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Abstract— Detecting grasping points is a key problem in cloth
manipulation. Most current approaches follow a multiple re-
grasp strategy for this purpose, in which clothes are sequentially
grasped from different points until one of them yields to a
desired configuration. In this paper, by contrast, we circumvent
the need for multiple re-graspings by building a robust detector
that identifies the grasping points, generally in one single step,
even when clothes are highly wrinkled.

In order to handle the large variability a deformed cloth may
have, we build a Bag of Features based detector that combines
appearance and 3D geometry features. An image is scanned
using a sliding window with a linear classifier, and the candidate
windows are refined using a non-linear SVM and a “grasp
goodness” criterion to select the best grasping point.

We demonstrate our approach detecting collars in deformed
polo shirts, using a Kinect camera. Experimental results show
a good performance of the proposed method not only in
identifying the same trained textile object part under severe
deformations and occlusions, but also the corresponding part
in other clothes, exhibiting a degree of generalization.

I. INTRODUCTION

Manipulating textile objects is becoming a very active
research topic due to its interest for service robotics and the
availability of new, dexterous manipulation tools. However,
in current research, the perception component of the task is
usually disregarded or simplified as much as possible.

A complete system for retrieving one by one all elements
of a laundry basket or pile, classifying and then folding them
is proposed in [1]. In this approach, the topmost element
of the pile is found using stereo vision, and its geometric
center is used as a grasping point. The grasping operation
is repeated as many times as necessary to ensure a correct
grasp. Once the cloth object is held by the manipulator, four
basic visual features are extracted and used in a 1-Nearest
Neighbor classifier to select the corresponding learned ob-
ject.

More related to our work, in [2] the authors use state-of-
the-art computer vision techniques for the manipulation of
socks. Local Binary Patterns and 2D shape features are used
in a χ2 Support Vector Machine (SVM) with an extended
Gaussian kernel to determine the sock type and if the sock
is inside-out. A model-based approach is used to determine
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Fig. 1. Robot executing a grasp on the detected collar in a scenario with
several clothes.

sock configuration for posterior manipulation and pairing
with a PR2 robot.

In [3] the authors designed a cloth grasping-point selection
system to autonomously take elements from a pile of washed
towels and fold and stack them using a Willow Garage PR2
robot. The method uses vision to detect corners that can be
used for re-grasping the towel when it is already hanging
from one of the robot arms. The initial pick-up is done
by selecting the central point of the cloth, detected through
background segmentation and stereo.

In [4] the authors describe a complete system, designed
for the PR2 robot, for laundry handling. The system starts by
picking up an unknown piece of clothing, identifying it, and
then bringing it to a desired configuration. For the first task,
namely, identification and estimation of the current state,
the cloth item is initially grasped by an arbitrary edge, and
a series of low-hanging-point re-grasps are done to collect
enough data to identify the item and its pose with a Hidden
Markov Model (HMM) and a cloth simulator. The method
we present here targets this particular problem: making more
informed grasps so as to shorten the initial data collection
process.

Regarding the non-robotics computer vision literature,
recognition and detection of deformable objects has attracted
much less attention than those of their rigid counterparts.
Furthermore, in the context of current object detection liter-
ature, the label deformable object often refers to those that
have some degree of articulation, like people or animals, as
in [5], rather than to highly flexible objects such as cloth.



Consequently, in this work we investigate if the well-
known Bag of Features (BoF) [6] image representation is
suitable for this type of very deformable objects. It is
known in computer vision literature that the geometry-less
nature of BoF based methods makes them work better for
flexible objects than template matching or pictorial structures
methods [7]. We propose a method for detection of cloth
parts that can be used prior to the first manipulation attempt
by a laundry handling robot; in particular we have started
with the detection of polo shirt collars (see Figure 1).

For detection, we base our method on a classical sliding
window approach [8]. Different variants of this method
are typically used in detection algorithms e.g. the ones
participating in the yearly Pascal Visual Object Challenge
detection competition. We have drawn inspiration from the
methods proposed by Harzallah et al. [9] and Aldavert et
al. [10].

Since our robot manipulation system uses a Kinect sensor
for data acquisition, we evaluate the performance of the
Geodesic-Depth Histogram (GDH) descriptor, in addition
to that of the photometric only Scale Invariant Feature
Transform (SIFT) [11].

II. PROPOSED METHOD

As said in the introduction, the objective of the method
we propose is to detect an informed initial grasping point,
which can be useful for an end-to-end cloth handling system
like the one of Cusumano-Towner et al. [4], for example to
shorten the series of re-grasps necessary to verify that the
cloth is in a suitable state for the planning algorithm. We
attempt to use state of the art computer vision techniques to
detect the relevant grasping points from the very beginning,
while the object is still laying on the table/surface. For this
we propose a vision and depth based detection method,
consisting of a three layer architecture. At this stage, and
as done in related work, we are not considering the problem
of background subtraction as a considerable body of work
is already addressing it. We assume a segmentation method
able to precisely select the cloth object is provided. In our
case we accomplish this using a simple color threshold.

A. Appearance and depth local features

Our detection method is based on appearance and depth
information, obtained from the Kinect image. In order to
obtain the geometric information, we use the Geodesic-Depth
Histogram (GDH), which captures the joint distribution of
geodesic distances and depths within the patch. It is inspired
by the Geodesic-Intensity Histogram, originally introduced
by Ling and Jacobs [12] for describing deformable image
patches.

Let us consider a patch P in the image, centered on a point
of interest p, that in our case corresponds to every point of a
grid that densely covers the image. Each point pi ∈ P has an
associated depth value di obtained from the Kinect camera.
We then compute the histogram of p as follows:

• We initialize the histogram, by splitting the joint space
of geodesic distances and depth into a discrete number

of intervals. In our experiments we used a 11 × 8
discretization.

• For each pi ∈ P , we compute the geodesic distance
gi with respect to p, using the Fast Marching algo-
rithm [13].

• We then fill the bins of the histogram with each pair
(di, gi) of depth and geodesic distance values.

The descriptor of p is finally built by concatenating the value
of all the bins of the histogram, resulting in a 88-dimensional
vector.

Regarding the texture information, we use the well-known
Scale Invariant Feature Transform (SIFT). This descriptor
divides a local patch around the interest point p in 16
sub-regions, and computes a 8-bin histogram of the ori-
entations of the gradient for each sub-region, weighted by
its corresponding magnitude and a Gaussian applied at the
center of the patch. In order to reduce the aliasing in
the orientation, trilinear interpolation is used to distribute
gradient samples across adjacent bins of the histograms. Next
the histograms are concatenated, yielding a 128 dimensional
descriptor. To reduce the influence of non-affine illumination
changes, the normalized descriptor is thresholded at 0.2 and
re-normalized.

Both types of features are quantized using visual vocabu-
laries learned with K-Means from a large training database of
descriptors. A Bag of Features descriptor can be constructed
by accumulating in a histogram all the visual words present
in a local neighborhood defined by a bounding box.

B. Detection probability map

With BoF descriptors constructed from positive and neg-
ative training bounding boxes, a logistic regression model is
trained using LIBLINEAR to obtain the posterior probability
of the polo collar being present in a given bounding box. The
probability of a bounding box containing a collar (class C1)
given a BoF descriptor x can be computed as:

p(C1|x) =
1

1 + ewT x
(1)

where w are the parameters of the model, learned minimizing
the following expression:

min
w

(
1

2
wTw + C

N∑
i=1

log(1 + e−yiw
T ti)

)
(2)

where C is the regularization parameter (adjusted by cross-
validation), ti stands for the ith training example and yi is
its corresponding label.

Positive samples are the annotated bounding boxes in
the training set, and negatives are random bounding boxes,
sampled from the cloth area, that do not have more than
50% overlap with the annotated bounding box according to
the Jaccard index:

IJaccard =
area(Bn ∩Bgt)

area(Bn ∪Bgt)
(3)

where Bn is the generated negative bounding box and the
Bgt is the ground truth one.



Fig. 2. Schema of the proposed method. Steps b and c correspond to the first layer of the approach as described in the text. Step d corresponds to the
second layer, and step e to the third. In the image of step d, reddish color of the bounding box indicates more confidence in the detection. In the image
of step e, the black cross indicates the initial grasping point, and the white cross the grasping point after searching in the “wrinkledness” image.

In the first layer of the architecture (corresponding to steps
b and c of Figure 2) the logistic regression model is used in
a sliding window approach covering the whole image, with
different sizes and shapes of bounding boxes drawn from
the distribution of those annotated in the training set. Next,
similarly as it is done in [10], the probabilities of all windows
are combined in a probability map of the presence of a collar
(see for instance the middle image in Figure 3). Local peaks
of this probability map are then selected and passed to the
second stage of the architecture.

C. Detection refinement

A linear method like logistic regression has the advantage
of being fast to apply at test time, but its performance
is sometimes limited. A type of classifier with more ca-
pacity (potentially infinite), and specifically designed for
histograms, is the Support Vector Machines with the χ2

extended Gaussian kernel [14]:

χ2(x, t) = exp(−γ
∑
j

(xj − tj)2

xj + tj
) (4)

where γ is the inverse of the average of the χ2 distance
between the elements on the training set.

In the second layer (corresponding to step d of the
Figure 2), for each selected candidate point, we cast a set
of windows of different shapes and offsets with respect to
the original point. Next, the score assigned by a χ2 kernel
SVM is used to rank these new windows, and only the
highest ranked window for each candidate point is accepted.
In practice we are conducting a local search around the most
probable locations of the collar with a more expensive but
reliable classifier.

D. “Graspability” measure

Finally, in the third layer (corresponding to step e of
Figure 2), a graspable point is selected based on depth
information. The most commonly used way to ensure that
a point is graspable is by selecting the one that maximizes
height. Although this measurement works well in controlled
environments, it is no guarantee that the point will be easily

graspable by a robot hand having limited precision. Instead,
we propose a “wrinkledness” measure, that will give more
importance to regions forming a pyramidal or conic structure,
easily graspable by a robot hand. We define this measure as
the entropy in the distribution of the orientation of the normal
(expressed in spherical coordinates) in a local region.

The normal vector is computed for every point of the depth
image using the information of its neighbors, and converted
to spherical coordinates:

(φ, θ) =
(
arccos

(z
r

)
, arctan

(y
x

))
(5)

where φ is the inclination and θ is the azimuth, (x, y, z) are
the normal vector coordinates, and r is the radius, defined
as:

r =
√
x2 + y2 + z2. (6)

Then, a bi-dimensional histogram of (φ, θ) pairs is con-
structed for a local region around each point (31 pixel side
in our experiments) and its entropy is computed as:

H(X) = −
n∑

i=1

p(xi) log p(xi) (7)

where X is the n-bin angle orientation histogram, and xi is
the ith bin. We used n = 64 in our experiments.

Entropy measures how much information exists in a mes-
sage or distribution, or alternatively, how “predictable” it is.
In our context, it directly tells us the amount of support of
the distribution concentrated in high probability peaks or,
equivalently, how much of the surrounding area of the point
has normals aligned in the same orientation i.e. a flat surface
or a combination of a few flat surfaces. See the rightmost
image in Figure 3 for an example response image of this
measure.

Our environment is calibrated, therefore we relate the 3D
points of the camera with positions of the robot arm. Once
the best grasping point is determined we can simply perform
an open loop grasping to this point.
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Fig. 4. Precision-recall curves of test with the three image subsets for different features and vocabulary sizes. The curves are the average of 10 complete
runs of the method (training/testing). Size of the marker indicates proportion of the runs which reached the corresponding recall level. The legend also
displays mean average precision. Figure (d) corresponds to a test with the blue polo subset comparing the results with and without the second layer of the
architecture, i.e. not refining the peaks found from the probability map with the χ2 kernel SVM classifier.

Fig. 3. From left to right: original image, detection probability map and
“wrinkledness” measure.

III. EVALUATION RESULTS

We have acquired a dataset of 194 images of various polo
shirts with a Kinect camera, with large variations in pose.
The images are of 640 × 480 pixels, the best resolution
offered by the camera when combining with depth. To train
the classifiers, we have used only images of the blue polo,
like the one that can be seen in the first column of Figure 3.

In addition to the blue polo, we also used other shirts to

evaluate how well the models acquired in one piece of cloth
could translate to similar ones. Furthermore, unrelated cloth
pieces were added to test the robustness of the method to
false detections. Various example pictures of the dataset can
be seen in Figure 61. Note the variability in appearance of
the collar due to the flexibility of the textile material. For
some images, it is even difficult for a human to determine
where the collar is. We have divided our dataset in three
subsets:

• Blue polo: This subset contains 117 images with the
blue polo only. We split it in a training set (70%) and a
test set (30%). The training set is used consistently for
all experiments.

• Others: This subset is composed of images showing
shirts other than the blue polo, and is used to evaluate

1More result images can be found in the project web-page
http://www.iri.upc.edu/research/webprojects/
intellact/planning/wrinkledGrasping.php



how well the previously trained classifiers generalize to
other similar, but different in appearance, cloth items.
It contains 48 images, with one annotated collar per
image.

• Mixed: The blue polo appears mixed with other cloth
items. The collars of other shirts present in the images
have also been annotated. This subset contains 29
images with a total of 48 annotated collars.

Since our objective is to find a good grasping point in
the collar of the cloth, the evaluation measure we used in
this work is the percentage of grasp point selections that
fall inside its corresponding manually annotated bounding
box. To account for randomness when sampling negative
bounding boxes, all results reported are the average of ten
complete runs of the method (training and testing).

Figure 4.a shows the average precision-recall curves for
a 10 repetitions experiment using the blue polo subset.
Precision corresponds to the percentage of correct detections,
and recall to the percentage of annotated objects that have
been detected. The precision-recall curve plots the precision
obtained at each recall level. As can be seen, the SIFT
features obtained the best results. In the other extreme, the
GDH features attained lower precision and recall levels, and
the combination of both features obtained results comparable
to the SIFT ones. It can also be observed that the limited
size and variability of the training set favors small visual
word vocabularies, since larger ones introduce aliasing to
the quantized feature space. Interestingly, experiments with
the others subset (See Figure 4.b) show a decline in the
performance of the SIFT features, while the GDH and the
combined features attain similar results. Since SIFT features
rely strongly on appearance, it seems reasonable that they
perform worse when changing the object. On the other hand,
the shape of the deformation may be expected to be similar.
This suggests the value of the depth features for handling
variation and generalizing to more types of clothes. When
using the mixed subset all methods attain lower average pre-
cision levels, as can be seen in Figure 4.c. This degradation
is not surprising, since we are dealing with a significantly
more complex scenario. The good performance of the SIFT
features in the highest recall levels is most likely due to the
presence of the blue polo in several images of this subset.

The results shown in Figure 4.d illustrate the advantage
of adding the second layer to our algorithm. The perfor-
mance using windows generated only from the peaks of the
probability map causes a drop of up to 20% in the average
precision.

Figure 5 shows another interpretation of the results: it
displays the percentage of true positives found looking only
at each of the N = 5 top ranked windows of every image
in a stacked bar plot for all the feature combinations and
subsets. This interpretation is especially relevant for robot
manipulation, since for a given image a decision must be
taken regarding where (in 3D space) to attempt the grasp
action, and this is exactly the window with the maximum
score in our approach. As can be seen in the figure, the
first choice (lower part of the stacked bar plot) was correct
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Fig. 5. Percentage of true positives considering only the N = 5 windows
with the highest classifier score per image. Each stacked bar plot shows
the fraction of true positives captured for each of the five best classified
windows. Please notice the difference in scale in the vertical axis between
the different subsets. The term tpr stands for true positive rate.

around 70% of the times for the blue polo subset, and about
60% for the others. The mixed subset attains a more modest
30%. Note that if there is no collar present in the image, a
window would still be selected, even if it had a low classifier
score. Therefore, this analysis must be taken with caution
since, contrarily to precision-recall curves, it is not taken
into account that at a certain classifier score, the grasp action
would be inhibited. Therefore, some of the hits exhibited in
this graph could have been filtered by this threshold on the
classifier score.

We have used the learned classifiers in a real manipulation
scenario. The experimental setup includes a Kinect camera
rigidly attached to the environment, and a WAM arm with a
three-fingered Barret hand (See Figure 1). For simplicity we
used a predefined grasping position of the fingers, instead
of adapting the position to the current state of the cloth
object. Once the grasping point has been determined, the
robot executes an approaching motion and performs the grasp
of the object. We put in correspondence the two coordinate
systems (i.e. camera and robot) using a common hand-eye
calibration method.

IV. CONCLUSIONS

Usually, in robotic textile manipulation literature the per-
ception component is reduced to the simplest possible system
that fulfills the desired requirements in a controlled environ-
ment. We feel that, on the contrary, it is important to develop
methods capable of properly perceiving and modeling cloth
objects in order to efficiently execute the desired manipu-
lation tasks. Therefore, in this work we proposed a method
for the difficult task of detecting a part of a very flexible
object using computer vision techniques on images enhanced



Fig. 6. Example detection images. The rows correspond to the blue polo, others and mixed subsets, in this order. Green boxes correspond to ground truth
annotations. Notice the top-left and the middle-left examples, that show accurate detections of wrinkled collars.

with depth information, and we have shown its applicability
in a real manipulation scenario. We have found that the
SIFT appearance descriptors have a surprisingly good per-
formance, especially in detecting deformed versions of the
same object (we achieved around 70% correct detections with
the first classified hypothesis of each image for this task), but
combining it with GDH shape descriptors allowed to improve
the generalization capabilities of the method.

Future work includes testing the method with other cloth
parts (such as the sleeve of a sweater, the hips of a pair of
pants or the ankle of a sock), and evaluating alternative 3D
descriptors, such as HKS [15] or DaLI [16].
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