent space is k-dimensional because rank(Fu(u)) = n − k.
However, at a singular point u∗, the right null space becomes of dimension higher than k. For
now, it will be assumed that on the singular point rank(Fu(u

∗)) = n− k− 1, so the null space
becomes (k + 1)-dimensional.

A singular point can be found, for instance, by dicotomy between two near regular points ua

and ub, where the k-dimensional tangent spaces are known. Then, an orthonormal basis with k
vectors, {φ0, . . . ,φk−1}, can be found at u∗ by interpolation of the two known tangent spaces.
This basis satisfies

Fu(u
∗)φi = 0

φi
Tφj = δij

}

, (2)

for i, j = 0, . . . , k − 1. This is a basis of the tangent space to the branch Γ0 where ua and ub

lie. But at the singular point the right null space is (k + 1)-dimensional, so there will be an
additional right null vector φk ∈ R

n and a left null vector ψ ∈ R
n−k that satisfy

Fu(u
∗)φk = 0

φi
Tφk = 0

φk
Tφk = 1







, (3)
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for i = 0, . . . , k − 1, and
ψTFu(u

∗) = 0
ψTψ = 1

}

.

Here, the left null space is one-dimensional because we assumed rank(Fu(u
∗)) = n− k − 1

and we only have one vector ψ. In general, on a singular point, it is rank(Fu(u
∗)) < n− k and

there is a left null space Ψ that satisfies

ΨTFu(u
∗) = 0

ΨTΨ = I

}

.

3 Splitting of the equations

Imagine a regular point u near a singular point u∗. We can project the vector from u∗ to u to
the right null space Φ at u∗ and to a space orthogonal to this right null space. So we can write

u = u∗ +Φs+ a, (4)

with
ΦTa = 0.

That is, the vector of point u near u∗ can be seen as the sum of the vector of the singular point,
a vector on the right null space (s gives a linear combination of the basis of the null space) and
a vector a which is orthogonal to the right null space. In fact, this can be done using any point
û of the variety, even if it is not singular.

The Lyapunov-Schmidt decomposition consists on doing the same thing for both the range
and the domain of F . It is a natural splitting of the domain and the range that derives form
the fundamental theorem of linear algebra.

Splitting of the range

The left null space of the Jacobian, ker(Fu
T) or Ψ, is the orthogonal complement of the column

space (or range or image), im(Fu), of the Jacobian [4]. We can write, thus,

F (u) = ψψTF (u) + (I −ψψT)F (u). (5)

It is clear that this is an identity. The first term is the projection of F onto the left null space
of the Jacobian, and the second term is the projection of F onto the orthogonal complement of
the left null space of the Jacobian. Or, in other words, the first term is the projection onto the
orthogonal complement of the range of the Jacobian and the second term is the projection onto
the range of the Jacobian.

Splitting of the domain

The right null space of the Jacobian, ker(Fu) or Φ, is the orthogonal complement of the row
space (or coimage), im(Fu

T), of the Jacobian [4]. We can then write

u− u∗ = ΦΦT(u− u∗) + (I −ΦΦT)(u− u∗). (6)

Here the first term is the projection onto the right null space and the second term is the projection
onto the row space.

Comparing (4) and (6) it can be seen that

s = ΦT(u− u∗)
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and

a = (I −ΦΦT)(u− u∗).

It is easy to check that the vector a is in fact orthogonal to the right null space because
ΦT(I −ΦΦT) = 0.

So, looking at (5) and using (4), we can say that, near u∗, F (u) = 0 if and only if

ψTF (u∗ +Φs+ a) = 0 (7)

and

(I −ψψT)F (u∗ +Φs+ a) = 0. (8)

Thus, we can write

F (u) =

{

ψTF (u∗ +Φs+ a)
(I −ψψT)F (u∗ +Φs+ a)

.

4 Bifurcation Equation and Algebraic Bifurcation Equation

The Jacobian of (8) with respect to a is non-singular (the inverse of the Jacobian with respect
to a is the Pseudoinverse of the Jacobian of F ), so the Implicit Function Theorem gives the
existence of a(s) around s = 0 with a(0) = 0 that satisfies (8). Using this funcion in (7) yields
the Bifurcation Equation (BE):

BE(s) = ψTF (u∗ +Φs+ a(s)) = 0. (9)

This is a system with one equation for each dimension of the left null space (in this text we
assumed 1) and one unknown for each dimension of the right null space (k+1). In addition, the
Jacobian is identically zero at the origin. To see that, take the first derivative of the BE with
respect to s,

BEs(s) = ψ
TFu(u

∗ +Φs+ a(s))(Φ+ as(s)). (10)

Now, differentiating (8) with respect to s and evaluating at s = 0 we have that it must be

as(0) = 0,

and introducing this into (10) for s = 0 we have

BEs(0) = ψ
TFu(u

∗)Φ = 0. (11)

Every solution of the BE near s = 0 corresponds to a solution of the original singular
problem, and every solution of the singular problem near u∗ corresponds to a solution s of the
BE. That is because, in fact, vector s gives a linear combination of the vectors of a basis of the
right null space Φ. For example, if it is k = 2, the vector s = (s0, s1, s2) gives a point in the
k+1 = 3 dimensional null space of Fu(u

∗) in the basis {φ0,φ1,φ2}, columns of Φ. So, around
s = 0, each solution s of the BE (9) gives a point in the null space Φ which can be projected
to a point on the variety by using a(s) in (4). We do not actually have an expression for a(s),
but the coefficients in a Taylor series expansion for a can be found by repeated differentiation
of (8) [3].

We just saw that the linearization of the BE is zero at s = 0 (11), but we can avoid this in
order to apply the Implicit Function Theorem by introducing a small number ǫ such that

BE(ǫ, s) =
1

ǫ2
BE(ǫs̃).
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We are just perfroming a change of variable by setting s = ǫs̃. The length of the vector s can
now be set using ǫ, so s̃ is chosen to be a normalized vector, and since the BE is equal to zero,
we can multiply it by 1

ǫ2
without modifying its solutions. We are introducing one variable (ǫ)

and one equation (s̃ of norm one). By an abuse of language, we will write s instead of s̃.
The BE can be written in indicial notation as

ψTF (u∗ +
k
∑

i=0

φis
i + a(s0, . . . , sk)) = 0, (12)

and after the change of variable and the scale by 1

ǫ2
it becomes

1

ǫ2
ψTF (u∗ + ǫ

k
∑

i=0

φis
i + a(ǫs0, . . . , ǫsk)) = 0, (13)

with
∑

i

sisi = 1. (14)

Note that the same change of variable can be applied in (4),

u(ǫ) = u∗ + ǫ

k
∑

i=0

φis
i + a(ǫs1 . . . , ǫsk). (15)

A Taylor series in ǫ around 0 of (13) is

1

ǫ2
ψTF =

∑

i,j

ψTFuuφiφjs
isj + ǫ

∑

i,j,l

(ψTFuuuφiφjφls
isjsl +ψTFuuφla,si,sjs

l) + . . . (16)

This can be obtained by differentiating (13) with respect to ǫ or by first differentiating (12) with
respect to s and then performing the change of variables.

The first term of the Taylor series is the Algebraic Bifurcation Equation (ABE):

∑

i,j

ψTFuuφiφjs
isj = 0.

The ABE has to be zero around the singular point (ǫ = 0) because of (13) and because the
other terms of the expansion are already zero for ǫ = 0.

Now, if the ABE is satisfied and the first order term of the expansion (16) is non-zero, i.e.

∑

i,j,l

(ψTFuuuφiφjφls
isjsl +ψTFuuφla,si,sjs

l) 6= 0,

we can apply the Implicit Function Theorem on (13) to say that a set of functions si(ǫ) with
si(0) = siABE exists in a neighborhood of ǫ = 0. The solution of the ABE with (14) corresponds
to a (k−1)-manifold onM that passes through u∗. And all the solutions of the ABE alone can be
parametrized by ǫ. Varying si subject to the ABE traces out the variety on the neighbourhood
of the singular point.

To see that, remember that s gives a linear combination of the vectors of a basis of the right
null space Φ. We can think of s (which is now of norm 1) as giving a direction in the null space,
and ǫ gives how far we move from the singular point in that direction. Then, we can obtain a
point on the variety using (15). The ABE is just one equation, and together with (14) we have
2 equations that s must satisfy. The vector s has k+1 components (dimension of the right null
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space), so we have 2 equations and k+1 variables. Hence, the solution of the ABE with (14) is
a k + 1− 2 = k − 1 dimensional variety. For ease of interpretation, think of the case k = 2. We
call the solution curve of the ABE with (14) as sABE . Each point of this curve gives a possible
value of s, which respresents a possible direction in the null space. Since all the s on this curve
are of norm one, ǫ allows to choose how far to move from the singular point for a given direction.
When ǫ = 0 the direction is still given, but since we do not move far away, we are exactly on
the singular point. Now, take a point of the solution curve sABE . This is a specific value of s,
which gives a specific direction on the null space. Keeping this direction and modifying ǫ we
trace a curve that can be projected on the solution variety M. Doing the same for another value
of s (another point of the curve sABE , another direction on the null space), we trace a diferent
curve on the solution variety. So, by modifying s subject to the ABE, i.e. taking all points of
the curve, we trace out the solution variety M on a neighborhood of the singular point u∗.

5 Tangents

We already know one set of solution of the ABE: any vector s with sk = 0. This is because we
chose the first k null vectors to be a basis of the tangent space to Γ0 in (2) and (3). The ABE
can therefore be written as

sk

(

k
∑

i=0

Nis
i

)

= 0,

with Ni = ψ
TFuuφiφk for i = 0, . . . , k. Here, the Ni can be seen as the components of a vector

N ∈ R
k+1 in s-space orthogonal to the bifurcating branch Γ1 (fig.). The vectors on the tangent

space of the singular boundary shared by Γ0 and Γ1 must be on the tangent space to Γ0 and on
the tangent space to Γ1. Thus, they can be determined by

sk = 0
k
∑

i=0

Nis
i = 0











. (17)

Let {σ0, . . . ,σk−2} be an orthonormal basis of the (k−1)-dimensional tangent space defined
by (17). A basis of the tangent space to the bifurcating branch Γ1 is made of these vectors σi

with an additional vector

σk−1 = (NkN0, . . . , NkNk−1,−
k−1
∑

i=0

NiNi).

This vector is orthogonal to the other σi (to form a basis) and toN (it is a vector on the tangent
space to Γ1), but it is not normalized. Note that the vectors σ are in s-space, so σ = (σ0, σ1, σ2)
is the vector σ0φ0 + σ1φ1 + σ2φ2 in R

n.
Indeed, the curve sABE must contain points that give vectors on the null space that lie on

the tangent space to Γ0, but must also contain points that give vectors that lie on the tangent
space to the bifurcating branch Γ1, since all the solution variety is traced out around the singular
point. In fact, the first k vectors of the basis of the null space lie on the tangent space to Γ0,
and the k+1-th vector is orthogonal to the previous ones. So, among all the points of the curve
sABE , those with sk = 0 are the ones giving the branch Γ0 of the variety. All the other points
of sABE trace out the bifurcating branch Γ1. In addition, it can be seen that these other values
of sABE are orthogonal to a vector N that can be computed. Those points in sABE that satisfy
both conditions (17) are the ones giving the tangent space to the singular boundary, which can
be seen as the intersection of the tangent spaces of Γ0 and Γ1. If vectors σi give a basis of this
tangent space, a basis of the tangent spaces to Γ0 and Γ1 can be expressed using this vectors
with and additional one. In the case of Γ1, this additional vector must be orthogonal to N .
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Example

For k = 2, the vector s = (s0, s1, s2) gives a point in the k + 1 = 3 dimensional null space of
Fu(u

∗) in the basis {φ0,φ1,φ2}. We have also

N = (N0, N1, N2) = (ψTFuuφ0φ2,ψ
TFuuφ1φ2,ψ

TFuuφ2φ2)

The branch corresponding to Γ0 is s2 = 0:

u = u∗ + ǫ(φ0s
0 + φ1s

1) + a(ǫs0, ǫs1, 0)
s0s0 + s1s1 = 1

}

.

And the bifurcating branch Γ1 is:

u = u∗ + ǫ(φ0s
0 + φ1s

1 + φ2s
2) + a(ǫs0, ǫs1, ǫs2)

N0s
0 +N1s

1 +N2s
2 = 0

s0s0 + s1s1 + s2s2 = 1







.

In this case, the singular set is a curve, so the tangent to this singular set (basis of the solution
of (17)) is σ0 = (−N1, N0, 0), which is a vector orthogonal to N with s2 = 0. This gives the
vector −N1φ0+N0φ1 in R

n. The tangent vector to the bifurcating branch Γ1 orthogonal to σ0

is then σ1 = (N0N2, N1N2,−N0N0−N1N1) in s-space, which is the vector N0N2φ0+N1N2φ1+
(−N0N0 −N1N1)φ2 in R

n, not normalized.

6 Conclusions

When a singular point is found in the current branch Γ0 that is being continued, its k-dimensional
tangent space is estimated using ua and ub, and the left null vector ψ computed. The tangent
to the bifurcating branch Γ1 can then be obtained by computing vector N . Since the Hessian
is a tensor, each of the components Ni of N can be computed as

Ni =
n−k−1
∑

p=0

n−1
∑

a=0

n−1
∑

b=0

ψpTF
p
a,bφ

a
i φ

b
k

for i = 0, . . . , k. Here, φai is the a-th component of the i-th column vector of Φ, ψpT is the
p-th component of the row vector ψT and F p

a,b is ∂fp

∂ua∂ub
, where fp is the p-th equation of F

and ua and ub are the a-th and b-th variables inside u. Once N is obtained, the tangent (not
normalized) to the bifurcating branch Γ1 is

NkN0φ0 + · · ·+NkNk−1φk−1 −

(

k−1
∑

i=0

NiNi

)

φk

in R
n.
This could be specially useful if a quadratic formulation of (1) is assumed. In such case, the

Hessian of the equations, Fuu, is constant and, thus, always available. If the Hessian is not
always available, an approximation of the vectors can also be found in principle [2].
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