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Abstract

The real roots of the characteristic polynomial of a planar linkage determine its assembly

modes. In this work it is shown how the characteristic polynomial of a Baranov truss

derived using a distance-base formulation contains all the necessary and sufficient in-

formation for solving the position analysis of the Assur kinematic chains resulting from

replacing some of its revolute joints by slider joints. This is a relevant result because it

avoids the case-by-case treatment that requires new sets of variable eliminations to obtain

the characteristic polynomial of each Assur kinematic chain.
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1. Introduction

A non-overconstrained linkage with zero-mobility from which an Assur group can
be obtained by removing any of its links is defined as an Assur kinematic chain, basic
truss [1, 2], or Baranov truss if no slider joints are considered [3]. Hence, a Baranov
truss, named after the Russian kinematician G.G. Baranov who first presented the idea
of this kind of truss in 1952 [4], corresponds to multiple Assur groups. Baranov, in
his seminal paper, presented 3 trusses of 7 links and 26 trusses of 9 links. In 1971,
Manolescu and Erdelean identified two additional trusses of 9 links that were missing in
the initial classification [5], thus completing the classification of Baranov trusses with up
to 4 loops. In 1994, Yang and Yao found that the number of Baranov trusses with 11
links is 239 without explicitly presenting their topology [6]. All Assur kinematic chains
can be derived from Baranov trusses by replacing revolute joints by slider joints bearing
in mind that loops with only slider joints cannot be considered because they would reduce
in one the number of constraints that make an Assur kinematic chain rigid [7]. Therefore,
three different 3-link Assur kinematic chains can be derived from the triad —the only
Baranov truss with 3 links— [2] [Fig. 1(a)], and ten 5-link Assur kinematic chains from
the pentad —the only Baranov truss with 5 links — [8] [Fig. 1(b)].
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Figure 1: The three 3-link Assur kinematic chains (a), and the ten 5-link Assur kinematic chains (b).

Closed-form solutions for the position analysis of all Assur kinematic chains with 3
and 5 links have been obtained on an ad hoc basis by several authors. For the three 3-link
Assur kinematic chains, explicit solutions to the position analysis problem can be found,
for instance, in [2]. The position analysis problem of the ten 5-link Assur kinematic chains
was solved for the first time in closed form by Li and Matthew in [8]. Other solutions
for 5-link Assur kinematic chains have been presented, at least, in [9, 10, 11, 12, 13]. An
extensive research on the position analysis of Assur kinematic chains with only revolute
joints, i.e. Baranov trusses, has been performed by the kinematics community in the last
decades, see [14] and the references therein, to the point that a closed-form solution of a
13-link (6 loop) Baranov truss, without relying on variable eliminations nor trigonometric
substitutions, has been recently reported [15]. Beyond 5 links, the closed-form position
analysis of some Assur kinematic chains has only been tackled, to our knowledge, by
Wohlhart in [16, 17, 18]. In these works, using the Sylvester’s elimination method, he
successfully solved nine 9-link and one 11-link Assur kinematic chains.

General algorithms indeed exists for the closed-form position analysis of multi-loop
planar linkages but they invariably rely on resultant elimination techniques applied to
sets of kinematic loop equations. For example, Nielsen and Roth [19], and Wampler [20]
presented general methods for the analysis of planar linkages using the Dixon’s resultant.
Although the uniform treatment of these elimination-based methods of all planar linkages
is remarkable, the position analysis of Assur kinematic chains based on them has to be
carried out on a case-by-case basis because the required variable eliminations change.

In order to analyze Assur kinematic chains and Baranov trusses in a unified way, one
possibility would be to introduce some transformations that would allow us to treat the
translations associated with the slider joints as rotations. To this end, at least three
options arise:

1. Substituting the slider joints by inversors [21]. Although this would solve the
problem, the resulting truss would be, in general, too complicated since one inversor
should be introduced for each slider. Moreover, using this kind of substitutions, the
analysis of a Baranov truss does not seem to provide any insight on the analysis of
their derived Assur kinematic chains.
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2. Adding one extra dimension which would permit to have an origin for the rotations
which is lifted outside the 2D plane. Then, it would be possible to turn translations
into rotations. This has to do with the stereographic projection. For example, in
the framework of Clifford algebra, translations on a 2D plane are difficult to handle,
but if one maps that plane onto the surface of a sphere in 3D, then one can identify
the 2D translations with rotations on the surface of the 3D sphere. Although this
approach is mathematically elegant by providing a unified treatment of Baranov
trusses and Assur kinematic chains, it seems to give no clear advantage compared
to the standard approach based on independent kinematic vector equations because
the variables to be eliminated from the set of derived equations also change with
the analyzed Assur kinematic chain.

3. Regarding a translational motion as an infinitely small rotation about a point
at infinity. It is well-known that a translation in the direction (ux, uy) may be
represented as a rotation about the ideal point given in homogeneous coordinates
by (−uy, ux, 0)

T . This is probably the most intuitive and simple approach but,
depending on the used formulation, it may be difficult to be accommodated. This
paper is essentially devoted to show how a coordinate-free formulation based on
distances and oriented areas provides a framework within which this idea can be
easily applied thus leading to the conclusion that the characteristic polynomials of
the Baranov trusses contain all the necessary and sufficient information for solving
the position analysis of all derived Assur kinematic chains.

This paper is organized as follows. Section 2 briefly reviews the basics of the used
formulation: the concept of bilateration matrix and the idea of deriving closure conditions
in terms of this kind of matrices. Then, Section 3 shows how to transform an Assur
kinematic chain with slider joints into a Baranov truss with revolute joint centers located
at infinity. Section 4 shows through examples how to solve, using the closure condition
for a Baranov truss in terms of bilateration matrices, the position analysis of different
Assur kinematic chains derived from it. Finally, we conclude in Section 5.

2. Bilateration matrices and closure conditions for Baranov trusses

In what follows, Pi will denote a point, PiPj the segment defined by Pi and Pj , and

△PiPjPk the triangle defined by Pi, Pj , and Pk. Moreover, pij =
−−→
PiPj and si,j = ‖pi,j‖2.

Let us suppose that we want to obtain the point of intersection of two circles centered
at Pi and Pj , respectively. Then, according to Fig. 2(a), the result to this problem can
be expressed in vector form as:

pi,k = Zi,j,k pi,j (1)

where

Zi,j,k =
1

2 si,j

[

si,j + si,k − sj,k −4Ai,j,k

4Ai,j,k si,j + si,k − sj,k

]

is called a bilateration matrix, and

Ai,j,k = ±1

4

√

(si,j+si,k+sj,k)
2−2 (si,j2+si,k2+sj,k2) (2)
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Figure 2: The intersection of two circles (a), and the intersection of a circle and a line (b) can have up
to two possible solutions which can be expressed in vector form using bilateration matrices.

is the oriented area of △PiPjPk which is defined as positive if Pk is to the left of the
oriented line defined by pi,j , and negative otherwise. The interested reader is addressed
to [22] for a derivation of this formula.

Now, let us suppose that we want to obtain the intersection of a circle centered at
Pi and a line whose nearest point to Pi is Pj . In this case, according to Fig. 2(b),
si,k = si,j + sj,k. Then, substituting this relationship in expression (1), we get

pi,k = Yi,j,kpi,j (3)

where

Yi,j,k =
1

si,j

[

si,j −2Ai,j,k

2Ai,j,k si,j

]

(4)

and

Ai,j,k = ±1

2

√
si,jsi,k (5)

is the oriented area of right triangle △PiPjPk.

It can checked that, if v = Zw, where Z is a bilateration matrix, then ‖v‖2 =

det(Z) ‖w‖2. Moreover, it can also be checked that the product of two bilateration
matrices is commutative. Then, it is easy to prove that the set of bilateration matrices,

i.e., matrices of the form





a −b
b a



, constitute a commutative group under the product

and addition operations.
In those geometric problems where the solution can be constructed using a ruler and

a compass only, each point is determined by the intersection of two lines, a line and
a circle, or two circles [23]. Thus, bilateration matrices permit to represent the result
of these operations in a coordinate-free vector form where the sign of the square roots
account for all possible solutions that are generated along the constructive process. The
position analysis of a planar linkage is a geometric problem that sometimes can be solved
with no further help than a compass and a ruler. The characteristic polynomials of these
particular linkages factor into quadratic terms and this is why they are usually called
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quadratically-solvable linkages. Unfortunately, the position analysis of Baranov trusses
with more than 3 links cannot be solved using a ruler and a compass but bilateration
matrices are still of great practical interest because their use permits to derive necessary
and sufficient closure conditions which in most cases directly reduce to a single scalar
equation [14]. For example, these conditions for the three 7-link Baranov trusses appear
in Fig. 3. They are expressed in terms of an unknown distance (the one that corresponds
to the segment shown in dotted line). The different values for this unknown distance
that satisfy the corresponding closure condition determine the different assembly modes.
Actually, for each of these values, the different assembly modes can be constructed using
a ruler and a compass only. Moreover, the characteristic polynomials can be derived
from these closure conditions by expanding them, clearing radicals and factorizing the
result (see [14, 22] for guidelines on how to perform these operations). Note that this
process does not involve any trigonometric substitutions nor variable eliminations.

3. Projective extensions of Baranov trusses

Let us suppose that the revolute joint centered at Pi in Fig. 4(a) is replaced by a
slider joint as shown in Fig. 4(b) such that Pi is split into P ′

i and P ′′
i . This new joint

is placed at fixed orientations with respect to the links connected to them. Once an
orientation is assigned to the slider joint axis with respect to its adjacent links, a set of
orientation angles can be defined (in this case αj , αk, αl, and αm) and, as a consequence,
an oriented distance can be assigned to the points of the links connected by this joint
with respect to this axis, as shown in Fig. 4(c). The sign of the considered distance will
be the sign of the sine of the corresponding orientation. This defines a set of new points
on the slider axis: those that realize the minimum distance to the considered points (in
this case P ′

j , P
′
k, P

′
l , and P ′

m). Note that the slider joint imposes the alignment of all
these points but, for the moment, let us suppose that they all are located at the same
distance, say δi, from P∞

i as shown in Fig. 4(d). This would imply that they would lie on
a circle but, if δi → ∞, they would again lie on a line as imposed by the slider join. The
result of these geometric transformation is a joint whose topology is the same as that of
the initial revolute joint, as shown in Fig. 4(e), but with the revolute center located at
infinity.

It is worth noting that, after the described geometric transformation, it might happen
that the orientations of △P∞

i PjPk or △P∞
i PlPm have changed with respect to that of

△PiPjPk or △PiPlPm, respectively, and this possible sign change has to be taken into
account in the closure condition.

Although the described process is conceptually simple, at least two situations arise
that required a detailed analysis:

1. when two adjacent revolute joints are replaced by slider joints,

2. when a slider joint replaces a revolute joint acting as an end point of the segment
whose distance is used as variable in the closure condition.

Handling these situations is not difficult but requires an explanation that is better
understood through examples. This is carried out in the next section where the above
geometric transformation is used to solve the position analysis of several Assur kinematic
chains derived from the same Baranov truss.
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Baranov truss Distance-based closure condition

Alpha

P1

P2

P3

P4

P5

P6

P7

P8

P9 s5,8 = det (Q) s1,4

where

Q = −Z1,3,5Z1,4,3 + I− Z4,3,6 Z4,1,3 + Z6,9,8Z6,7,9Ω

with

Ω = Z4,3,6Z4,1,3 − Z4,2,7Z4,1,2

and

s6,7 = det (Ω) s1,4

7/B1

P1

P2

P3

P4

P5

P6

P7

P8

P9 s1,6 = det (Q) s4,7

where

Q = −Z3,2,1Z3,8,2Ω− Z4,5,3Z4,7,5 + Z4,9,6Z4,7,9

with

Ω = −Z4,5,3Z4,7,5 + I− Z7,9,8Z7,4,9

and

s3,8 = det (Ω) s4,7

7/B2

P1

P2

P3 P4

P5

P6

P7
P8

P9 s2,8 = det (Q) s1,6

where

Q =
(

Z1,3,4 − Z1,3,2

)

Z1,6,3 +
(

I− Z9,7,8 Z9,4,7

)

Ω

with

Ω = −Z1,3,4Z1,6,3 + I− Z6,5,9Z6,1,5

and

s4,9 = det (Ω) s1,6

7/B3

Figure 3: The three 7-link Baranov trusses and their closure conditions in terms of bilateration matrices.
The dotted line in each truss represents the unknown distance used as variable in the corresponding
closure condition.
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(a) (b) (c)

(d) (e)
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P ′′
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Pk
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PlPl
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P ′
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P ′
j

P ′
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P ′
k

P ′
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P ′
l

P ′
m

P ′
m

P∞
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P∞
i
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δi

δi

δi

αj

αk

αl

αm

√
si,j sinαj

√
si,k sinαk

√
si,l sinαl

√
si,m sinαm

δi+
√
si,j sinαj

δi+
√
si,k sinαk

δi+
√
si,l sinαl

δi+
√
si,m sinαm

Figure 4: Geometric transformation that permits a slider joint that replaces a revolute joint be trans-
formed back to a revolute join centered at infinity.

4. Application to the position analysis of a family of 7-link Assur kinematic

chains

The third Baranov truss in Fig. 3 will be used to exemplify the ideas presented in
the previous sections. First, we will show how its characteristic polynomial and, as a
consequence, their assembly modes can be derived from its closure condition given in
terms of bilateration matrices. Then, we will see the effect of substituting one revolute
joint by a slider joint —as shown in Fig. 6(a)— on this closure condition using the
geometric transformations described in the previous section. This analysis leaves the
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way paved for the analysis of the Assur kinematic chains shown in Fig. 6(c), in which
two adjacent revolute joints have been replaced by slider joints, and that shown in Fig. 9,
in which one of the joints defining one of the end-points of the segment whose length is
used as variable in the closure condition is replaced by a slider joint.

4.1. The assembly modes of the 7/B3 Baranov truss

Let us consider the 7/B3 truss in Fig. 3. It has three independent kinematic loops
and nine joints. The reader is addressed to [22, 24] for a detailed analysis of this truss.
Its distance-based closure condition, according to Fig. 3, is:

s2,8 = det (Q) s1,6, (6)

where

Q =
(

Z1,3,4 − Z1,3,2

)

Z1,6,3 +
(

I− Z9,7,8 Z9,4,7

)

Ω (7)

with Ω = −Z1,3,4Z1,6,3+ I−Z6,5,9Z6,1,5 and s4,9 = det (Ω). This equation expresses the
set of values of s1,6 compatible with all links side lengths and the signs of the oriented
areas of the triangles△P5P6P9, △P7P8P9, △P1P2P3 and△P2P3P4. Once the dimensions
of the truss links have been substituted in equation (6) and the result expanded, a scalar
radical equation in function of the unknown squared distance s1,6 is obtained which can
be solved using, for example, a Newton interval method. Alternatively, a polynomial
representation can be derived. For example, according to the notation used in Fig. 6, let
us set s1,2 = 49, s1,3 = 13, s1,4 = 29, s1,5 = 101, s2,3 = 34, s2,4 = 8, s2,8 = 82, s3,4 = 10,
s3,6 = 36, s4,7 = 52, s5,6 = 10, s5,9 = 29, s6,9 = 13, s7,8 = 10, s7,9 = 34, and s8,9 = 20.
Substituting these values in equation (6), expanding it, clearing radicals, and factorizing
the result, we obtain the characteristic polynomial:

s181,6 − 1146.0063 s171,6 + 6.1754 105 s161,6 − 2.0755 108 s151,6 + 4.8684 1010 s141,6

− 8.4515 1012 s131,6 + 1.1239 1015 s121,6 − 1.1693 1017 s111,6 + 9.6369 1018 s101,6

− 6.3307 1020 s91,6 + 3.3187 1022 s81,6 − 1.3832 1024 s71,6 + 4.5432 1025 s61,6

− 1.1580 1027 s51,6 + 2.2360 1028 s41,6 − 3.1489 1029 s31,6 + 3.0382 1030 s21,6

− 1.7877 1031 s1,6 + 4.8226 1031.

The real roots of this polynomial are 88.5700 and 90.8322. The corresponding as-
sembly modes, for the case in which the ground link is the quaternary link with points
located at P1 = (1, 0)T , P2 = (8, 0)T , P3 = (3, 3)T , and P4 = (6, 2)T , appear in Fig. 5.

Next, we will see the effect of replacing a revolute joint by a slider joint on this truss.

4.2. Replacing one revolute joint

When the revolute joint centered at P9 in the above Baranov truss is replaced by a
slider joint as indicated in Fig. 6(a), an Assur kinematic chain is obtained. In accordance
with the notation used in Fig. 6(b), the distance-based closure condition of this new
linkage can be obtained, as explained in Section 3, by setting in equation (6):
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s1,6 = 88.5700 s1,6 = 90.8322

Figure 5: The assembly modes of the 7/B3 Baranov truss used as reference truss.

s5,9 =
(

δ1 +
√
s5,9′ sinα1

)2

s6,9 =
(

δ1 +
√
s6,9′ sinα2

)2

s7,9 =
(

δ1 +
√
s7,9′′ sinα3

)2

s8,9 =
(

δ1 +
√
s8,9′′ sinα4

)2

and taking the limit δ1 → ∞. That is,

lim
δ1→∞

(det (Q) s1,6 − s2,8)∣
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

s5,9 =
(

δ1 +
√
s
5,9′ sinα1

)

2

s6,9 =
(

δ1 +
√
s
6,9′ sinα2

)

2

s7,9 =
(

δ1 +
√
s
7,9′′ sinα3

)

2

s8,9 =
(

δ1 +
√
s
8,9′′ sinα4

)

2

.

(8)

Note that the expression det (Q) s1,6 − s2,8, after the substitutions, can be written as a
polynomial in δ1. Therefore, the above limit can be expressed as:

lim
δ1→∞

n
∑

i=0

φi(s1,6)δ
i
1
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

s5,9 =
(

δ1 +
√
s
5,9′ sinα1

)

2

s6,9 =
(

δ1 +
√
s
6,9′ sinα2

)

2

s7,9 =
(

δ1 +
√
s
7,9′′ sinα3

)

2

s8,9 =
(

δ1 +
√
s
8,9′′ sinα4

)

2

.

Then, we conclude that, for this limit to be zero, φn(s1,6) = 0. In other words, the new
distance-based closure condition is φn(s1,6) = 0.
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(a) (b)

(c) (d)

α1
α2

α3

α4

α4

α5

α6

α7

P1

P1 P1

P1P2

P2 P2

P2

P3

P3 P3

P3P4

P4 P4

P4

P5

P5 P5

P5P6

P6 P6

P6P7

P7 P7

P7

P8 P8

P∞
8

P∞
9

P8′ P8′

P9′

P9′ P9′

P9′

P8′′ P8′′

P9′′

P9′′ P9′′

P9′′

δ1

δ1δ1
δ1

δ2

δ2

δ2

Figure 6: The distance-based closure condition of the 7-link Assur kinematic chain with one slider joint
in (a) can be obtained by properly substituting the square lengths s5,9, s6,9, s7,9, and s8,9 in the original
closure condition and taking the limit δ1 → ∞ (b). The distance-based closure condition of the 7-link
Assur kinematic chain with two slider joints (c) can be computed by properly substituting α4, s8,9′′ ,
s7,8, and s2,8 in the closure condition obtained for the 7-link Assur kinematic chain with one slider joint
and taking the limit δ2 → ∞ (d).
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Now, let us suppose that all link dimensions remain unaltered, that is, s5,9′ = s5,9,
s6,9′ = s6,9, s7,9′′ = s7,9, and s8,9′′ = s8,9, and the orientation of the slider joint is
fixed with respect to its adjacent links such that α1 = π − arctan 5

2 and α3 = 2π −
arctan 5

3 . Then, given the orientations of △P5P6P9′ and △P7P8P9′′ , it turns out that
α2 = π − arctan 2

3 and α4 = 2π − arctan 1
2 . Substituting these values in equation (8),

expanding it, computing the limit, clearing radicals, and factorizing the result, we obtain
the characteristic polynomial

s161,6 − 1088.1889 s151,6 + 5.5629 105 s141,6 − 1.7759 108 s131,6 + 3.9687 1010 s121,6

− 6.5911 1012 s111,6 + 8.4263 1014 s101,6 − 8.4748 1016 s91,6 + 6.7979 1018 s81,6

− 4.3842 1020 s71,6 + 2.2802 1022 s61,6 − 9.5228 1023 s51,6 + 3.1426 1025 s41,6

− 7.9121 1026 s31,6 + 1.4233 1028 s21,6 − 1.6169 1029 s1,6 + 8.6390 1029.

The real roots of this polynomial are 49.5561, 50.1965, 50.6270, and 85.0000. These
new assembly modes appear in Fig. 7.

4.3. Replacing two adjacent revolute joints

Now, let us suppose that the revolute joint centered at P8 is also replaced by a slider
joint as shown in Fig. 6(c). Then, according to the notation used in Fig. 6(d), the
closure condition for the resulting 7-link Assur kinematic chain is obtained by setting in
the expression resulting from (8)

α4 = α4 − α5 +
π

2

s8,9′′ =
(

δ2 +
√
s8′,9′′ sinα5

)2

s7,8 =
(

δ2 +
√
s7,8′ sinα6

)2

s2,8 =
(

δ2 +
√
s3,8′′ sinα7

)2

and taking the limit for δ2 → ∞. That is,

lim
δ2→∞

( lim
δ1→∞

(det(Q)s1,6 − s2,8))∣
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

s5,9 =
(

δ1 +
√
s
5,9′ sinα1

)

2

s6,9 =
(

δ1 +
√
s
6,9′ sinα2

)

2

s7,9 =
(

δ1 +
√
s
7,9′′ sinα3

)

2

s8,9 =
(

δ1 + (δ2 +
√
s
8′,9′′ sinα5) cos(α4 − α5)

)

2

s7,8 =
(

δ2 +
√
s
7,8′ sinα6

)

2

s2,8 =
(

δ2 +
√
s
3,8′′ sinα7

)

2

(9)

The important point here is to realize that α4, which was introduced in the first
set of substitutions, has to be substituted in the second set of substitutions. Thus,
both sets of substitutions are not independent. This only happens when replacing two
neighboring revolute joints. Note that, if we would have proceeded in the reverse order,
the substitution for the squared distance s8,9 would have been different.
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s1,6 = 49.5561 s1,6 = 50.1965

s1,6 = 50.6270 s1,6 = 85.0000

Figure 7: The assembly modes of the analyzed Assur kinematic chain with one slider joint whose
supporting line is represented by a thin line.

According to the notation used in Fig. 6(d), let us again suppose that the dimensions
of all links remain unaltered, that is, s2,8′′ = s2,8, s5,9′ = s5,9, s6,9′ = s6,9, s7,8′ = s7,8,
s7,9′′ = s7,9, and s8′,9′′ = s8,9, and the orientation of the second slider joint is fixed with
respect to its adjacent links such that α5 = π − arctan3 and α7 = π − arctan4. Then,
given the orientation of △P7P8′P9′′ , it turns out that α6 = π + arctan 1

2 . Substituting
these values in the expression resulting from (9), expanding it, computing the limit, and
clearing radicals, we obtain the following characteristic polynomial:
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s121,6 − 801.1113 s111,6 + 2.8716 105 s101,6 − 6.0970 107 s91,6 + 8.5621 109 s81,6

− 8.4211 1011 s71,6 + 6.0004 1013 s61,6 − 3.1645 1015 s51,6 + 1.2496 1017 s41,6

− 3.6854 1018 s31,6 + 7.8680 1019 s21,6 − 1.1067 1021 s1,6 + 7.7765 1021.

The real roots of this polynomial are 48.1037, 85.0000, 88.2000, and 88.5483. The
corresponding assembly modes appear in Fig. 8.

s1,6 = 48.1037 s1,6 = 85.0000

s1,6 = 88.2000 s1,6 = 88.5483

Figure 8: The assembly modes of the analyzed Assur kinematic chain with two slider joints whose
supporting lines are represented by thin lines.
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4.4. Replacing one revolute joint involved in the definition of the variable distance

According to Fig. 9, let us now suppose that the revolute joint centered at P1 is
replaced by a slider joint in the original Baranov truss. In this case, the substitutions to
be performed in expression (6) are:

s2,1 =
(

δ3 +
√
s2,1′ sinα1

)2

s4,1 =
(

δ3 +
√
s4,1′ sinα2

)2

s3,1 =
(

δ3 +
√
s3,1′ sinα3

)2

s5,1 =
(

δ3 +
√
s5,1′ sinα4

)2

s6,1 = (δ3 + t)
2

(10)

The new closure condition, obtained after computing the limit for δ3 → ∞, depends
on a new variable, t, the oriented distance between P6 and the slider joint axis.

α1

α2

α3

α4

P2

P3 P4

P5
P6 P7

P8

P9

P∞
1

P1′

P1′′

δ3

δ3

δ3

δ3

δ3

t

Figure 9: Example in which a slider replaces the revolute join involved in the definition of the distance
in which the closure condition of the truss is expressed.

According to the notation used in Fig. 9, let us suppose as above that the dimension
of all the original truss links remain unaltered after this substitution, that is, s1′,2 = s1,2,
s1′,3 = s1,3, s1′,4 = s1,4, s1′′,5 = s1,5, and the orientation of the introduced slider joint
axis with respect to its adjacent links is given by α1 = 0 and α4 = arctan 10. Then,
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given the orientations of △P1′P2P4 and △P1′P4P3, it turns out that α2 = arctan 2
5

and α3 = arctan 3
2 . Finally, performing the substitutions given in (10) in equation

(6), expanding the result, computing the limit, and clearing radicals, we obtain the
characteristic polynomial:

t18 − 99.9226 t17 + 4616.5154 t16 − 1.3111 105 t15 + 2.5703 106 t14

− 3.7071 107 t13 + 4.0975 108 t12 − 3.5707 109 t11 + 2.5033 1010 t10

− 1.4322 1011 t9 + 6.7649 1011 t8 − 2.6752 1012 t7 + 9.0667 1012 t6

− 2.7287 1013 t5 + 7.5300 1013 t4 − 1.8819 1014 t3 + 3.8837 1014 t2

− 5.5359 1014 t+ 3.8671 1014.

The real roots of this polynomial are 7.4867 and 8.7825. The corresponding assembly
modes appear in Fig. 10.

t = 7.4867 t = 8.7825

Figure 10: The assembly modes of the 7-link Assur kinematic chain whose closure condition is expressed
in terms of the oriented distance between a revolute joint and the slider joint axis.

Note that the case in which two slider joints replace the two revolute joints defining
the endpoints of the segment whose length is used as variable in the closure condition
can always be avoided because all kinematic loops of an Assur kinematic chain contain
at least one revolute joint.

The coefficients of the characteristic polynomials for all the presented examples had to
be computed in exact rational arithmetic. Otherwise, numerical problems make imprac-
ticable the correct computation of its roots. Although these coefficients have been given
in floating point arithmetic for saving space, they could be of interest for comparison and
reproducibility purposes.
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5. Conclusion

Various approaches adopted in different fields, such as linkage analysis, robot kine-
matics and variational CAD systems, rely on modular methods based on the common
idea that complex systems can be decomposed into modules that can be analyzed sep-
arately. These modules, called in the field of linkage analysis Assur kinematic chains,
reduce to Baranov trusses if only revolute joints are considered. In this paper, we have
shown how all Assur kinematic chains can be seen as projective extensions of Baranov
trusses, that is, Baranov trusses with revolute joint centers located at infinity and how
this fact can be easily accommodated in a distance-based formulation. This result leads
to the conclusion that the closure conditions for the Baranov trusses thus formulated can
be directly used to solve the position analysis of all Assur kinematic chains derived from
them. Since the distance-based closure conditions for all cataloged Baranov trusses have
recently been published [14], the position analysis of all derived Assur kinematics chains
can be carried out without having to perform new sets of variable eliminations, as it
is the usual practice when deriving characteristic polynomials from sets of independent
vector loop equations.
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