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SUMMARY

In this paper, robust fault detection based on adaptive threshold generation of a non-linear system described
by means of a linear parameter-varying (LPV) model is addressed. Adaptive threshold is generated using
an interval LPV observer that generates a band of predicted outputs taking into account the parameter
uncertainties bounded using intervals. An algorithm that propagates the uncertainty based on zonotopes is
proposed. The design procedure of this interval LPV observer is implemented via pole placement using
linear matrix inequalities. Finally, the minimum detectable fault is characterized using fault sensitivity
analysis and residual uncertainty bounds. Two examples, one based on a quadruple-tank system and
another based on a two-degree of freedom helicopter, are used to assess the validity of the proposed fault
detection approach. �

KEY WORDS: fault detection; linear parameter-varying; interval LPV observer; linear matrix inequalities;
zonotopes; minimum detectable fault

1. INTRODUCTION

Many model-based fault detection techniques, mostly based on linear models, have been inves-
tigated and developed in the literature over the last few years [1–3]. However, physical systems
are inherently non-linear. This has motivated the interest of researchers in the development and
application of non-linear FDI methodologies [4]. An attractive alternative to represent non-linear
systems is to use linear parameter-varying (LPV) techniques (see [4, 5]). The LPV approach is
particularly appealing whenever non-linear plants can be modeled as time-varying systems with
online measurable state-depending parameters [6, 7].

But, in the LPV approach, as in any model-based FDI approach, modeling errors and disturbances
are always presented when applied to real complex engineering systems. Hence, in order to
increase the reliability and performance of model-based fault detection, the development of robust
fault detection algorithms should be addressed. The robustness of a fault detection system means
that it must only be sensitive to faults, even in the presence of model-reality differences [1].
One of the approaches to robustness, known as active, is based on generating residuals that are
insensitive to uncertainty, while at the same time sensitive to faults. This approach has been
extensively developed these last years for several researchers using different techniques: unknown
input observers [8], eigenstructure assignment [9] or structured parity equations [2]. Extensions to
LPV systems have recently started to appear and can be found in [4, 10–13]. Using one the active
approaches, the robustness with respect to unknown disturbances is solved. But, the robustness
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problem with respect to modeling errors is more difficult to solve. The reason is that the uncertainty
distribution matrix is normally unknown and time varying [2]. Moreover, there could be too many
disturbances/uncertainties to be decoupled due to the lack of freedom. An alternative approach to
handle modeling uncertainty, known as passive, is based on enhancing the robustness of the fault
detection system at the decision-making stage. The aim with the passive approach is to determine,
given a set of models, if there is any member in the set that can explain the measurements.
A common approach to this problem is to propagate the model uncertainty to the alarm limits of
the residuals generating an adaptive threshold. When the residuals are outside the alarm limits
it is argued that model uncertainty alone cannot explain the residual; and therefore, a fault must
have occurred. The goal of the adaptive threshold is to minimize the missing alarm rates due to
the effects that modeling uncertainties will have on the residuals. However, this approach has the
drawback that faults that produce a residual deviation smaller than the residual uncertainty due to
parameter uncertainty will not be detected. Adaptive threshold generation has been a very active
area of research in robust fault detection. Since the seminal works of [14, 15], many researchers
have analyzed how the effect of model uncertainty should be taken into account when determining
the optimal threshold to be used in residual evaluation. In these last years, the research on passive
robust fault detection methods has been an active area in the FDI community [16–19]. Most of
these methods, known as set-membership, assume that the noise and/or parameters are bounded.

The aim of this paper is to develop a passive robust fault detection method for non-linear systems
that can be represented using LPV models. The time-varying parameters of the LPV model can
be adapted using some known scheduling function that can be tuned using the LPV identification.
However, as a result of this identification process there is some modeling uncertainty in the LPV
parameters that should be considered in the fault detection. The proposed approach uses an interval
LPV observer to generate an adaptive threshold using a zonotope-based algorithm inspired by
Alamo et al. [20] who takes into account parametric uncertainty. This approach is presented in [21]
for LTI systems and here is extended to LPV systems. Interval observers, proposed originally by
Gouzé [22], provide at every time instant an interval that bounds the effect of parameter uncertainty
on system states/outputs.

The observer gain plays an important role because it determines the residual sensitivity to a
fault and the associated adaptive threshold derived from the model uncertainty [1]. In this paper,
the interval LPV observer gain is designed using linear matrix inequality (LMI) pole placement.
However, this implies that the LPV model of the system should be approximated by a polytopic
LPV model as proposed by Apkarian et al. [5]. The characterization of the minimum detectable
fault is carried out using the residual fault sensitivity analysis.

Finally, two examples, one based on a quadruple-tank system [13, 23] and another based on a
two-degree of freedom helicopter [24, 25], are used to assess the validity of the proposed fault
detection approach.

The structure of this paper is organized as follows: interval LPV observers are introduced in
Section 2. In Section 3, passive robust fault detection using interval LPV observers is addressed
and a method to design the observer is proposed. Section 4 presents the zonotope approach to
approximate the set of states/outputs estimated by the interval LPV observer. In Section 5, the
minimum detectable fault is characterized using fault residual sensitivity. In Section 6, the four
tanks system is used to illustrate the proposed approach. Section 7 presents a second example
based on a two-degree of freedom helicopter that is used to demonstrate the effectiveness of the
fault detection approach.

2. INTERVAL LPV OBSERVERS

2.1. LPV representation

Let us consider that the non-linear system to be monitored can be described by the following LPV
representation:

x(k+1)= A(ϑ̃k)x(k)+B(ϑ̃k)u0(k)+Fa(ϑ̃k) fa(k) (1)
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y(k)=C(ϑ̃k)x(k)+D(ϑ̃k)u0(k)+Fy (ϑ̃k) fy(k) (2)

where u0(k)∈�nu is the real system input, y(k)∈�ny is the system output, x(k)∈�nx is the
state-space vector, fa(k)∈�nu and fy(k)∈�ny represent faults in the actuators and system output
sensors, respectively. ϑ̃k := ϑ̃(k) is the system vector of time-varying parameters of dimension
nϑ, which change with the operating point scheduled by some measured system variables pk
(pk := p(k)) and can be estimated using some scheduling function ϑ̃k= f̃ (pk).

In this paper, the kind of LPV systems considered satisfies that the time-varying parameter
vector ϑ̃k can be bounded within a polytope. For this reason, they are known as polytopic LPV
systems [5]. In particular, the state-space matrices range in a polytope of matrices defined by the
convex hull of a finite number of matrices N . That is(

A(ϑ̃k) B(ϑ̃k) Fa(ϑ̃k)
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where ϑ̃
j
is the vector of parameters corresponding to j th model. Each j th model is called a vertex

system.
Consequently, the polytopic LPV model of the LPV system (1) and (2) can be expressed as

follows:

x(k+1)=
N∑
j=1

� j (pk)[A j (ϑ̃
j
)x(k)+B j (ϑ̃

j
)u0(k)+Fa, j (ϑ̃

j
) fa(k)] (4)

y(k)=
N∑
j=1

� j (pk)[C j (ϑ̃
j
)x(k)+Dj (ϑ̃

j
)u0(k)+Fy, j (ϑ̃

j
) fy(k)] (5)

where A j , B j , C j and Dj are the state-space matrices defined for j th model. Notice that the
state-space matrices of system (4) and (5) are equivalent to the interpolation between LTI models,

that is: A(ϑ̃k)∼=
∑N

j=1� j (pk)A j (ϑ̃
j
) and analogously for B(ϑ̃k), Fa(ϑ̃k), C(ϑ̃k), D(ϑ̃k) and Fy(ϑ̃k).

The polytopic system is scheduled through functions � j (pk), which lie in a convex set

�=
{

� j (pk)∈�N , �(pk)= [�1(pk), . . . ,�
N (pk)]

T, � j (pk)�0,
N∑
j=1

� j (pk)=1

}
(6)

There are several ways of implementing (3) depending on how � j (pk) functions are defined [26].
Here, the function � j (pk) is defined via a barycentric combination of vertices as suggested by
Apkarian et al. [5].

2.2. Interval LPV observer

The system described by (1) and (2) is monitored using the following LPV observer with Luenberger
structure assuming that we consider only strictly proper system, such that D=0:

x̂(k+1)= A0(ϑk)x̂(k)+B(ϑk)u(k)+L(ϑk)y(k) (7)

ŷ(k)=C(ϑk)x̂ (k) (8)
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where A0(ϑk)�A(ϑk)−L(ϑk)C(ϑk), which considers that the model parameters ϑk are esti-
mated using an experimentally calibrated scheduling function f (pk) that is an approximation of
f̃ (pk).‡ The error introduced by this approximation is unknown but bounded, i.e. �k ∈ [�,�]. This
error induces uncertainty about the exact knowledge of the real system parameters ϑ̃k

ϑk�ϑ̃k�ϑk (9)

where ϑk= f (pk)−� and ϑk= f (pk)+�.
In order to take into account this uncertainty in the fault detection using the LPV observer (7)

and (8), its effect will be propagated to the estimated output and bounded by an interval. This is
why this approach is known as an interval LPV observer. This interval LPV observer approach
extends the one proposed in [29] for interval LTI models.

Using the polytopic approximation introduced in (3), the interval LPV observer (7) and (8) can
also be approximated in a polytopic way as follows§ :

x̂(k+1)=
N∑
j=1

� j (pk)[A0, j (ϑ
j )x̂(k)+B j (ϑ

j )u(k)+L j (ϑ
j )y(k)] (10)

ŷ(k)=
N∑
j=1

� j (pk)C j (ϑ
j )x̂ (k) (11)

where A0, j (ϑ j )�A j (ϑ j )−L j (ϑ j )C j (ϑ j ) and ϑ j are the estimated vector of the parameters corre-

sponding to j th model including the modeling uncertainties (9), i.e. ϑ j ∈ [ϑ j , ϑ
j
]. u(k) is the

measured system input vector, x̂(k) is the estimated system state vector, ŷ(k) is the estimated
system output vector and L j (ϑ j ) is the observer gain that has to be designed in order to stabilize
the observer given by (10) and (11) for all matrices in the polytope (3) and parameter uncer-
tainty (9).¶ The set of observer gains L j (ϑ j ) will be interpolated to obtain the interval LPV
observer gain as follows: L(ϑk)=

∑N
j=1� j (pk)L j (ϑ j ). Notice that the measured system input,

u(k), could be affected by the effect of faults in the input sensors, such that:

u(k)=u0(k)+Fu(ϑ̃k) fu(k) (12)

where u0(k) is the real system input, fu(k)∈�nu is the input sensor fault, while Fu(ϑ̃k)∈�nu×nu
is its associated fault matrix. Each observer gain matrix L j (ϑ j )∈�nx×ny is designed to stabi-
lize the corresponding j th vertex and to guarantee a desired performance (A0, j ) regarding fault
detection [31].

Definition 1
Consider the interval LPV observer given by (10) and (11), the sequence of measured inputs
(u(i))k−10 and outputs (y(i))k0. It is assumed that the initial states are bounded by a known compact

‡The scheduling function can be experimentally calibrated using the LPV identification algorithms as the ones
proposed by Bamieh and Giarré [27] or Blesa et al. [28].
§The procedure to obtain a polytopic interval LPV observer from (10) and (11) including the modeling uncertainty
will be discussed in the illustrative example of Section 6.
¶The noise effect should also have been considered in the observer design and in the fault detection test (28) or (36).
Although considering the noise effect in the detection test is straightforward if the noise is assumed bounded (as
parameter uncertainty), this is not the case in the design of the LPV observer when considering noise and parameter
uncertainty at the same time. The inclusion of parametric uncertainty in the LPV model is still a theoretical open
issue [30].
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set X0. The exact uncertain estimated state set Xk at time k is expressed by

Xk =
⎧⎨
⎩x̂k :

(
x̂(i)=

N∑
j=1

� j (pi )[A0, j (ϑ
j )x̂(i−1)+B j (ϑ

j )u(i−1)+L j (ϑ
j )y(i−1)]

)k

i=1
,

|x̂0∈X0, ϑ j�ϑ j�ϑ
j
, j=1, . . . ,N

}
(13)

where A0, j (ϑ j )�A j (ϑ j )−L j (ϑ j )C j (ϑ j ).

The uncertain state set described in Definition 1 at time k can be computed approximately by
admitting the rupture of the existing relations between variables of consecutive time instants. This
allows to compute an approximation of this set from the approximate uncertain set at time k−1.
Definition 2
Consider the interval LPV observer given by (10) and (11), the set of uncertain states at time k−1
(Xk−1) and the input/output values (uk−1, yk−1). Then, the approximated set of estimated states
Xe

k at time k based on the measurements up to time k−1 is defined as

Xe
k =

{
x̂k : x̂(k)=

N∑
j=1

� j (pk)[A0, j (ϑ
j )x̂ (k−1)+B j (ϑ

j )u(k−1)+L j (ϑ
j )y(k−1)],

|x̂(k−1)∈Xk−1, ϑ j�ϑ j�ϑ
j
, j=1, . . . ,N

}
(14)

where A0, j (ϑ j )�A j (ϑ j )−L j (ϑ j )C j (ϑ j ).

Definitions 1 and 2 can be easily adapted to describe the exact uncertain estimated output set
Yk at time k and the approximated set of estimated output Ye

k .
Since the exact set of estimated states Xe

k and outputs Ye
k are difficult to compute, one way is

to bound them using some geometric shapes easy to compute, for example: boxes (interval hull)
as in [32], ellipsoids as in [33] or zonotopes as in [20].

Here, the set of estimated states Xe
k (or outputs Ye

k) introduced in Definition 2 will be approxi-
mated iteratively using zonotopes (see Section 4). From these zonotopes, an interval for each state
variable can also be obtained by computing the interval hull of the zonotope. The sequence of
interval hulls �Xe

k and �Ye
k with k∈ [0,n] will be called the interval LPV observer estimation of

the LPV system (10) and (11), where n is the number of measurement data considered. Following
the previous idea, Algorithm 1 is proposed to determine an approximation of set of uncertain
estimated states and outputs (See Figure 1).

The implementation of steps 5–8 in the Algorithm 1 using zonotopes is described in detail in
Section 4.

Figure 1. Graphical interpretation of set-membership state estimation Algorithm 1.
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Algorithm 1 Interval LPV observer using set computations
1: Xe

k⇐X0
2: k←1
3: while k�n do
4: Obtain and store input–output data {u(k−1), y(k−1)}
5: Compute the approximated estimated state set, Xe

k
6: Compute the approximated estimated output set, Ye

k
7: Compute the interval hull of the approximated estimated state set, �Xe

k=
[
x(k), x (k)

]
8: Compute the interval hull of the approximated estimated output set, �Ye

k=
[
y(k), y(k)

]
9: k←k+1

10: end while

2.3. Interval LPV observer design

In this paper, the interval LPV observer gain design (10) and (11) will be solved with the LMI
pole placement technique [11, 31]‖ that allows to locate the poles inside the unit circle using an
LMI region taking into account the parameter variations and uncertainties.

According to Chilali et al. [31], an LMI region is any subset D of the complex plane that can
be defined as

D={z∈C : L+zM+ z̄MT<0} (15)

where L and M are the real matrices, such that LT= L. The matrix-valued function fD(z)=
L+zM+ z̄MT is called the characteristic function. This LMI region D(−q,r ) is characterized by
a disk of radius r and center (−q,0), such that the characteristic function is given by:

fD(z)=
[ −r q+z
q+ z̄ −r

]
<0 (16)

The design of the interval LPV observer (10) and (11), such that the observer poles are placed
in the LMI region (16) requires to find for each vertex j th (with j ∈ [1, . . . ,N ]) the observer gain
L j (ϑ j ) and unknown symmetric matrix X j= XT

j >0 that satisfies the following LMI:

[ −r X j cX j+(A0, j (ϑ
j )TX j )

T

(c+A0, j (ϑ
j )T)X j −r X j

]
<0 (17)

If A0, j (ϑ j )= A j (ϑ j )−L j (ϑ j )C j (ϑ j ), expression (17) is a bilinear matrix inequality (BMI),
which cannot be solved with the classical LMI tools. But substitutingWj= L j (ϑ j )TX j it is possible
to transform it into:[ −r X j cX j+XT

j A j (ϑ
j )−WT

j C j (ϑ
j )

(c+A j (ϑ
j )T)X j−C j (ϑ

j )TWj −r X j

]
<0 (18)

Then, the design procedure boils down to solving the LMI (18) and then determining L j (ϑ j )=
(Wj X

−1
j )T. Finally, the observer gains L j (ϑ j ) will be interpolated to obtain the interval LPV

observer gain as: L(ϑk)=
∑N

j=1� j (pk)L j (ϑ j ).

‖Alternatively, the observer gain could have been designed to minimize the H∞ gain of the transfer function that
relates the residual and the noise as suggested by Armeni et al. [13]. However, this approach does not consider
parametric uncertainty being required an extension to be applied in the context of the interval LPV observers. This
extension will be addressed in the future research.
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3. FAULT DETECTION USING INTERVAL LPV OBSERVERS

3.1. Observer input/output form

The system (1) and (2) can be expressed in input–output form using the shift operator∗∗ q−1
and assuming zero initial conditions as follows††:

y(k)= y0(k)+G fa (q
−1, ϑ̃k) fa(k)+G fy (q

−1, ϑ̃k) fy(k) (19)

where

y0(k)=Gu(q
−1, ϑ̃k)u0(k) (20)

Gu(q
−1, ϑ̃k)=C(ϑ̃k)(q I−A(ϑ̃k))

−1B(ϑ̃k)+D(ϑ̃k) (21)

G fa (q
−1, ϑ̃k)=C(ϑ̃k)(q I−A(ϑ̃k))

−1Fa(ϑ̃k) (22)

G fy (q
−1, ϑ̃k)= Fy(ϑ̃k) (23)

Alternatively, the observer described by Equations (10) and (11) can be expressed in input–output
form by

ŷ(k)=
N∑
j=1

� j (pk)[G
j (q−1,ϑ j )u(k)+H j (q−1,ϑ j )y(k)]

=
N∑
j=1

� j (pk)[G
j (q−1,ϑ j )u0(k)+H j (q−1,ϑ j )y(k)+G j

fu
(q−1,ϑ j ) fu(k)] (24)

where

G j (q−1,ϑ j )=C j (ϑ
j )(q I−A0, j (ϑ

j ))−1B j (ϑ
j ) (25)

H j (q−1,ϑ j )=C j (ϑ
j )(q I−A0, j (ϑ

j ))−1L j (ϑ
j ) (26)

G j
fu
(q−1,ϑ j )=G j (q−1,ϑ j )Fu(ϑ

j ) (27)

The effect of the uncertain parameters ϑk on the observer temporal response ŷ(k,ϑk) can be
determined computing the estimated output set Ye

k using Algorithm 1. The effect of the uncertainty
in a particular output can be bounded using an interval

ŷ(k)∈ [ŷ(k), ŷ(k)] (28)

where

ŷ(k)= min
ϑ j�ϑ j�ϑ

j
, j=1,.. .,N

{
N∑
j=1

� j (pk)[G
j (q−1,ϑ j )u(k)+H j (q−1,ϑ j )y(k)]

}
(29)

ŷ(k)= max
ϑ j�ϑ j�ϑ

j
, j=1,.. .,N

{
N∑
j=1

� j (pk)[G
j (q−1,ϑ j )u(k)+H j (q−1,ϑ j )y(k)]

}
(30)

This interval is computed independently for each output (neglecting couplings between outputs)
through the interval hull of Ye

k , denoted as �Ye
k , using Algorithm 1.

∗∗The transfer functions of discrete models are usually written in terms of delay operator ‘q−1’. This allows to
reason with signals in time domain using the transfer function concept. The expression G(q−1) is named transfer
operator and allows to describe models by difference equations with time-varying coefficients [34].

††In the following, for simplicity and with abuse of notation, transfer functions are used for LPV systems, although

computations are performed entirely using the state-space representation: G�
[
A B

C 0

]

�
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3.2. Adaptive thresholding

The application of interval LPV observers to fault detection consists of testing whether the measured
output is consistent with the one given by an observer using a faultless model. If an inconsistency
is detected, the existence of a fault is proved. This consistency check is based on generating a
nominal residual comparing the measurements of physical variables y(k) of the process with their
estimation ŷ(k) provided by the associated system model

r (k)= y(k)− ŷ(k) (31)

where r (k)∈�ny is the residual and ŷ(k) is the prediction obtained using the nominal LPV
model. According to Gertler [2], the computational form of the residual generator, obtained
using (24), is

r (k)=
N∑
j=1

� j (pk)[−G j (q−1,ϑ j )u(k)+(I −H j (q−1,ϑ j ))y(k)] (32)

Alternatively, the residual given by (32) can be also expressed in terms of the effects caused by
faults using its internal or unknown-input-effect form [2]. This form, obtained by combining (19),
(24) and (31), is expressed as

r (k)= r0(k)+
N∑
j=1

� j (pk )[(I−H j (q−1,ϑ j ))(G j
f y(q

−1,ϑ j ) fy(k)+G j
f a(q

−1,ϑ j ) fa(k))

−G j
f u(q

−1,ϑ j ) fu(k)] (33)

where
N∑
j=1

� j (pk)G
j
f y(q

−1,ϑ j )=G f y(q
−1, ϑ̃k),

N∑
j=1

� j (pk)G
j
f a(q

−1,ϑ j )=G f a(q
−1, ϑ̃k) (34)

r0(k)=
N∑
j=1

� j (pk)[−G j (q−1,ϑ j )u0(k)+(I−H j (q−1,ϑ j ))y0(k)] (35)

Notice that expression (35) represents the non-faulty residual. Comparing (32) and (35), it should
be noticed that both r0(k) and r (k) are affected in the same way by the observation gain L.

The residual generated by (31) will not be zero, even in a non-faulty scenario when considering
model uncertainty located in parameters. To cope with the parameter uncertainty effect, a passive
robust approach based on adaptive thresholding can be used [14]. Thus, using this passive approach,
the effect of parameter uncertainty in the residual r (k) (associated with each system output y(k))
is bounded by the interval

r (k)∈ [r (k),r (k)] (36)

where

r (k)= ŷ(k)− ŷ(k) and r (k)= ŷ(k)− ŷ(k) (37)

ŷ(k) is the nominal predicted output using interval LPV observer (10) and (11), ŷ(k) and ŷ(k)
are the bounds of the predicted output (28). The residual generated by (37) can be expressed in
input–output form using the interval LPV observer (24) instead of interval LPV observer (10)
and (11)

r (k)= min
ϑ j�ϑ j�ϑ

j
, j=1,.. .,N

{
N∑
j=1

� j (pk)[�G
j (q−1,ϑ j )u(k)+�H j (q−1,ϑ j )y(k)]

}
(38)

r (k)= max
ϑ j�ϑ j�ϑ

j
, j=1,.. .,N

{
N∑
j=1

� j (pk)[�G
j (q−1,ϑ j )u(k)+�H j (q−1,ϑ j )y(k)]

}
(39)
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where

�G j (q−1,ϑ j )=G j (q−1,ϑ j )−G j (q−1,ϑ j
0)

�H j (q−1,ϑ j )=H j (q−1,ϑ j )−H j (q−1,ϑ j
0)

and ϑ
j
0 are the nominal parameters.

Algorithm 2 implements the fault detection using interval LPV observers, the fault detection
test is presented in (28). Analogously, the fault detection test (36) can be used.

Algorithm 2 Fault detection using interval LPV observers
1: f ault← FALSE
2: k←0
3: Xe

k⇐X0
4: while f ault= FALSE do
5: Obtain and store input–output data {u(k−1), y(k−1)}
6: Compute the set of estimated outputs, Ye

k using Algorithm 1

7: if y(k) /∈
[
ŷ(k), ŷ(k)

]
then

8: f ault←T RUE (fault detection test (28))
9: end if

10: k←k+1
11: end while

4. IMPLEMENTATION OF INTERVAL LPV OBSERVERS USING ZONOTOPES

4.1. Introduction

Here, zonotopes are used to bound the set of uncertain estimated states and outputs. Let us introduce
zonotopes.

Definition 3
The Minkowski sum of two sets X and Y is defined by X⊕Y={x+ y : x ∈X, y∈Y}.
Definition 4
Given a center vector � ∈�nz and a matrix H ∈�nz×mz , the Minkowski sum of the segments,
defined by the columns of matrix H , is called a zonotope of order mz (see Figure 2). This set is
represented as

X=�⊕H�mz ={�+Hz : z∈�mz }

where �mz is a unitary box, composed of mz unitary intervals.

Definition 5
The interval hull �X of a closed set X is the smallest interval box that contains X.

Given a zonotopeX=�⊕H�mz , its interval hull can be easily computed by evaluating �⊕H�mz :

�X={x ∀ i=1, . . . ,n : |xi−�i |�‖Hi‖1} (40)

where xi and �i are the i th components of x and �, respectively, and Hi is i th-row of H .
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Figure 2. Zonotope of order mz=14.

4.2. Implementation of interval LPV observers using Zonotopes

The steps 5 and 6 of the Algorithm 1 require computing the approximated state set Xe
k and output

set Ye
k , respectively. These sets can be obtained using zonotopes by formulating the interval LPV

observer (10) and (11) as follows‡‡:

x̂(k+1)=
N∑
j=1

� j (pk)[A0, j (ϑ
j )x̂(k)+B0, j (ϑ

j )v(k)] (41)

ŷ(k)=
N∑
j=1

� j (pk)C j (ϑ
j )x̂ (k) (42)

where A0, j (ϑ
j )= A j (ϑ

j )−L j (ϑ
j )C j (ϑ

j ), B0, j (ϑ
j )= [B j (ϑ

j ) L j (ϑ
j )] and v(k)= [u(k) y(k)]T,

and using the following result:

Theorem 1 (‘Zonotope Inclusion’ (see Alamo et al. [20]))
Consider a family of zonotopes represented by X=�⊕M�mz , where �∈�nz is a real vector and
M ∈�nz×mz is an interval matrix. A zonotope inclusion 
(X) is defined by


(X)=�⊕[mid(M) G]

[
�mz

�nz

]
=�⊕ J�nz+mz (43)

where G∈�nz×nz is a diagonal matrix that satisfies: Gii=
∑mz

j=1(diam(Mi j )/2), i=1,2, . . . ,n,
‘mid’ denotes the center and ‘diam’ the diameter of the interval according to Moore [35]. Under
this definition, X⊆
(X).

Note that this result is the generalization of the linear image of a zonotope that can be computed
the following property:

Property 1 (‘Zonotope Linear Image Transformation’ (see Combastel [36])).
Consider a zonotope represented by X=�⊕H�mz , where �∈�nz is a vector and H ∈�nz×mz is
a matrix. The image of the zonotope X through a linear transformation T ∈�nz×nz is a zonotope
Y defined by

Y=qz⊕Nz�
mz (44)

‡‡The computation using (41) and (42) requires N interval observer simulations in parallel. When N is large, the
computation complexity could be important for some practical systems with fast dynamics. In this case, the exact
LPV model (1) and (2) can be alternatively used by reformulating (41) and (42) as follows:

x̂(k+1)= A0(ϑk )x̂(k)+B0(ϑk )v(k)

ŷ(k)=C(ϑk )x̂ (k)

where A0(ϑk )= A(ϑk )−L(ϑk )C(ϑk ), B0(ϑk )= [B(ϑk ) L(ϑk )] and v(k)= [u(k) y(k)]T,
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where qz=T� and Nz=T H . The existence of this property motivates the use of zonotopes to
propagate the uncertainty in dynamic systems.

Using Theorem 1, the zonotope Xe
k+1 that bounds the trajectory of the system at instant k+1 is

computed from the previous approximating zonotope at time instant k, Xe
k=�(k)⊕Hk�

m , using
the natural interval extension of (42) as suggested by Moore [35] and the zonotope inclusion
operator, as a generalization of Kuhn’s method (see [37]):

Xe
k+1=�(k+1)⊕Hk+1�r (45)

where

�k+1=mid(A0(ϑk))�(k)+mid(B0(ϑk))v(k)

Hk+1= [J1 J2 J3]

J1= seg(
(A0(ϑk)Hk ))

J2= diam(Ao(ϑk))

2
�(k)

J3= diam(Bo(ϑk))

2
v(k)

with A0(ϑk)�
∑N

j=1� j (pk)A0, j (ϑ j ), B0(ϑk)�
∑N

j=1� j (pk)B0, j (ϑ j ), J1 is calculated using the
zonotope inclusion operator and seg(X)=M considering that X=�⊕M�mz is a zonotope (see
Definition 4).

It is important to notice that the set of estimated states has an increasing number of segments
generating the zonotope Xe

k+1 using this method. In order to control the domain complexity, a
reduction step is thus implemented. Here, we use the method proposed in [38] to reduce the
zonotope complexity.

Analogously, Theorem 1 can be used to obtain the set Ye
k from the set Xe

k through the expression
for the estimated output (42).

5. MINIMUM DETECTABLE FAULT

5.1. LPV fault residual sensitivity

In general, the residual can be affected by different possible faults. To separate one fault from the
others, the fault effect in the residual should be characterized. One way to characterize this effect
is by using the fault residual sensitivity introduced by Gertler [2]

S f = �r
� f

(46)

For a given fault f , the expression of residual sensitivity can be obtained using the residual
internal form (33). It can be noticed that the sensitivity is a transfer function whose parameters
change with the operating point parameterized by scheduling variable pk as in the LPV system
(1) and (2) and that describes the effect on residual, r , of a given fault f .

Analyzing the residual internal form given by (33), and considering (46), the fault residual
sensitivity for three cases can be obtained

• Output sensor fault sensitivity:

S fy (q
−1, ϑ̃k)=

N∑
j=1

� j (pk)[(I−H j (q−1,ϑ j ))G j
f y(q

−1,ϑ j )] (47)
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• Actuator fault sensitivity:

S fa (q
−1, ϑ̃k)=

N∑
j=1

� j (pk)[(I −H j (q−1,ϑ j ))G j
f a(q

−1,ϑ j )] (48)

• Input sensor fault sensitivity:

S fu (q
−1, ϑ̃k)=

N∑
j=1

� j (pk)[−G j
f u(q

−1,ϑ j )] (49)

Thus, the LPV residual internal form (33) can be written as follows:

r (k)=r0(k)+S fy (q
−1, ϑ̃k) fy(k)+S fa (q

−1, ϑ̃k) fa(k)+S fu (q
−1, ϑ̃k) fu(k) (50)

where S f y, S f a and S f u are the LPV residual sensitivity of an output sensor fault, actuator fault
and input sensor fault, respectively.

5.2. Minimum detectable fault

According to Gertler [2], the minimum detectable fault (‘triggering limit’) corresponds to a fault
that brings a residual to its threshold. The minimum detectable fault occurs when a fault brings
the residual to its threshold. In other words

r (k)=r (k) or r (k) (51)

where r (k) or r (k) can be given by (38) and (39). If the fault effects are included, the interval
bound r (k) can be reformulated as:

r (k)= max
ϑ j�ϑ j�ϑ

j
, j=1,.. .,N

{
N∑
j=1

� j (pk)[�G
j (q−1,ϑ j )u0(k)+�H j (q−1,ϑ j )y0(k)

+�G j (q−1,ϑ j )Fu(ϑ
j ) fu(k)+�H j (q−1,ϑ j )(G fa (q

−1,ϑ j ) fa(k)

+G fy (q
−1,ϑ j ) fy(k))]

}
(52)

Analogously, the threshold r (k) can be calculated according to (52) using the minimum function
instead of maximum.

Substituting in the previous expression r (k) by (33) and assuming that the maximum threshold
r (k) is given by (52) leads to

r0(k)+
N∑
j=1

� j (pk)[(I−H j (q−1,ϑ j ))(G j
f y (q

−1,ϑ j ) fy(k)+G j
f a(q

−1,ϑ j ) fa(k))

−G j
f u(q

−1,ϑ j ) fu(k)]

= max
ϑ j�ϑ j�ϑ

j
, j=1,.. .,N

⎧⎪⎨
⎪⎩

N∑
j=1

� j (pk)

⎡
⎢⎣

r0(k)︷ ︸︸ ︷
�G j (q−1,ϑ j )u0(k)+�H j (q−1,ϑ j )y0(k)

+�G j
fu
(q−1,ϑ j ) fu(k)+�H j (q−1,ϑ j )(G fa (q

−1,ϑ j ) fa(k)+G fy (q
−1,ϑ j ) fy(k))

⎤
⎥⎦
⎫⎪⎬
⎪⎭
(53)
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where r0(k) is a vector that contains the effect of the model parameter uncertainty on the residual.
Therefore, to obtain the minimum detectable fault, the case r0(k)=0 should be considered in the
previous expression yielding to:

N∑
j=1

� j (pk)[(I−H j (q−1,ϑ j
0))(G fa (q

−1,ϑ j
0) fa(k)+G fy (q

−1,ϑ j
0) fy(k))−G j

f u(q
−1,ϑ j ) fu(k)]

=
N∑
j=1

� j (pk)[r0(k)+�G j
fu
(q−1,ϑ j ) fu(k)+�H j (q−1,ϑ j )(G fa (q

−1,ϑ j ) fa(k)

+G fy (q
−1,ϑ j ) fy(k))] (54)

This expression can be particularized to evaluate the minimum detectable fault for output/input
sensor or actuator faults. As example, the minimum output sensor fault case can be determined from

N∑
j=1

� j (pk)[(I −H j (q−1,ϑ j
0))(G fy (q

−1,ϑ j
0) fy(k))]

=
N∑
j=1

� j (pk)[r0(k)+�H j (q−1,ϑ j )(G fy (q
−1,ϑ j ) fy(k))] (55)

that leads to

f min
y,p (k)= max

ϑ j�ϑ j�ϑ
j
, j=1,.. .,N

{
N∑
j=1

� j (pk)[r0(k)((I −H j (q−1,ϑ j ))G fy (q
−1,ϑ j ))−1]

}
(56)

= max
ϑ j�ϑ j�ϑ

j
, j=1,.. .,N

{
N∑
j=1

� j (pk)[r0(k)(S fy (q
−1,ϑ j ))−1]

}
(57)

assuming that (S fy (q
−1,ϑ j ))−1 exists and is stable.§§

Notice that subindex ‘p’ in the previous expression indicated that the minimum detectable fault
has been computed considering the upper bound of the residual r (k). Analogously, a negative value
could have been computed considering the lower bound r (k).

Analogously, applying the analysis procedure used in the output sensor fault, the minimum
detectable for actuator fault and input sensor fault can be estimated [29].

6. CASE 1: QUADRUPLE-TANK SYSTEM

6.1. Description of quadruple-tank system

As an illustrative example, the four-interconnected tank system proposed in [23] is used to validate
the algorithms and results obtained along the paper. This system is proposed as multivariable
control benchmark where the level in the lower tanks is controlled with the two pumps. The process
is described by the non-linear model (B1)–(B4) presented in Appendix B, where the inputs are v1
and v2 (input voltages to the pumps) and the outputs are h1, h2, h3 and h4 (level measurement
devices). A schematic diagram of the process is shown in Figure 3.

6.2. LPV model and interval LPV observer design

The procedure to obtain an interval polytopic LPV model for the quadruple-tank system is
described.

§§ (S f (q−1,ϑ
j ))−1 is computed elementwise. When some element of (S f (q−1,ϑ

j ))−1 is non-causal, Peng et al. [39]
proposed multiplying by it the required number of delays, such that the causality property is satisfied.
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Figure 3. Quadruple-tank process.

LPV model representation: Following the approach introduced by Shamma and Cloutier [6], named
state transformation, a discrete-time LPV model can be obtained for the quadruple-tank system
(B1)–(B4) (see Appendix B) using a sampling time equal to Ts=0.5s as follows:[

h1(k+1)−heq1 (pk+1)

h2(k+1)−heq2 (pk+1)

]
= A(ϑ̃k)

[
h1(k)−heq1 (pk)

h2(k)−heq2 (pk)

]
+B(ϑ̃k)

[
v1(k)−v

eq
1 (pk)

v2(k)−v
eq
2 (pk)

]
(58)

where

A(ϑ̃k)=
[

ϑ̃1(k) 0

0 ϑ̃2(k)

]
, B(ϑ̃k)=

[
ϑ̃3(k) ϑ̃4(k)

ϑ̃5(k) ϑ̃6(k)

]

and ϑ̃k= [ϑ̃1(k), ϑ̃2(k), ϑ̃3(k), ϑ̃4(k), ϑ̃5(k), ϑ̃6(k)]T (the detailed expressions can be found in
Appendix B).

Notice that this approach is based on rewriting the plant in a form where non-linear terms are
hidden with newly defined time-varying parameters ϑk without involving any plant linearization
[40, 41]. The time-varying parameters are parameterized with respect to scheduling variables pk
that correspond to measured outputs (in this case h3(k) and h4(k)).

Identification of LPV model: The scheduling functions f (pk) for the LPV parameters are approx-
imated by polynomials whose coefficients are estimated following the procedure described in [27]
using data taken from the simulation of the non-linear model at different operating points obtained
by griding the range of the scheduling variables: h3∈ [1,20] and h4∈ [1,20]. After the identification
process, the modeling error for each parameter is bounded as follows:

εi= max
pk∈[p,p]

|ϑ̃i (k)− fi (pk)|, i=1, . . . ,6 (59)

and εi=−εi . This modeling error for each parameter is ε1(k)∈ [−0.0064,0.0064], ε2(k)∈
[−0.0044,0.0044], ε3(k)∈ [−0.0132,0.0132], ε4(k)∈ [−0.0189,0.0189], ε5(k)∈ [−0.014,0.014],
ε6(k)∈ [−0.02,0.02].

Reduced LPV model: The LPV parameter vector is ϑ(k)=[ϑ1(k) ϑ2(k) ϑ3(k) ϑ4(k) ϑ5(k) ϑ6(k)]
(i.e. l=6 varying parameters) corresponding to the model (58), which depends on h3(k) and
h4(k). Now, the parameter set mapping approach proposed by Kwiatkowski and Werner [42] (see
Appendix A) is applied to determine a reduced number of LPV parameters using the principal
component analysis. As a result, the number of LPV parameters is reduced to m=3 parameters
(�(k)= [�1(k) �2(k) �3(k)]

T). The quality of this approximation evaluated using (A8) gives vm=
99% of explained variance.
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Vertices of polytopic LPV model: The simplest polytopic approximation, known as bounding box
approach, relies on bounding each LPV parameter by an interval [5]. An alternative approach
known as small convex hull proposed by Kumar and Anderson [43] relies on using a polytope
instead of an interval box.

Here, the small convex hull algorithm proposed by Biannic [44] is used. This algorithm generates
a polytopic convex hull from the bounding box approach by the division of the original bounding
box in smaller bounding boxes. Then, the set of smaller bounding boxes that do not contain
parameters is removed. Finally, the set of the small bounding boxes containing parameters are
used to obtain the small convex hull through the quick hull algorithm [45]. Using this procedure
it is guaranteed that true parameters will always be inside the computed domain. Moreover, this
domain will be inflated to consider the parameter uncertainty (3) introduced by the experimental
calibration of the scheduling function f (pk).

Figure 4(a) presents a comparison between the bounding box [5] and small hull approach [43].
This figure also shows the values of ϑ1 and ϑ2 for a representative set of operating points obtained
from a sparse gridding of the operating range. This gives an idea of the quality of the approximation.
Each operating point is defined by the scheduling variables (h3,h4) and gives a value for the
parameter vector (ϑ1,ϑ2), where ϑ1= f1(h3,h4) and ϑ2= f2(h3,h4). It can be noticed that both
techniques provide a convex hull that contains all operating points, but the small hull approach
produces a sharper approximation compared with the bounding box approach.

The error between the LPV model of the quadruple-tank system and polytopic LPV model is
evaluated with the following expression:

�ϑ,i= max
pk∈[p,p]

∣∣∣∣∣ϑ̃i (k)−
N∑
j=1

� j (pk)ϑ
j
i

∣∣∣∣∣, i=1, . . . ,6 (60)

The LPV model without reducing the number of LPV parameters (i.e. l=6 parameters) is
presented in the first column of the bounding box case in Table I. In this case the number of
vertices is N=2l=64. The second column of the bounding box case presents the results for the
LPV model with reduced number of parameters (i.e. m=3 parameters, N=2m=8). The small
convex hull approach is applied to the reduced parameter LPV model using different number of
bounding boxes to approximate the exact LPV parameter domain following the algorithm of [44].
It can be seen that the maximum parameter error (max�ϑ,i ) decreases by increasing number of
vertices. Notice that comparing the error using the bounding box case with N=64 and the small
convex hull case with N=98, there is no significant difference in the number of vertices. But, the
error presented in the small convex hull case is smaller than the error presented in the bounding
box. Figure 4(b) presents the small convex hull used to implement the polytopic LPV model with
N=98. It is also worth to point that the number of vertices tends to not increase when augmenting
the number of bounding boxes used in the small hull algorithm. This allows to determine the
number of models to be used in the polytopic model.

0

ϑ1

ϑ 2

Operating Points
Small Hull
Bounding Box

0 2 4 60
2

0

2

φ
1

φ
2

φ 3

(a) (b)

Figure 4. (a) LPV modeling technique in two dimensions for the bounding box and small hull approach
and (b) small convex hull in three dimensions (�1,�2,�3) with 98 vertices.
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Table I. Different number of N models.

Bounding box Small convex hull

Number of bounding boxes — — 729 4096 15 625 46 656 1 000 000
Vertices 64 8 68 83 92 97 98

�ϑ,1 0.0424 0.0323 0.0424 0.0424 0.0424 0.0139 0.0129
�ϑ,2 0.0289 0.0380 0.0289 0.0289 0.0289 0.0096 0.0086
�ϑ,3 0.1948 0.1243 0.1121 0.0744 0.0546 0.0385 0.0382
�ϑ,4 0.2784 0.0987 0.0928 0.0696 0.0557 0.0555 0.0319
�ϑ,5 0.2064 0.1051 0.1188 0.0788 0.0579 0.0393 0.0419
�ϑ,6 0.2949 0.2267 0.0983 0.0737 0.0590 0.0562 0.0268
max�ϑ,i 0.2949 0.2267 0.1188 0.0788 0.0590 0.0562 0.0419

Table II. Description of the fault scenarios.

Fault Description

fa,� Additive fault in the pump �
fh,� Additive fault in the level measurement device of tank �

Table III. Minimum detectable fault for different operating points.

OP1 (h3=0.31V and h4=0.31V) OP2 (h3=1.25V and h4=1.25V)
fh1 fh2 fh3 fh4 fa1 fa2 fh1 fh2 fh3 fh4 fa1 fa2

r1 −0.25 0 −0.05 −0.08 −0.79 −0.24 −0.56 0 −0.13 −0.20 −0.93 −0.28
r1 0.230 0 0.060 0.096 0.860 0.265 0.540 0.000 0.138 0.218 0.979 0.301
r2 0 −0.33 −0.06 −0.07 −0.16 −0.21 0 −0.75 −0.15 −0.16 −0.18 −0.24
r2 0 0.307 0.071 0.076 0.174 0.229 0 0.721 0.163 0.174 0.198 0.261
r3 0 0 −0.03 0 0 −0.08 0 0 −0.08 0 0 −0.09
r3 0 0 0.032 0 0 0.075 0 0 0.078 0 0 0.089
r4 0 0 0 −0.03 −0.04 0 0 0 0 −0.08 −0.05 0
r4 0 0 0 0.032 0.036 0 0 0 0 0.078 0.044 0

Implementation of interval LPV observer: The polytopic interval LPV observer (10) and (11) is
implemented using N=98 models provided by the small hull approach and taking into account
modeling uncertainty (60).

The observer design procedure proposed in Section 2.3 was applied to obtain the gain L(ϑk),
such that the poles are in the LMI disk region D with the parameters q=−0.5 and r=0.25.
This procedure results in N=98 observer gains L j (ϑ j ) that they will be interpolated as L(ϑk)=∑N

j=1� j (pk)L j (ϑ j ).

6.3. Fault scenarios

The mathematical model (B1)–(B4) of quadruple-tank process has been modified in order to include
a set of typical faults. The faults are described in Table II.

In the following, only fault detection results using the interval LPV observer in two of these
fault scenarios are presented. For illustrative purposes, in the first scenario, the fault detection test
is based on generating the output prediction intervals according to (28) as presented in Section 3.1.
The second scenario implements the fault detection test based on residual adaptive thresholds (36)
presented in Section 3.2.

The minimum detectable faults using the interval LPV observer are determined using the expres-
sions obtained in Section 5.2 based on the fault sensitivity analysis. Table III presents the minimum
detectable fault corresponding to two different operating points (OP). This table shows the effect
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Figure 5. Level measurement of h1, h2 and the output prediction interval (fault scenario with fv2=0.3V).
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Figure 6. Level measurement of h3, h4 and the output prediction interval (fault scenario with fv2=0.3V).

of the operating point in the minimum detectable fault. It can be seen that the minimum detectable
fault is different at each operating point. This justifies the use of an interval LPV observer.

6.3.1. Fault scenario 1. Quadruple-tank process with an actuator fault ( fa2=0.3V).
A fault in Pump 2 (actuator fault: fa2=0.3V) at time t=100s is introduced. This fault appears

when the system is in the first operating point (OP1). The column fa2 in Table III shows that the
minimum detectable fault for this operating point is f min

a2,r1=0.265 using the residual r1, f min
a2,r2=

0.229 using the residual r2 and f min
a2,r3=0.075 using the residual r3. The residual r4 is not affected

by this fault. Since the size of the fault is 0.3V, all the residuals sensitive to the fault will detect
it. This can be observed in Figure 5 where the output prediction interval is presented for each
measurement (h1, h2, h3 and h4). In particular, Figures 5 and 6 show that the measurements h1, h2
and h3 are outside the output prediction intervals what allow to detect the fault. Output prediction
intervals are calculated using the interval LPV observer (24).

6.3.2. Fault scenario 2. Quadruple-tank process with an output sensor fault ( fh4=0.2cm).
A fault in the level measurement device of tank 4 h4 ( fh4=0.2cm) at time t=100s is introduced.

As in the previous scenario, the system is in the first operating point (OP1). According to Table III,
the minimum detectable fault is f min

h4,r1
=0.096 using the residual r1, f min

h4,r2
=0.076 using the residual

r2 and f min
h4,r4
=0.032 using the residual r4. The residual r3 is not affected by this fault. Figures 7

and 8 show the residual evaluation and their prediction bounds (adaptive threshold). It can be
seen that residuals corresponding to measurements h1, h2 and h4 detect the fault presence. The
residual (32) is implemented using the interval LPV observer (24) and evaluated using the adaptive
threshold (36).
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Figure 7. Residual signal of h1, h2 and the adaptive threshold (fault scenario with fh4=0.2cm).
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Figure 8. Residual signal of h3, h4 and the adaptive threshold (fault scenario with fh4=0.2cm).

7. CASE 2: TWIN-ROTOR MIMO SYSTEM

A second example based on the twin-rotor MIMO system to validate the proposed LPV interval
observer approach is used. This case is used to prove its validity when applied to a higher order
system with less measurements than states.

7.1. Description of twin-rotor MIMO system

The TRMS is a laboratory setup developed by Feedback Instruments Limited for advanced control
experiments. The system is perceived as a challenging control engineering problem due to its high
non-linearity, cross-coupling between its two axes, and inaccessibility of some of its states through
measurements. The TRMS mechanical unit has two rotors (the main and tail rotors) driven by DC
motors placed on a beam together with a counterbalance whose arm with a weight at its end is
fixed to the beam at the pivot (Figure 9). The TRMS can rotate freely both in the horizontal and
vertical planes.

The system input vector is u= [ut, um]T, where ut is the input voltage of the tail motor and um is
the input voltage of the main motor. The system states are x= [iah , �h , �h, 	h, iav, �v, �v, 	v]T,
where iah/v is the armature current of tail/main rotor, �t/m is the rotational velocity of the tail/main
rotor, �h/v is the angular velocity around the horizontal/vertical axis and 	h/v is the azimuth/pitch
angle of beam. Finally, the system measured outputs are y= [	h , 	v]T.

7.2. The TRMS LPV model

The mathematical model of TRMS is given by a set of non-linear differential equations (C1)–(C8),
which is presented in Appendix C. Following [46], the LPV representation of this model can be
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Figure 9. Components of the twin-rotor MIMO system.

obtained from the non-linear model (C1)–(C8) that can be expressed as follows:

x(k+1) = A(ϑ̃k)x(k)+Bu(k)

y(k) = Cx(k)
(61)

where

A(ϑk)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 0 0 0 0 0 0

a21 ϑ̃1(k) 0 0 0 0 0 0

0 ϑ̃2(k) ϑ̃3(k) ϑ̃4(k) ϑ̃5(k) ϑ̃6(k) ϑ̃7(k) 0

0 0 a43 0 0 0 0 0

0 0 0 0 a55 a56 0 0

0 0 0 0 a65 ϑ̃8(k) 0 0

a71 ϑ̃9(k) ϑ̃10(k) 0 0 ϑ̃11(k) a77 ϑ̃12(k)

0 0 0 0 0 0 a87 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B=
[
b11 0 0 0 0 0 0 0

0 0 0 0 b52 0 0 0

]T
, C=

[
0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1

]T

with ϑ̃(k)= [ϑ̃1(k), . . . , ϑ̃12(k)]T being the LPV parameter vector that uses as scheduling variables
the available measured outputs (i.e. the azimuth angle 	h(k) and the pitch angle of the beam 	v(k)).

To obtain the polytopic LPV model (4) and (5) the same procedure proposed in the quadruple-
tank example presented in Section 6 is used. As a result, the LPV parameter vector ϑ(k)=
[ϑ1(k), . . . ,ϑ12(k)] is reduced to �(k)= [�1(k), . . . ,�4(k)]. In this case the small convex hull is
applied and the number of vertices is N=847. Finally, the interval LPV observer is designed, such
that the poles are in a disk region of D with q=−0.95, r=0.04.

7.3. Fault scenarios

Two selected fault scenarios are used to illustrate the performance of the proposed approach.

7.3.1. Fault scenario 1. Fault in the pitch angle of the beam ( fϑv
=0.05).

A fault in the pitch angle of the beam ( fϑv
=0.05) at time t=20 s is introduced. The output

prediction interval (28) is generated using the interval LPV observer (24). Figure 10 shows that
the measurements are outside its prediction interval what allows to detect the output sensor fault
at time t=24s in the case of ϑh and at time t=20s in the case of ϑv .
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Figure 10. The azimuth angle of the beam ϑh and pitch angle of the beam ϑv and its the output
prediction interval (fault scenario with fϑv =0.05).
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Figure 11. Residual of azimuth/pitch angle of the beam and the adaptive
threshold (fault scenario with fa1=0.06).

7.3.2. Fault scenario 2. Fault in the tail rotor ( fa1=0.06).
A fault in the tail rotor ( fa1=0.06) at time t=20s is introduced. This scenario illustrates the

residual evaluation (32) using the adaptive threshold (36). Figure 11 shows the residual evaluation
and their threshold. It can be seen that the residual corresponding to measurement ϑh detects the
fault presence at time t=21.5s.

8. CONCLUSIONS

In this paper, robust fault detection based on adaptive threshold generation for non-linear systems
that can be described by means of an LPV model has been addressed. The interval LPV model is
obtained from a non-linear system taking into account the model uncertainty in the LPV parameter
identification. The parameter uncertainty is bounded using intervals.

The non-linear system can be monitored using an interval LPV observer with the Luenberger
structure considering parameter uncertainty what allows to generate an adaptive threshold that it
is used to implement the robust fault detection test.

The interval LPV observer could work with either an interval LPV model or its polytopic
approximation. However, the design of the LPV observer gain using the LMI pole placement
requires that LPV model should be approximated by a polytopic LPV model. For this reason, the
observer is designed using the polytopic LPV model.

Fault detection limitations of the proposed approach have been characterized by means of
minimum detectable faults that are determined using fault sensitivity analysis.

Two examples, one based on the four tanks system and another based on a two-degree of freedom
helicopter, have been used to demonstrate the effectiveness and performance of the proposed
approach.
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As further work, the noise effect will be considered. The noise effect should be considered
in the observer design and in the fault detection test. Although considering the noise effect in
the detection test is straightforward if the noise is assumed bounded (as parameter uncertainty).
However, the design of the LPV observer considering the noise and parameter uncertainty at the
same time is a theoretical open issue [30]. The proposed method will be extended to address fault
isolation tasks making use of the sensitivity analysis presented in this paper. Preliminary results
are presented in [47].

APPENDIX A: PARAMETER SET MAPPING

Parameter set mapping (PSM) was introduced in [42] as a procedure for constructing a coordinate
transformation for a given LPV model that leads to a tighter parameter set or lower dimensional
approximations of this set. The procedure requires to obtain a set of operating points of the
scheduling variables that can be used to generate the following l×M data matrix:

�= [ϑ(1) . . .ϑ(MTs)] (A1)

The rows �i of the data matrix need to be normalized

�n
i =Ni (�i ), �i=N−1i (�n

i ) (A2)

resulting in a normalized data matrix �n=N(�). Now, the PCA is applied to the normalized data.
Introducing the singular value decomposition

�n= [Us Un]

[
�s 0 0

0 �n 0

][
V T
s

V T
n

]
(A3)

if the normalized data are correlated, some singular values are small compared with the others,
where Us , �s and Vs denote the m significant parameters singular values. Assuming that the less
significant singular values can be neglected, (A3) is approximated as follows:

�̂
n=Us�sV

T
s ≈�n (A4)

The comparison of �̂
n
and �n allows to assess the quality of the approximation, and (by choosing

the m number of parameters) to trade accuracy of the model against complexity. The matrix
Us ∈�l×m represents a basis of the significant column space of the data matrix �n , and can be
used to obtain a reduced mapping ϑk to �k by computing:

�k=UT
s N(ϑk) (A5)

Considering the LPV system (4) and (5), the model derived from the representation map is
given by (

A(ϑ̃k) B(ϑ̃k)

C(ϑ̃k) D(ϑ̃k)

)
≈
(
Â(�k) B̂(�k)

Ĉ(�k) D̂(�k)

)
=
(
A(ϑ̂k) B(ϑ̂k)

C(ϑ̂k) D(ϑ̂k)

)
(A6)

where

ϑ̂k=N−1(Us�k) (A7)

and N−1 denotes row-wise rescaling. At any given time, (A5) can be used to compute the reduced
parameter vector, whereas (A6) together with (A7) can be used to generate the approximate LPV
model.

As a measure of the quality of the approximation, the fraction of total variation vm that can be
determined by the singular values 
i in (A3) is considered:

vm=
∑m

i=1
2i∑l
i=1
2i

(A8)
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APPENDIX B: LPV MODEL OF QUADRUPLE-TANK SYSTEM

The target of the quadruple-tank system [23] is to control the level in the lower two tanks with
two pumps. The process inputs are v1 and v2 (input voltages to the pumps) and the outputs are
h1, h2, h3 and h4 (voltages from level measurement devices). A schematic diagram of the process
is shown in Figure 3. The mass balances and Bernoulli’s law yield to describe the quadruple-tank
process by the following set of non-linear differential equations:

dh1
dt
=− a1

A1

√
2gh1+ a3

A1

√
2gh3+ �1k1

A1
v1 (B1)

dh2
dt
=− a2

A2

√
2gh2+ a4

A2

√
2gh4+ �2k2

A2
v2 (B2)

dh3
dt
=− a3

A3

√
2gh3+ (1−�2)k2

A3
v2 (B3)

dh4
dt
=− a4

A4

√
2gh4+ (1−�1)k1

A4
v1 (B4)

where Ai is the cross-section of Tank i , ai is the cross-section of the outlet hole and hi
is the water level. The voltage applied to Pump i is vi and the corresponding flow is kivi .
The acceleration of gravity is denoted g. The parameter values of the laboratory process are
given by {A1, A3}=28cm2, {A2, A4}=32cm2, {a1,a3}=0.071cm2, {a2,a4}=0.051cm2, k1=
3.235cm3/Vs, k2=3.320cm3/Vs, �1=0.5650 and �2=0.47. The height of each tank is 20 cm.

Following the approach proposed by Shamma and Cloutier [6], a discrete LPV model of
quadruple-tank process can be obtained

[
h1(k+1)−heq1 (pk+1)

h2(k+1)−heq2 (pk+1)

]
=
[

ϑ̃1(k) 0

0 ϑ̃2(k)

][
h1(k)−heq1 (pk)

h2(k)−heq2 (pk)

]

+
[

ϑ̃3(k) ϑ̃4(k)

ϑ̃5(k) ϑ̃6(k)

][
v1(k)−v

eq
1 (pk)

v2(k)−v
eq
2 (pk)

]
(B5)

where the scheduling parameters are

ϑ̃1(k)=a11(pk)Ts+1, ϑ̃2(k)=a22(pk)Ts+1, ϑ̃3(k)=
(
b11−

�heq1 (pk)

�h4
b41

)
Ts

ϑ̃4(k)=−
�heq1 (pk)

�h3
b32Ts, ϑ̃5(k)=−

�heq2 (pk)

�h4
b41Ts, ϑ̃6(k)=

(
b22−

�heq2 (pk)

�h3
b32

)
Ts

and the variables of the scheduling parameters are

a11(pk)=− a1
√
(2g)

A1
√
h1(k)

, a22(pk)=− a2
√
2g

A2
√
h2(k)

, b11= �1k1
A1

, b22= �2k2
A2

b32= (1−�2)k2
A3

, b41= (1−�1)k1
A4
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h1(k)=
2�1k1a3v1(k)

√
2gh3(k)+�21k

2
1v1(k)

2+2a23gh3(k)
2a21g

h2(k)=
2�2k2a4v2(k)

√
2gh4(k)+�22k

2
2v2(k)

2+2a24gh4(k)
2a24g

where hi (k)>1 cm for i=1, . . . ,4.
Finally, the equilibrium point of (58) is given by:

heq1 (pk )=
2�1k1a3v1(k)

√
2gh3(k)+�21k

2
1v1(k)

2+2a23gh3(k)
2a21g

, v
eq
1 (pk)= a3

√
2gh3(k)

(1−�2)k2

heq2 (pk )=
2�2k2a4v2(k)

√
2gh4(k)+�22k

2
2v2(k)

2+2a24gh4(k)
2a24g

, v
eq
2 (pk)= a4

√
2gh4(k)

(1−�1)k1

APPENDIX C: LPV MODEL OF TWIN-ROTOR MIMO SYSTEM

The dynamic model of this system is proposed by Rahideh and Shaheed [25]:

diah
dt
=− Rah

Lah
iah− kah�h

Lah
�t+ k1

Lah
ut (C1)

d�h

dt
= kah�h

Jtr
iah− Btr

Jtr
�t−

f1(�h)�2
h

Jtr
(C2)

d�h

dt
= lt f1(�h)�2

h cos
2 	v−koh�h− f3(	h)	h

D cos2 	v+E sin2 	v+F

+km�v sin	v�v((D−2E)cos2 	v−E sin2 	v−F)

(D cos2 	v+E sin2 	v+F)2

+km cos	v(kav�viav−Bmr�v− f4(�v)�2
v)

(D cos2 	v+E sin2 	v+F)Jmr
(C3)

d	h
dt
=�h (C4)

diav
dt
=− Rav

Lav
iav− kav�v

Lav
�v+ k2

Lav
um (C5)

d�v

dt
= kav�v

Jmr
iav− Bmr

Jmr
�v− f4(�v)�2

v

Jmr
(C6)

d�v

dt
= lm f5(�v)�2

v+kg�h f5(�v)�2
v cos	v−kov�v

Jv

+g((A−B)cos	v−C sin	v)−0.5�v
2H sin (2	v)

Jv

+kt (kah�hiah−Btr�h− f1(�h)�2
h)

Jv Jtr
(C7)

d	v

dt
=�v (C8)
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The functions and constants of TRMS model can be found in [25]. Following the approach
proposed by Kwiatkowski et al. [46], a discrete-time LPV model of the TRMS can be obtained
by considering as scheduling variables the available measurements outputs: azimuth angle of the
beam 	h(k) and pitch angle of the beam 	v(k)⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

iah(k+1)
�h(k+1)
�h(k+1)
	h(k+1)
iav(k+1)
�v(k+1)
�v(k+1)
	v(k+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 0 0 0 0 0 0

a21 ϑ̃1(k) 0 0 0 0 0 0

0 ϑ̃2(k) ϑ̃3(k) ϑ̃4(k) ϑ̃5(k) ϑ̃6(k) ϑ̃7(k) 0

0 0 a43 0 0 0 0 0

0 0 0 0 a55 a56 0 0

0 0 0 0 a65 ϑ̃8(k) 0 0

a71 ϑ̃9(k) ϑ̃10(k) 0 0 ϑ̃11(k) a77 ϑ̃12(k)

0 0 0 0 0 0 a87 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

iah(k)

�h(k)

�h(k)

	h(k)

iav(k)

�v(k)

�v(k)

	v(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b11 0

0 0

0 0

0 0

0 b52

0 0

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
v1(k)

v2(k)

]
(C9)

where

a11=− Rah

Lah
, a12=−kah�h

Lah
, a21= kah�h

Jtr
, a43=1, a55=− Rav

Lav
, a56=−kav�v

Lav

a65= kav�v

Jmr
, a71= kt kav

Jv Jtr
, a77=−kov

Jv
, a87=1, b11= k1

Lah
, b52= k2

Lah

and the LPV parameters in function of the scheduling variables are

ϑ̃1(k)= −Btr− f1(�h)�h

Jtr
, ϑ̃2(k)= lt f2(�h)�h cos	v

D cos2 	v+E sin2 	v+F

ϑ̃3(k)=− koh
D cos2 	v+E sin2 	v+F

, ϑ̃4(k)=− f3(	h)	h
D cos2 	v+Esin2	v+F

ϑ̃5(k)= km cos	vka
(D cos2 	v+E sin2 	v+F)Jmr

, ϑ̃6(k)=− km cos	v(Bmr+ f4(�v)�v)

(D cos2 	v+E sin2 	v+F)Jmr

ϑ̃7(k)= km�v sin	v(D cos2 	v−E sin2 	v−F−2cos2 	vE)

(D cos2 	v+E sin2 	v+F)2
, ϑ̃8(k)= −Bmr− f4(�v)�v

Jmr

ϑ̃9(k)= kt (−Btr− f1(�h)�h

Jv Jtr
, ϑ̃10(k)= −0.5�hH sin(2	v)+kg f5(�v)cos	v

Jv

ϑ̃11(k)= lm f5(�v)�v

Jv
, ϑ̃12(k)= g((A−B)cos	v−C sin	v)

Jv	v

�
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for �h>0, �v>0. In case that the values of 	v are in −0.001<	v<0, the value is approximated
as 	v=−0.001 and if 0<	v<0.001, the value is approximated as 	v=0.001. Notice that the LPV
parameters depend additionally to the measured scheduled variables (	v and 	h) from the following
state variables: �h , �v and �h . These state variables as well as their interval of uncertainty are
estimated from the interval LPV observer.
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