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Abstract:  In this paper, the problem of identification for passive robust fault detection when parametric 

modeling uncertainty is considered. In particular, a zonotope is used to bound the model parametric 

uncertainty.  Two identification methods are introduced following, respectively, the worst-case and set-

membership approaches.  Then, the underlying hypothesis are discussed and performance is compared. 

These two identification approaches lead to two robust fault detection tests (namely, the direct and inverse 

tests) that are also discussed. A case study based on a four tanks system is used to exemplify the properties 

of the two identification and associated  fault detection approaches. 
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1. INTRODUCTION 

The principle of model-based fault detection is to test whether the measured system inputs and outputs are consistent with the 

system behaviour described by a faultless model. If the measurements are inconsistent with the model of the faultless system, 

the existence of a fault is proved. The residual vector usually describes the consistency check between the predicted and the 
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real behaviour. Ideally, the residuals should only be affected by the faults. However, the presence of disturbances, noise and 

modeling errors causes the residuals to become nonzero and thus interferes with the detection of faults. Therefore, the fault 

detection procedure must be robust against these undesired effects (Chen and Patton, 1999). In case that parametric 

uncertainties are taken into account, the healthy system model should include a vector of uncertain parameters bounded by sets 

that contains all possible parameter values when the system operates normally. In the robust fault detection literature, so far, 

parameters have been bounded using intervals and the resulting model is known as an interval model (Puig, 2008). In case of 

modeling a dynamic system using an interval model, the predicted output is also bounded by an interval. Then, fault detection 

test is based on checking if zero is contained or not in the residual interval after propagating the parameter uncertainty to the 

residual (Fagarasan et al., 2004; Puig et al., 2008; Sainz et al., 2002, Ploix, 2006).  Alternatively, in this paper, parameter 

uncertainty will be bound using a more complex shape: a zonotope, that will allow to obtain less conservative fault detection 

models and results. The use of zonotopes in fault detection has already been suggested in the literaure. See for example 

(Combastel et al, 2008; 2009).  

 

One of the key points in model based fault detection is how models and their uncertainty bounds are obtained. Classical system 

identification methods provide only an estimation of the nominal model but do not provide a reliable means for bounding the 

uncertainty associated with the model.  

This problem has been mainly stated in many papers coming from robust control field. Recently some methodologies that 

provides a model with its uncertainty has been developed but thinking always in its application to control (Reinelt, 2002). In 

fact in this community, robust system identification is used to describe the new methodologies of system identification that 

provide not only a nominal model but also a reliable estimate of the uncertainty associated with the model. See for example the 

set-membership parameter estimation algorithms proposed by Milanese (1996), that produces a set of parameters that are 

consistent with the model structure that has been selected and assumed noise bounds. Alternatively, Campi et al. (2009) has 

suggested an adaptation of classical system identifications methods in order to provide the nominal model plus the uncertainty 

bounds for parameters that guarantee that all collected data from the system in non-faulty scenarios will be included in the 

model prediction interval (worst-case parameter estimation).  

 

The main contribution of this paper is to provide worst-case/set-membership parameter estimation algorithms using zonotopes 

to bound the parameter uncertainty and focusing on their application to passive robust fault detection. 
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The structure of the paper is the following: Section 2 is dedicated to describe the problem, first focused on LTI systems. In 

Section 3, two identification approaches for robust fault detection are presented, recalling the underlying hypothesis and 

existing implementation algorithms. In Section 4, the fault detection tests associated to the models delivered by the proposed 

identification approaches are introduced. In Section 5, the performance of the two fault detection approaches in case of additive 

and multiplicative faults are studied. In Section 6, the extension of the indentification algorithms for LTI models to LPV 

models is introduced. In Section 7, a case study based on a well known control benchmark (the four-tanks system) is used to 

exemplify and compare the identification methods for robust fault detection presented in this paper. Finally, in Section 8, the 

conclusions of the paper are provided. 

2. MODEL PARAMETRISATION 

Let us assume that the system can be expressed by an LTI model in regressor form (MA model) with additive noise as follows: 

ˆ( ) ( ) ( ) ( ) ( ) ( )y k k k e k y k e k   φ θ                                                                    (1) 

where: 

- ( )kφ  is the regressor vector of dimension 1 n  which can contain any function of inputs ( )u k  and outputs† ( )y k . 

- ( )k θ Θ  is the parameter vector of dimension 1n    

- Θ  is the set that bounds parameter values.   

- ( )e k is the sensor additive noise bounded by a constant ( )e k  . 

In this paper, the uncertain parameter set Θ  is described by a zonotope centered in a nominal model: 

 0 0 :n n    Θ θ HB θ Hz z B                                                                                  (2) 

where:  

- 0 nθ    is the nominal model.  

- n nH   

- 1n nB   is a unitary box composed by n unitary (  1,1 B ) interval vectors.   

-  denotes the Minkowski sum. 

 

Notice that a particular case corresponds to the case the parameter set Θ  is bounded by an interval box: 

1 1[ , ] [ , ] [ , ]i i n n 
          Θ    where 0

i i i     and  0
i i i     with   0i   and  i=1,…, n   
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This set can be viewed as a zonotope with H equal to a n n  diagonal matrix:  

1 2( , ,..., )ndiag


   H                                                                               (3) 

 

Depending on the consideration of variation of parameters from one instant k-1 to the following instant k two very different 

approaches, based on model (1), can be defined. 

 

1. No restriction on variation in parameters, this is 

 ( ) ( 1) ,  k k k    θ θ                                                                                   (3) 

Then the parameter can vary in one time instant to the farthest parameter in the set  , this is the worst-case variation. In the 

following this approach will be called worst-case approach.  

 

This approach was first suggested by Ploix (1999) in the context of fault detection. Further works using this approach are 

Adrot (2000), Calafiore (2002) and Campi (2009). 

 

2. No variation in parameter is considered, this is 

( ) ( 1) 0,  k k k   θ θ                                                                                      (4) 

Then, the parameter is unknown but considered constant 

( ) ( 1) ,  k k k   θ θ θ                                                                                       (5) 

Algorithms following this approach are also known as “set-membership parameter estimation” algorithms. In Milanese (1996) 

there is a survey of such methods. 

 

These different approaches will be described in the following two sections.  

 

 

 

3. WORST-CASE APPROACH 

 

                                                                                                                                                                            
†
In this paper we will  focus on the single output case. 
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3.1  Problem definition 

 

Given a sequence of M regressor vector values ( )kφ  and measurement values ( )y k  in a fault free scenario and rich enough 

from the identifiability point of view. The aim is to estimate parameters and their uncertainty of a model parameterised as in 

Eq. (1) that can describe all the measurements ( )y k  considering the worst-case approach, this is no restriction in parameter 

variation.  

 

In this case, the set of uncertain parameters Θ  should be obtained in such a way that all measured data in a fault free scenario 

will be covered by the worst-case predicted output produced by using model (1) and the uncertainty parameter set (“worst-case 

model”), that is ˆ ˆ( ) ( ) , ( )y k y k y k       that can be rewritten as the following equations 

ˆ ( ) ( )y k y k    and  ˆ( ) ( )y k y k          1,...,k M                                                     (6)   

where: 

 ˆ ( ) max ( ) ( ) with ( )y k k k k φ θ θ Θ                                                                         (7a) 

 ˆ( ) min ( ) ( ) with ( )y k k k k φ θ θ Θ                                                                          (7b) 

 

Then at every instant k, the regressor vector φ(k) and the measured output y(k) define two half-spaces kΘ  and kΘ  in n  

with the worst-case conditions (6) as follows:  : ( ) ( )n
k k y k     Θ θ φ θ  and  : ( ) ( )n

k k y k     Θ θ φ θ . 

Then, the sets Θ  and Θ  that fulfil respectively ( ) ( )k y k φ θ   and ( ) ( )k y k φ θ   1,...,k M   are defined by  

1

M
kk

Θ Θ  and 
1

M
kk

Θ Θ  

And finally, a set Θ  that fulfils both worst-case conditions (6) 1,...,k M   satisfies   

   and        Θ Θ Θ Θ                                                              (8) 

The following two figures show graphically one example with 2n θ . 
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1θ

2θ

kΘ

kΘ

( ) ( )k y k φ θ 

( ) ( )k y k φ θ 

1k 

                 

1θ

2θ

1 2 3  Θ Θ Θ Θ

1 2 3  Θ Θ Θ Θ

1k 

2k 

3k 

 

Figure 1. a)  Half spaces kΘ  and kΘ with regressor vector φ(k) and measured output y(k)  for k=1. b)  Sets  Θ  and Θ  with 

data from k=1 to k=3.  

3.1  Worst-case parameter estimation 

Considering that the parameter set Θ  can be described as the zonotope (2), the maximum (7a) and minimum prediction (7b) 

provided by model (1), considering worst-case variation in parameters,  are given by (see Proposition 1 in Appendix) 

0
1

ˆ ˆ( ) ( ) ( )y k y k k  φ H                                                                               (9a) 

0
1

ˆ ˆ( ) ( ) ( )y k y k k  φ H                                                                                (9b) 

where 0ˆ ( )y k  is the model output prediction with nominal parameters:  

0 0ˆ ( ) ( )y k k φ θ      where    0 0 0
1( ,..., )n

  θ                                                                    (10) 

Notice that in the particular case of interval parameters follows 

1
1

( ) φ ( )
n

i i
i

k k


 φ H                                                                                     (11) 

according to (3). Replacing equations (9a) and (9b) in inclusion conditions (6), the optimal zonotope that fulfills the “worst-

case condition” can be computed by solving the Problem 1. 

 

Problem 1: “Worst-case Parameter  Estimation “ (general case) 

min ( ( ))f
H

Θ H  

subject to:  0
1

ˆ( ) ( ) ( )k y k y k  φ H     1,...,k M              
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In this problem, the cost function  f  is usually the interval prediction thickness that can be calculated as 

1
1 1

ˆ ˆ( ( ) ( )) 2 ( )
M M

k k

y k y k k
 

   φ H                                                                   (12) 

Problem 1 can be in general very hard to solve (Campi, 2009). In order to reduce the complexity, the zonotope that bounds Θ  

can be parameterised such that 0 H H , that corresponds with a zonotope with predefined shape (determined by 0H ) and a 

scalar  . Then, in this case, the interval prediction thickness (12) is given by 

0 1
1 1

ˆ ˆ( ( ) ( )) 2 ( ) ( )
M M

k k

y k y k k f
 

      φ H                                                                  (13) 

and restrictions can be expressed as follows: 

0
0

0 1
0 1

ˆ( ) ( )
ˆ( ) ( ) ( )

( )

y k y k
k y k y k

k

 
   φ H

φ H
                                                          

such that Problem 1 can be  rewritten as the Problem 2. 

 

Problem 2: “Worst-case Parameter Estimation” (particular case) 

0 1
1

min 2 ( )
N

k

k
 

  φ H  

subject to:   

0

0 1

ˆ( ) ( )

( )

y k y k

k

 
 

φ H
      1,...,k M   

The optimal solution of this problem is given by: 

 

0

1,..., 0 1

ˆ( ) ( )
sup

( )k M

y k y k

k

  
  
 
 

φ H
                                                                        (14) 

Remark: From Eq. (14) follows: If  0  ,  defines a parameter set Θ parameterised as the zonotope in (2) with 0 H H  

that fulfils conditions (6) for all available data. On the other hand, if 0  then 0ˆ ( ) ( )y k y k  0 and 0ˆ( ) ( )y k y k   

0  1,...,k M  . This means  0 0ˆ ˆ( ) ( ) , ( )y k y k y k       1,...,k M  . i.e. the only source of uncertainty is the sensor 

additive noise.  

 

 

4. Set-Membership approach 
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4.1  Problem definition 

 

As in the worst-case approach (section 3), the aim is to estimate parameters and their uncertainty of a model parameterised as 

in Eq. (1), Given a sequence of data in a fault free scenario and rich enough from the identifiability point of view, that can 

describe all the measurements ( )y k  considering now the set-membership approach, this is no variation in parameters.  

In this case, the model is called a “consistent model” since the predicted behaviour is always inside the interval of possible 

measurements. That is  ˆ( ) ( ) , ( )y k y k y k     or alternatively, it can be rewritten as follows 

ˆ( ) ( )y k y k     and   ˆ( ) ( )y k y k        1,...,k M                                                    (15) 

Where 

 ˆ( ) ( )y k k φ θ  and θ Θ                                                                  (15) 

As  θ Θ  conditions (15) are satisfied  and ˆ( )y k can be bounded by ˆ ˆ ˆ( ) ( ) ( )y k y k y k   where ˆ( )y k and ˆ ( )y k  are defined as 

in (7), set-membership conditions (15) can be rewritten as 

ˆ( ) ( )y k y k    and   ˆ ( ) ( )y k y k       1,...,k M                                                    (17) 

 

In this case, the model is called a “consistent model” since the predicted behaviour is always inside the interval of possible 

measurements. 

 

At every instant k the regressor vector φ(k) and the measured output y(k) with the set-membership conditions (15) define a strip  

 : ( ) ( )n
k y k k       F θ φ θ                                                                     (18) 

Finally, a set Θ  that fulfils both set-membership conditions (15) 1,...,k M   satisfies  1

M
kk

 Θ F . The following two 

figures show graphically one example with 2n θ . 
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1θ

2θ

 1 : (1) (1)n y     F θ φ θ   
1θ

2θ

F1

F2

F3

 

Figure 2. a)  Strip with regressor vector and φ(k) and measured output ( )y k  for k=1. b)  Intersection of the three stripes with 

data from k=1 to k=3.  

  

4.2 Set-Membership parameter estimation  

 

Using this approach, the parameter set Θ  that contains all models consistent with data, known as Feasible Parameter Set 

(FPS), is defined as follows: 

 | ( ) ( ) ( ) , 1, ,n y k k y k k M      FPS θ φ θ                                                     (19) 

The exact description of FPS  is in general not simple, and existing algorithms usually approximate the FPS using an 

inner/outer simpler shapes as boxes, parallelotopes, ellipsoids or zonotopes (Milanese 1996). The approximation set is called 

Approximated Feasible Parameter Set ( AFPS ).  In this paper, algorithms that provided inner/outer  AFPS using zonotopes  in 

case of using model (1) are used. 

 

Outer approximations 

Outer approximation algorithms find the parameter set Θ of minimum volume such that FPS Θ . This kind of algorithms 

usually implies an excessive computational cost and recursive forms have been proposed in Vicino and Zappa (1996), in case 

of using parallelotopes,  and in Bravo et al. (2006), in case of using zonotopes. These recursive approaches are based in 

computing iteratively the outer AFPS using parallelotopes/zonotopes and related operations as follows 

2 1 1

1k k k

M M



 

 

  

AFPS AFPS F

AFPS AFPS F

Θ AFPS AFPS F




                                                                                   (20)                                  
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With 1AFPS  is the initial set enough large and kF  defined as in (18). For more details in case outer AFPS using zonotopes, 

see Outer approximation of the Feasible Parameter Set (FPS) using zonotopes in Appendix. 

 

Inner approximations  

Inner approximation algorithms find the parameter set Θ  of maximum volume such that Θ FPS . 

A set-membership inner approximation using zonotopes parameterised as in Eq (2) for models expressed as in (1) can be 

obtained in a similar way as proposed to address Problem 2 for the worst-case zonotope. The inner approximation algorithm 

comes from the fact the FPS conditions (19), considering no variation in parameters, can be bounded by 

ˆ ˆ( ) ( ) ( ) ( ) ( )y k y k k y k y k     φ θ                                                         (21) 

where ˆ( )y k and ˆ ( )y k  are defined as in (7) and, in the case of Θ  is a zonotope, calculated as in (9). Then, the maximum inner 

zonotope, centered in 0θ , with consistent parameters can be computed solving the Problem 3. 

 

Problem 3: “Inner Set-membership Zonotope”  (general case) 

max ( ( ))f
H

Θ H  

subject to: 0
1

ˆ( ) ( ) ( )k y k y k  φ H    1,...,k M           

In this case, the cost function f is the volume of the zonotope defined by (2). This volume only depends on matrix H and of nB  

with a volume equal to n2 . In the particular case, H is a square matrix ( n n  ): ( ) 2 det( )nvol Θ H . See (Montgomery, 

1989) for more details.  

As in Problem 1, the particular case 0 H H  it will be considered. Then, ( ) ( )vol fΘ  ‡ and restrictions of Problem 3 can 

be expressed as: 

0
0

0 1
0 1

ˆ( ) ( )
ˆ( ) ( ) ( )

( )

y k y k
k y k y k

k

 
   φ H

φ H
                                                       (22) 

such that it can be rewritten as follows 

 

 

                                                 
‡ For example if H0 is a square matrix 0( ) 2 det( )

n
vol Θ H      
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Problem 4: “Inner set-membership zonotope”  (particular case)  

max ( ) ( )vol fΘ


  

subject to:     

0

0 1

ˆ( ) ( )

( )

y k y k

k

 
 

φ H
         1,...,k M   

 

The optimal solution of this problem is given by: 

 

0

1,..., 0 1

ˆ( ) ( )
inf

( )k M

y k y k

k

  
  
 
 

φ H
                                                         (23) 

Remark: From Eq. (23) follows: If 0  ,  defines a parameter set Θ  parameterised as the zonotope in (2) with 

0 H H with consistent parameters according to (19).  While, if 0  , only nominal model is consistent with all data 

measurements. Then 0Θ θ . Finally, if  0  , then   Θ . 

 

 

 

 

 

 

 

5. GENERAL CONSIDERATIONS 

 

5.1  Nominal parameters 0θ  and uncertainty shape 0H    

In order to solve Problems 1-4 a nominal estimation 0ˆ ( )y k  given by the nominal parameters 0θ  is needed. These parameters 

can be obtained in different ways as conventional identification methods (least squares method, for example), using the 

physical knowledge of the system or using the central point of the outer set-membership approximations (Milanese, 1996 and 

Ploix 1999). 

On the other hand, in order to transform general Problems 1 and 3 (very difficult to solve) to Problems 2 and 4 (easy to solve) 

it is necessary to determine a matrix 0H  that determines the uncertainty shape. This matrix can be given by the covariance of 
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parameters calculated using conventional identification methods (least squares method, for example that determines a square 

covariance matrix), using the physical knowledge of the system, by the method proposed by Bhattacharyya (1995)  (diagonal 

square matrix) or by the zonotope obtained in outer set-membership approximations. 

 

5.2 Worst-case versus set-membership 

 

In order to compare both approaches, now we will consider model (1) with parameters θ  belonging to the set Θ  but 

considering different bounds of additive noise wc and sm  for the worst-case and set-membership approaches, respectively. 

The worst-case and set-membership conditions given by (6) and (17) are equivalent when noise bounds satisfy (see 

Proposition 2 in Appendix) 

1
2 ( )sm wck   φ H                                                                                   (24) 

This condition comes due to fact that worst-case approach considers intrinsically variation in parameters while the set-

membership approach does not consider such variation. Thus, the bound additive noise sm  needs an “extra” term 

(
1

2 ( )kφ H ) that takes into account this variation. 

 

In case of cs wc   , as was considered before, then 0H  meaning that the nominal model 0θ  with additive noise describes 

the measurements in both approaches: worst-case and set-membership. 

 

But in case of variation in parameters ( 0H ),  set-membership algorithms (inner and outer) an extra bound should be taken 

into account additionally to the additive noise. 

 

These conclusions can be extracted from worst-case and set-membership uncertain parameter sets ( wcΘ and smΘ ) obtained 

using Problems 2 and 4 and considering the same additive noise bound  . 

 

Given a sequence of M regressor vector values  ( )kφ  in a fault free scenario and a model parameterised as in Eq. (1), if  

Problem 2 provides 0wc   (obtained using Eq (14)) implying  that 0ˆ( ) ( ) 0y k y k    for some  1,...,k M . Then, 

Problem 4 would provide 0sm   (obtained in Eq. (23)) meaning that it does not exist any model consistent with all available 
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data. This result can be explained because in the set of considered data, not only additive noise is present but also parametric 

uncertainty.  

On the other hand, if Problem 4 provides  0sm   (obtained in Eq. (23)) implying 0ˆ( ) ( ) 0y k y k    for all 

 1,...,k M . Then, Problem 4 would provide 0wc   (obtained using Eq. (14)), meaning that the collected data is described 

by nominal model plus noise without parameter uncertainty.  

Finally, if Problem 2 provides 0wc   (obtained using Eq. (14)), then: 
 

 0

1,...,
ˆsup ( ) ( ) 0

k M
y k y k


   . This implies 0sm    

(obtained in Eq. (23)). Thus, worst-case model and set-membership model are equal to the nominal model 0θ . 

 

6. FAULT DETECTION TESTS ASSOCIATED TO THE FAULT IDENTIFICATION APPROACHES 

According to Guerra (2008), fault detection, considering the model (1) and the parameter uncertainty set parameterised as in 

(2), can be either based on a “direct” or “inverse” test.  These two tests are associated to each of the two parameter estimation 

approaches presented in Sections 3 and 4: the direct test with the worst-case approach while the inverse test with the Invariant 

approach. 

 

6.1  Direct test 

The direct test is based on the evaluation of the residual obtained from difference between measurements and model prediction 

at every instant k 

ˆ( ) ( ) ( ) ( ) ( ) ( )r k y k y k y k k k   φ θ                                                                           (25) 

 
Ideally, the residual given by Eq (25), known as parity equation (Iserman, 2006), in case that neither modelling errors nor noise 

were present, it should be different from zero in a faulty scenario and zero otherwise. However, because of modelling errors, 

the detection test is equivalent to check the following condition assuming parametric uncertainty 

0 ( )k                                                                                (26) 

where ( )k  is the set of possible residuals according to the parameter uncertainties and the additive noise. 

 ( ) ( ) | ( ) ( ) ( ) ( ) ( ); ( )  and ( )k r k r k y k k k e k k e k       φ θ θ Θ                                                                   (27) 

Or, alternatively, to check  if   

( ) ( )y k k                                                                                            (28) 
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where ( )k  is the direct image of the uncertain model defined as 

 ˆ ˆ ˆ ˆ( ) ( ) ( ) | ( ) ( ) ( ), ( )  and ( ) ( ) , ( )k y k e k y k k k k e k y k y k            φ θ θ Θ                                    (29) 

 

Remark: In the evaluation of possible residuals ( )k  and the direct image not consideration of  ( 1)k θ  is assumed, then no 

restriction in variation from parameter ( 1)k θ  to parameter  ( )kθ  is assumed. 

 

6.2 Inverse test 

The inverse test consists on checking at every instant k if there not exist any parameter in the parameter uncertainty set Θ such 

that model (1) is consistent with all the system measurements.  

| ( ) ( ) ( )y n n y n     θ Θ φ θ           1,...,n k                                               (30) 

 

This is the same that check if  

k k FPS F                                                                                          (31) 

 

where kFPS  is the Feasible parameter set consistent with all the previous measurements at instant k and belonging to Θ  

 | ( ) ( ) ( ) , 1, , 1k y i i y i i k       FPS θ Θ φ θ                                              (32) 

and kF  is the strip of parameters  consistent with measurement k defined in (18)  

 

kF

kFPS

kF

kFPS

 

Figure 3. Fault and No Fault revealed situations using the FPS 
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In case of using approximations of the FPS , for instance outer zonotopes, as was described on section 4.2, this test can be 

easily implemented using the recursively parameter estimation procedure  (20) but considering an initial set 

                                        1 AFPS Θ                                                                                            (33) 

Then (31) leads to      

1k k k    AFPS AFPS F                                                                                   (34) 

 

When using in (34) an outer approximation of FPS , denoted as outA FPS , a missed alarm could appear 

when 1out k  A FPS  is obtained since  outA FPS  contains parameters that do not belong to FPS  (Fig 4 c). On the other 

hand, if an inner approximation inA FPS  is used in (34), a false alarm might appear when 1in k  A FPS  is obtained since 

inA FPS  does not contains all the parameters contained in FPS  (Fig 4 d). Thus, in spite of the outer approximation outA FPS  

is preferable in fault detection since avoid false alarms, the inner approximation inA FPS  can provide complementary 

information to the fault detection since the cases presented in Figure 4 can be distinguished. Moreover, knowing both 

approximations the size of region in between them can give an idea of the precision of the FPS  approximation. 
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a) Fault

kF

b) No Fault revealed

kFPS

outA FPS

inA FPS

kFPS

outA FPS

inA FPS

kF

c) Undecided

kF

d) Undecided

kFPS

outA FPS

inA FPS

kFPS

outA FPS

inA FPS

kF

 

 

Figure 4. Different situations that can be distinguished in fault detection when using inner and outer approximations 

 

Another way to understand the inverse test is to consider it as a parameter estimation (Puig, 2006), where for every time instant 

k, the parameter vector ( )kθ  can be estimated from input and output measurements over a N samples temporal window as 

follows 

ˆ( ) ( ( )) ( )k k k g Yθ  §                                                                                    (35) 

where 

( )

( )

( )

k N

k

k

 
   
 
 


φ

φ

  and 

( )

( )

( )

y k N

k

y k

 
   
 
 

Y  

Then, the inverse test, in a similar way than the direct test, is based on evaluating the following residual (Gertler, 1998) 
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ˆˆ( ) ( ( )) ( ) ( ( ))( ( ) ( )) ( ) ( )k k k k k k k k    r g R g Y Yθ θ θ                                    (36) 

with 

( )

( )

( )

r k N

k

r k

 
   
 
 

R  and where ( )kθ is the normal value obtained from system modelling in a non-faulty situation. This, 

the detection test (30) can be rewritten as follows 

 

0 ( )k θ                                                               (37) 

where  

 ˆ( ) ( ) | ( ) ( ) ( ), ( ) kk k k k k k   r rθ θ θ θ θ θ AFPS                                    (38) 

Remark: The implementation of (37) instead of (30), that always can be implemented, is subject to the condition of permanent 

excitation ( ( )k  is invertible). 

 

7. FAULT SENSITIVITY OF THE PROPOSED FAULT DETECTION TESTS 

In fault detection, two kinds of faults are typically considered: additive faults (in input/output variables) and multiplicative 

faults (in parameters) (Gertler, 1998). Thus, including both type of faults in the system (1),  the  residual can be written as 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )yy k k k f k k f k k f k e k    φ θφ θ θ φ                                    (39) 

where ( )kφf  and ( )yf k  represent the input and output sensor faults (additive) and ( )kθf  represent the parametric faults 

(multiplicative). 

Eq. (1) can be rewritten as 

0( ) ( ) ( ) ( )fy k y k k e k                                                    (40) 

where 0 ( )y k  is the non-fault response and ( )f k  is the effect of the faults 

0 ( ) ( ) ( )y k k k φ θ                                             (41) 

( ) ( ) ( ) ( ) ( ) ( )f yk f k k f k k f k   φ θθ φ                                         (42) 

 

                                                                                                                                                                            
§ In the case of a linear in the parameters models, Eq. (30) corresponds to the non-recursive least squares formula: 

1( ( )) ( ( ) ( )) ( )t tk k k kg      
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According to Gertler (1998), the minimum detectable fault corresponds to a fault that brings a residual to its threshold 

(“triggering limit”), assuming that no other faults and nuisance inputs are present.  

 

In this section it will be determined the minimum effect of a fault ( )f k  that will guarantee the fault detection in the fault 

detection methods presented in section 6. 

 

Direct test 

 

In case of using  model (1), the set of possible residual defined in (27) can be bounded by 

_

( ) [ ( ), ( )]k r k r k                                                              (43) 

where ˆ( ) ( ) ( )r k y k y k     and  
_

ˆ( ) ( ) ( )r k y k y k   , with ˆ ( )y k  and ˆ( )y k  as defined in (7), then test (26) detects an 

inconsistency when  

  ( ) 0r k   or 
_

( ) 0r k                                                               (44) 

that, considering (40), implies   

0( ) ( ) ( )ˆ( )f k k e ky k y                                                    (45a) 

0( ) ( ) ( )ˆ( )f k k e ky k y                                                    (45b) 

In order to bound the inequalities the smallest values of 0 ( )ky  and ( )e k  are considered in (45a) and the biggest values in 

(45b), then 

( ) 2ˆ ˆ( ) ( )f k y k y k      and   ( ) 2ˆ ˆ( ) ( )f k y k y k     

This is 

( ) 2ˆ ˆ( ) ( )f k y k y k                                                   (46) 

That in the case of bounding the parameters by a Zonotope leads to 

1
( ) 2 ( ) 2f k k   φ H                                                              (47) 
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Inverse test  

In case of using  model (1), and the test based on (34) where the Aproximation of the feasible parameter set at instant k can be 

bounded by a zonotope as 

0 n
k k k AFPS θ BX                                                                       (48) 

and the strip kF  as defined in (18) can be implemented using the zonotope support strip (Bravo 2006) defined by  

 : ( )n
k d uq k q   F θ φ θ                                                 (49) 

where  

0
1

( ) ( )u k kq k k φ θ φ X                                                           (50a) 

0
1

( ) ( )d k kq k k φ θ φ X                                                           (50b) 

Then the test  (34) is equivalent to check if  

( )dq y k    or ( )uq y k                                                      (51) 

For more details see Vicino & Zappa (1996). 

Inequalities (50) taking into account (40) lead to 

0( ) ( ) ( )f dk q k e ky                                                         (52a) 

    0( ) ( ) ( )f uk q ky e k                                                        (52b) 

In order to bound the inequalities the biggest values of 0 ( )ky  and ( )e k  are considered in (52a) and the smallest values in 

(52b), then 

1
( ) 2 ( ) 2f kk k   φ X   and   

1
( ) 2 ( ) 2f kk k    φ X  

This is 

1
( ) 2 ( ) 2f kk k   φ X                                                      (53) 

 

As can be extracted from  (47) and (53) the minimum effect detectable of a fault have the same structure from the direct and 

inverse tests. 

( ) ( ( ))f rk k   φ                                                              (54) 

where ( )r k  is the interval prediction thickness considering the additive noise. This is  

( ) max( ( ) ( ) ( )) min( ( ) ( ) ( ))r k k k e k k k e k    φ θ φ θ                                 (55) 
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with ( ) kk θ Θ  and ( )e k    

the difference is that the set of parameters kΘ  and  additive noise may be different. 

 

In this work we will focus only in the instant output sensor faults (additive) and parametric faults (multiplicative).  

In case of instant output sensor faults the effect of the fault is 

( ) ( )f yk f k                                                                     (56) 

while in the case of parametric fault is  

( ) ( ) ( )f k k f k  θφ                                                                (57) 

 

Remark that the effect of parametric faults depends on the regressor vector.  

 

 

8. CASE STUDY: FOUR TANKS SYSTEM 

8.1 Description of the system 

 

A quadruple-tank process, proposed by Johansson (2000), will be used to illustrate the results presented in this paper. A 

schematic diagram of the system is shown in Fig. 4a. The process inputs are 1v and 2v  (input voltages to the pumps) and the  

outputs are the tank levels 1h and 2h . 

 

The experiments presented in this section just consider the residual coming from the first tank, assuming that levels 1h and 3h  

and voltage 1v  are measured: 

31 1 1 1
1 3 1 1

1 1 1

2 2 ( )
adh a k

gh gh v e k
dt A A A

    


                                                  (45) 

where 1( )e k is the measured noise( 1( ) 0.05e k cm  ) and 2
1 28A cm , 3

1 3.33 /k cm Vs , 2981 /g cm s  and 1 0.7  assumed 

constants.  

Eq. (45) can be discretized by the Euler method with sampling time 1t s  : 
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31 1 1
1 1 1 3 1 1

1 1 1

( ) ( 1) 2 ( 1) 2 ( 1) ( 1) ( )
aa k

h k h k gh k gh k v k e k
A A A

        


                     (46) 

and can be transformed in a LPV model as 

1 1 1 1 2 3 2 1 1( ) ( ( )) ( 1) ( ( )) ( 1) ( 1) ( )h k a p k h k b p k h k b v k e k                                      (47) 

where: 1 1( ) ( 1)p k h k   and 2 3( ) ( 1)p k h k   are the scheduling variables; 1
1

1 1

2
( ( )) 1

( )

a g
a p k

A p k
   and 

3
1 2

1 2

2
( ( ))

( )

a g
b p k

A p k
  are the LPV parameters;  1 1

2
1

k
b

A


  is a LTI parameter. 

 

8.2 Experiment definition 

 

In order to apply identification techniques presented in Section 3, a fault free scenario has been recorded (Fig. 4b).  

 

                     

0 20 40 60 80 100 120 140
0

5

10

15

Time (s)

cm

Levels y1 and y3

 

 

y
1

y3

0 20 40 60 80 100 120 140
0

0.5

1

Time (s)

V
ol

ts

Pump 1 (v1)

 

                                                   (a)                                                                                    (b) 

Figure 4: (a) Quadruple-tank process.  (b) Fault free scenario  

 

To illustrate and compare the different behaviour of the two proposed identification methods, two cases will be considered: 

 

Case 1. Exact nominal model based in (47), that can be expressed in regressor form as follows:  

1( ) ( ) ( ) ( )ky k k e kφ θ p                                                    (48) 

1h 2h

3h 4h
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with: 1 1( 1) ( 1)y k h k   , 
1

1

2

( 1)

( ) ( 1)

( 1)

T
y k

k u k

u k

φ

 
   
  

 and  
1

1 2

2

( ( ))

( ) ( ( ))k

a p k

b p k

b

θ p

 
   
 
 

 

where 1 3( 1) ( 1)u k h k   , 2 1( 1) ( 1)u k v k   , 1 1( ) ( 1)p k y k   and 2 1( ) ( 1)p k u k  . 

 

To apply the methods of identification and fault detection described in Sections 3 and 4 to the LPV model, Eq. (48) can be 

rewritten as: 1 1ˆ'( ) ( ) ( ) '( ) ( )y k k e k y k e k   φ ω  with: 0
1 1 1ˆ'( ) ( )y k y k y   and 1 2 3 0( , , )T n      ω Ω ω HB where 

0 0
1ˆ ( ) ( ) ( )ky k k φ θ p . Nominal LPV parameters come from Eq. (47) 

1

0

2

0.1123
1

( 1)

0.1123
( )

( 1)

0.0833

k

p k

p k

   
 

  
 

 
  
 

θ p                                                                                 (49) 

 

Case 2. Approximate nominal model based on approximating LPV parameters 1( ( ))a p k  and 1 2( ( ))b p k  coming from Eq. (47)  

by their mean values:  0 0.9461a a  , 0
1 1 0.0680b b  .  
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Figure 5: LPV parameter of Case 1 and approximate parameter of Case 2 evolutions in the fault free scenario 

 

Remark: Notice that in Case 1 the only source of uncertainty is the additive noise in the measurements while in Case 2 

additionally there is some parametric uncertainty because of the approximation of the LPV parameters by a constant value. 

 

 

7.3 Worst-case identification results 
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A worst-case model has been obtained solving Problem 2  using a diagonal square  matrix  0 0 0
0 1 2 3, ,diag   H  where 

0
1 0.0385  , 0

2 0.0781  , 0
3 0  (no uncertainty in parameter 2b  has been considered) are obtained from the maximum 

variations in parameters 1( ( ))a p k  and 1 2( ( ))b p k  in the considered operating range:  1 2.34,10.54y cm  and  1 1,15u cm . 

 

Case 1 Results. In this case since there is not parametric uncertainty, all the data could be explained by the worst-case model 

just adding the noise bounds to the predicted output provided by the nominal model. This is confirmed when applying Eq. (14), 

solution of Problem 2, since -0.0063 0   , implying no uncertainty in parameters is necessary to cover the data with the 

worst-case prediction as discussed in Section 3.4 

 

Case 2 Results. In this case, the solution of Problem 2 using Eq. (14) leads to  0.4523  . Taking into account the considered 

matrix H0 obtained at the beginning of this section results in  0 0
1 2, ,0diag   H . This means that the parametric uncertainty 

corresponding to a and b1 is 0
1 and 0

2 , respectively (See Fig. 6a). From Fig. 6b, it can be noticed that all measurements 

are covered by the bounds of the worst-case prediction.  
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Figure 6: (a) Uncertain parameters a  and 1b . (b) Measured output and bounds 

 

 

7.4 Set-membership identification results 
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Using the set-membership estimation methods proposed in Section 3.2, the FPS has been approximated by an outer zonotope. 

Additionally, the inner zonotope  has been obtained solving Problem 4 with Eq. (20) and using as H0 the H matrix of the outer 

zonotope. 

Case 1 Results. In this case the matrix H of the set-membership outer zonotope calculated is 3 0.4 1.3
10

1 0.8
  

   
H   and the 

solution of Problem 4  using (14) leads to 0.59  . Both inner and outer zonotopes calculated are showed in Fig. 7, where all 

strips obtained from every measurement are presented.  
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(a)                                                                                    (b) 

Figure 7: (a) Set-membership inner and outer zonotopes corresponding to Case 1. (b) Detail 

 

Case 2 Results. In this case since there is parametric uncertainty and the considered set-membership model only considers 

additive noise, the FPS  is empty. That is 
1

M
kk
 F , implying that does not exist a set-membership model with the 

assumed structure consistent with all the identification data. But increasing the noise bound ( 0.05cm  ) by the “extra” term 

1
2 ( )kφ H  (with 0.4523 (0.0385,0.0781,0)diagH  obtained from the worst-case model corresponding to Case 2) , a set-

membership model can be obtained with a FPS equal to the one of the worst-case model presented in Figure 6a. 

 

 

7.5 Fault detection  results 

In order to show the behaviour of the two tests in front of different faults, two different kinds of faults have been simulated:  

additive (in sensors) and a multiplicative (in components) faults. 
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The model that has been used in the direct test is the identified using the worst-case approach with the approximate nominal 

model (Case 2) as described in Section 7.3. On the other hand, the model that has been used in the inverse test is the identified 

using the set-membership approach with nominal LPV model (Case 1) as described in Section 7.4.  

 

Fault scenario 1: “Additive  fault in input u1 
1

12 Voltsuf   at t=60s” 

Figure 8 shows the behaviour of the direct test. In this figure, it can be seen that as the measurement at t=61s is out of the 

bounds, calculated by the worst-case model, the fault is detected at this instant. On the other hand the residual for t>60s tends 

to a constant value. 
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Figure 8. (a) Measured output and bounds. (b) Direct test Fault detection in fault scenario 1  

 

Figure 9 shows the behaviour of the inverse test in this scenario. In this figure, it can be seen that as the stripe at t=61s does not 

intersect the outer zonotope, of the set-membership model, the fault is detected at this instant. On the other hand the 

intersection of the stripes for t>60s is empty and then does not define a new set of parameters consistent with the fault data. 

This fact can be explained because the fault is additive. 
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                                                                  (a)                                                                   (b) 

Figure 9. Inverse test fault detection in fault scenario 1: (a) Outer and inner zonotope  and hyper-stripe at t=61s. (b) Outer and 

inner zonotope  and hyper-stripes for t>60s    

 

Fault scenario 2:  “Multiplicative Fault 70% of widening in the exit of tank number 3” (parameter a1 in Eq. (46)) at t=20s”. 

 

Fig. 10 shows the behaviour of the direct test. In this figure, it can be seen that as the measurement is not out of the bounds, 

calculated by the worst-case model, until at t=82s the fault is not detected until this instant. On the other hand the residual for 

t>82s varies. 
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Figure 10. (a) Measured output and bounds. (b) Direct test Fault detection in fault scenario 2  

 

Figure 11 shows the behaviour of the inverse test in this scenario. In this figure, it can be seen that as the stripe at t=21s does 

not intersect with the outer zonotope, of the set-membership model, the fault is detected at this instant. On the other hand, the 

intersection of the stripe for t>20s define a new set of parameter consistent with the fault data that can be approximated by 

zonotopes. Implying the existence of a parametric fault. 
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Figure 11. Inverse test fault detection in fault scenario 2: (a) Outer and inner zonotopes  and hyper-stripe at t=21s. (b) Outer 

and inner zonotopes  and hyper-stripes for t>21s with the Outer and inner zonopes consistent with the new data.   

8.6 Sensitivity results 

According to the results obtained in Section 5, the values of sensitivity to additive and multiplicative faults have been obtained 

for direct and inverse test. This sensitivities have been calculated as the steady-state value of the transfer functions defined by 

equations (36) and (37) for additive and multiplicative faults in direct test. On the other hand, (38) and (39) for additive and 

multiplicative faults in inverse test. 

These sensitivities are showed in Fig. 12 and 13, where it can be seen that sensitivity of direct test to additive faults is constant 

as sensitivity of inverse test to multiplicative faults. But sensitivity of direct test to multiplicative faults depends on the 

operating point as sensitivity of inverse test to additive faults. 
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Figure 12. Direct and inverse test fault sensitivity to additive faults 

 
 



 
 

-28- 

 

0 20 40 60 80 100 120 140
0

5

10

15

S
r f 

1

Sensitivity direct test to multiplicative faults

0 20 40 60 80 100 120 140
-15

-10

-5

0

S
r f 

2

0 20 40 60 80 100 120 140
-1

-0.5

0

S
r f 

3

time (s)

20 40 60 80 100 120 140
0

0.5

1

1.5

S
r 

f 
1

Sensitivity inverse test to multiplicative faults

20 40 60 80 100 120 140
0

0.5

1

1.5

S
r 

f 
2

20 40 60 80 100 120 140
0

0.5

1

1.5

S
r 

f 
3

time (s)  
Figure 13. Direct and inverse test fault sensitivity to multiplicative faults 

 
 
 
 
 
 

9. CONCLUSIONS 

In this paper, two identification approaches for robust fault detection are presented: namely the worst-case and set-membership 

approaches. The worst-case approach considers parametric uncertainty and additive noise. On the other hand, the set-

membership approach considers only uncertainty due to additive noise but, by means of introducing an extra variable noise, 

can be considered variation in parameters. These different assumptions on uncertainty sources leads to different parameter 

uncertain sets. When applying these models to fault detection every identification approach should be used with the associated 

fault detection test: The model obtained using the worst-case approach with the direct test since it is based on propagating the 

parameter uncertainty to the residual or predicted output, while the model obtained using the set-membership approach is 

associated with the inverse test since it is  based on checking if there is a value inside the model parameter uncertainty set that 

can explain the measured output. In the inverse test two approximations can be used: The outer approximation, conservative 

that can mask some faults, and the inner approximation, restrictive that can indicate a fault when no occurs. The two tests have 

different behaviours, defined by their sensitivities, in front of additive and multiplicative faults. This characteristic could be 

used in the future with fault isolation and estimation purposes. Moreover it has been showed that the direct test presents better 

fault sensitivity with respect to additive faults while the inverse test with respect to multiplicative ones. A case study based on 

a four tanks system has been used to exemplify the properties of the two identification and associated fault detection 

approaches. 
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APPENDIX  

 

Proposition 1. The maximum and minimum prediction values provided by model (1) are given by  

0
1

ˆ ˆ( ) ( ) ( )y k y k k  φ H                                                                               (50a) 

0
1

ˆ ˆ( ) ( ) ( )y k y k k  φ H                                                                                (50b) 

considering that uncertain parameters θ Θ  where Θ  is a zonotope parameterised as in (2) and 0ˆ ( )y k  is the model output 

prediction with nominal parameters:  0 0ˆ ( ) ( )y k k φ θ      where    0 0 0
1( ,..., )n

  θ .                                                                    
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Proof. Taking into account that uncertain parameters θ  belong to the zonotope Θ  parameterised as in (2), the prediction 

provided by the model (1) can be written as follows  

   0 0 0 0

1 1 1 1

ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
n nn n

i ij j j i ij
i j j i

y k k k k k k k k
 

   

   
               

   φ θ Hz φ θ φ H z φ θ φ H z φ θ z φ H           (51) 

Then, ˆ ( ) max ( )y k k



θ Θ

φ θ  is obtained for 
1

( )
n

j i ij
i

sign k




 
   

 
z φ H  and can be expressed as follows 

0 0
1

1 1

ˆ ˆ( ) ( ) ( ) ( ) ( )
nn

i ij
j i

y k k k y k k


 

   φ θ φ H φ H                                                   (52) 

 

Analogously,  ˆ( ) min ( )y k k



θ Θ

φ θ  is obtained when 
1

( )
n

j i ij
i

sign k




 
    

 
z φ H  leading to the following expression 

 0 0
1

1 1

ˆ ˆ( ) ( ) ( ) ( ) ( )
nn

i ij
j i

y k k k y k k
 

   φ θ φ H φ H


                                                   (53) 

This completes the proof. 

 

Proposition 2.  Given a sequence of M output measurements ( )y k  and regressor values ( )kφ , considering model (1) with 

parameters θ  belonging to the set Θ , the comparison of worst-case and set-membership conditions given by (4) and (7) 

considering different bounds of additive noise wc  and sm , respectively. Leads to 

1
2 ( )sm wck   φ H                                                                         (54) 

 

Proof. The set-membership conditions (7) can be rewritten 1,...,k M   as follows 

 

ˆ( ) ( ) smy k y k    and   ˆ( ) ( ) smy k y k                                                (55) 

 

Analogously, worst-case conditions (4)  can be rewritten 1,...,k M  as follows 
 

ˆ( ) ( ) wcy k y k   and  ˆ( ) ( ) wcy k y k                                                 (56) 
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Both conditions (55) and (56) are equivalent when 

ˆ ˆ( ) ( )wc smy k y k     and ˆ ˆ( ) ( )wc smy k y k                                     (57) 

 

that leads to the single condition  

ˆ ˆ( ) ( )sm wcy k y k                                                                (58) 

 

Finally, (54) follows from (58) taking into account that 
1

ˆ ˆ( ) ( ) 2 ( )y k y k k  φ H  from Proposition 1. This completes the proof. 

 

Outer approximation of the Feasible Parameter Set (FPS) using zonotopes  (Bravo et al. 2006)  

 | ( ) ( ) ( )n
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Then  1k k k  AFPS AFPS F  
 

with 0
1 1 1

n
k k k   AFPS θ BX , 
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