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Abstract— This paper presents a model predictive control
strategy to assure reliability in drinking water networks given
a customer service level and a forecasting demand. The un-
derlying idea concerns a two-layer hierarchical control stuc-
ture. The upper layer performs a local steady-state optimiation
to set up an inventory replenishment policy based on dynamic
safety stocks for each tank in the network. At the same stage,
actuators health is revised to set up their next maximum
allowable degradation in order to efficiently distribute overall
control effort and guarantee system availability. In the laver
layer, a model predictive control algorithm is implemented
to compute optimal control set-points to minimize a multi-
objective cost function. Simulation results in the Barceloa
drinking water network have shown the effectiveness of the
dynamic safety stocks allocation and the actuators health
monitoring to assure service reliability and optimizing nework
operational costs.

. INTRODUCTION

Drinking Water Networks (DWNSs) are large-scale multi-

and optimize multi-objective problems of complex dynamic
systems. Relevant works apply MPC to DWNs and general
SC in different schemes such as: centralized, decentdalize
distributed, hierarchical, and robust, see, e.g., [1]],[[115],
[16], [21], [25].

Reliability assurance of supply chains is mainly assodiate
with demand forecasting and safety stocks allocation irasto
ge units as a countermeasure to secure network performance
against forecast inaccuracy, (see, e.g., [7], [6], [13B][1
[22]). Most of the results reported in the literature assume
that demand forecast error is stationary and usually ndymal
distributed while replenishment lead time (the time frora th
moment a supply requirement is placed to the moment it is
received) is stationary and usually certain [7].

In practical operation of DWNs, the settling of the safety
stock is typically determined by experience, estimatirsd ri
and assigning a fixed value (i.e., a proportion of the volume

source/multi-node supply chain (SC) systems which muf the storage) for the entire planning horizon. This apphoa

be reliable and resilient while being subject to constsin

{is too conservative and reduces the manoeuvrability space

and continuously varying conditions with both determiiist fO €conomic optimization since the full tank excursion is
and probabilistic nature [24]. In general, DWNs operat@m'te‘j and its capacity is not usable to save energeticscost

as pull interconnected systems driven by exogenous affy

pumping actions [4]. On the other hand, lead time do vary

endogenous demands. The overall objective of managers is0¢S" When capacity is limited or time varying, nevertheless

provide a reliable water supply in the most economical way!"

guaranteeing availability and continuity of the servicéva

certain probability and without delay under some operatin

conditions, specific environments and uncertain events.

Supply chain management (SCM) is a complex task a

odels that take into account non-stationary behaviowgs ar

not completely helpful if they use this information to just
alculate safety stocks, especially when variations aneeth

gy network supply components ageing. Demand behaviour is

RN exogenous disturbance in DWNs, but flows and actuators

has become an increasingly research subject worldvée [ 2 manipulated and monitored elements, therefore ritiabi

with special attention to efficient handling of resource

and control effort allocation in supply chains should bevals

and planning against uncertainty of demand and/or suppRSSessed considering system health.

Strategical and tactical decisions in networks operatiam c

To the best of the authors’ knowledge, reliability degra-

be addressed by different methods (see, e.g., [14], [18}), bdation models (see, e.g., [], [8], [10], [17]), have notibee

control and systems theory have shown to be suitable in SC
to handle the problem consisting of uncertainties, delays a

lack of information (see, e.g., [12], [20]). A central cobrd

nator, who controls the SC, can account for these issues a

provide optimal operation. Hence, decision policies iregpi

from the model predictive control (MPC) framework, se

ffidressed for supply components in the framework of inven-
tory control and supply chains optimization simultanegusl
with dynamic planned safety stocks in DWNs. In addition,
lpyentory management for supply chains literature, even in
multi-stage multi-echelon schemes, supposes a hieraichic

and descendant flow of products, in a way that predicted

[9], are used due to its flexibility to manage constraint§afew stock changes are easily communicated backwards
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in order to support availability of quantities when they are
needed [7], but this behaviour is not true in real large-
scale supply networks (i.e., the Barcelona DWN), because a
meshed topology with multi-directional flows between tanks
and nodes prevails instead of spread tree configurations.
To circumvent the aforementioned difficulties, this paper
presents a hierarchical control scheme based on two optimi-
zation layers and forecast modules. The main contribution



of this work is the enhancement of an MPC controllem,,;,, and u,,,,; d € R? corresponds to the vector of
with capabilities to dynamically allocate the minimal dgfe the p water demands (sectors of consume) ifVspA, B,
volume in each storage unit to satisfy customer demard,, E,; andE, are state-space system matrices of suitable
in the presence of uncertainties and operational consdraindimensions dictated by the network topology.

avoiding stock-outs and distributing control efforts viith |? DWN Operational Control

actuators to extend their useful life and improve overa ) )
system service reliability. The main goal of the operational control of water transport

The paper is organized as follows: Section Il briefly descri0€tworks is to satisfy demands at consumer sectors but opti-
bes a control-oriented model of DWNs. Section Il concern§izing, at the same time, management policies expressed as a
to the proposed MPC strategy with reliability enhancement8ulti-objective problem. Hence, MPC is a suitable techaiqu
Section IV describes the case study where the effectivend8scontrol a DWN due to its capability to deal efficiently with
of the proposed approach is analysed via simuIations.(Sectimum'va“a_b'e dynaml_c constraln_ed systems and prediet t_h
V highlights the concluding remarks that can be drawn frorRfOPer actions to achieve the optimal performance accgrdin
the results presented in this paper, as well as some ideas ig@ user defined cost function. Specifically, the interest is

future research. minimize the following objectives [15]:
H,—-1 H H —1
II. DRINKING WATER NETWORK MANAGEMENT - ~ -
J = min S kile t Jo ke + I3 kit | 5
A. Assumptions Ao ; 1,k+i|k ; 2,k+ilk ; 3,k+ilk
(i) The DWN is modelled as the interconnection of storage (2)

tanks, actuators (pumps and valves), intersection nodeghere H, and H,, are the prediction and control horizons,
sectors of consume (demands), and sources (superficial/6pectively; indexi represents the predicted time along
underground). The relation between elements is only e horizons;f; , = | (a; + @ 1,) upAtlyy, minimizes the
material flows, but there are no dynamic couplings. (ii) EacRconomic cost of network operation taking into account
tank and node can receive and place flows from and t@ater production costo(;) and water pumping electric cost
multiple tanks/nodes and are modelled by a single firstow); for = llexll3.w, is a performance index which
principle mass balance equation. (iii) Each tank may fadeenalizes the amount of volume that goes down from
variability in the downstream demands or in the upstread Safety volume valuefs;, = [Au[3w, minimizes
lead times. (iv) Every source can supply its underlyingontrol signal variations to extend actuators life and essu
demand. (v) Demands and lead times behave non-stationa#0oth operationW,., W, andW,, are diagonal weighting
(vi) Demands follow a periodic behaviour and are measurg@atrices included to prioritize the objectives.

in an hourly base. (vii) Each path between elements hasWith the above information, the MPC design follows a sys-
an associated cost and transportation time. (viii) Networlematic procedure, which generates the control input tsgna
managers can estimate demamgime instants ahead. (ix) to the plant by combining a prediction model and a receding-
All elements operate with a common review peridd and  horizon control strategy [9]. The cost function (2) subjeect
storage tanks are subject to the same replenishment MFD, (10) and (11) represents the desired system perforenanc

policy. (x) There is no delay in ordering. over a future horizon. Once the minimization is performed,
_ ) _ only the first computed control action is implemented and
B. Discrete-Time Dynamic Model the system operates with this constant input until the next

The control-oriented model of a water transport systersampling instant. Then, the optimization is solved agaitn wi
is a simplified but representative model of the non-lineanew feedback measurements to compensate for unmeasured
dynamic behaviour, which allows predicting the effect ofdisturbances and model inaccuracies. This scheme is repea-
control actions on the entire network. Modelling principle ted at each future sampling period.
ocf DV%NS_ ha\;ﬁ be?n repor:_ed n:jthef Ilterature,thsee [3(]1, Ellf]. . HIERARCHICAL MPC STRATEGY FOR

onsidering the aforementioned references, the model of a SERVICE RELIABILITY IN DWN
DWN in discrete-time state space may be written as

A. Control System Structure

X1 = Axp + Buy + By dy, (1a) The control strategy addressed in this paper is based on a
E,u;, + Eod, =0, (1b) m_ultilayer (hi_erarchical) control system structure ent_mh _
with forecasting demand and actuators health estimation
Xmin < Xk < Xpaxs (1c)  modules (see Fig. 1). The hierarchical architecture has bee

(1d) widely used in process control with satisfactory results,

optimizing economic profits when disturbances are slowly
wherex € R" is the measurable state vector of water stockarying, see [23]. In a DWN, these disturbances follow a
levels in n? corresponding to the buffer tanks at the current pattern in an daily basis and can be well predicted for an
time instantt € N, subject to physical constraints,;, and hourly sampling time, which makes the hierarchical streestu
Xmax, U € R™ is the vector of manipulated flows inis  suitable to optimize targets for the policies of the operati
through them actuators subject to operational constraintgevel.

Unmin S Uy S Upax)



Plant-Wide Optimization The previous linear programming problem (LPP) uses the
Service Level | Cost (J) same model structure as in (1) but including a stochastic fo-
Objectives Reliability (R) . .
. + Priorities recasting demand. The resultant sequence of estimated flows
d > ~ . . .
] Economic MPC 1 1, allows to virtually decouple tanks interconnections and
z (Constraints Governor) estimate their net demanl),., and mean forecasted demand
P d,,., for a short horizonV € N,, N < H,. Then, it is
YWe, Wo, W, [ possible to compute individual safety volumesz, ;.);_1.,
. MPC based on forecasting error deviation and a given servi@,lev
(Dynamic Optimization) as follows:
Actuators Health B R N1
Estimation Y " - dnct,kJri = |Boutus,k+i + dek+i|a VZ € NO ) (4)
| Basic Feedback Control I A le\;_ol (Ainct_’kﬂ-
Demand davg,k = — N—-1 ®)
Forecasting u y
Y 2 2 ~
T5,k = \/(Ud,k)j(Tk)j + (07,) (davg 1) (6)
Disturbance @ Plant T
(measured demands) o, = [Ul,ka R ,Un_rk] , (7
oz
Fig. 1. Hierarchical MPC Control Strategy sp =0 (V)Ao-k’ (8)
. n
(@) = () (davg k) + (s1)j, Vi €N] 9)

The proposed control system is a two-layer structur&@hereBg,qu, ;. ; is the outflow of the tanks caused by water
combining an Economic Optimization Layer (EOL) and arf€dquirements from neighbouring tanks or nodes, Bpd,,
Optimal Feedback-Control Layer (OFCL). The EOL is 4s the estimated exogenous demand for a given time instant;
strategic layer that deals with the adjustment of target§x € R" is the vector of total forecast deviations, where
bounds and weights for the control problem taking intdor €achj-th tank at every time instank, the deviation is
account economic cost functions. The OFCL is a tactic@liven by o;, € R. This individual total deviation, takes
layer which executes a dynamic optimization within an MPcnto account the sample standard deviatien ;); € R
algorithm to translate strategic policies into desiredtoan Of the individual net demand forecast error, and the sample

actions for the operational control level by solving (2). ~ Standard deviatiorio, ;,); € R of the individual lead-time
error. Moreovers, € R" is the vector of safety stocks in

B. Safety Stocks Allocation Policy m’; &' (.) is the inverse cumulative normal distributiong

(0,100]% is the desired customer service level (percentage

There is the need to guarantee a safety water stock §j customers that do not experience a stock-out); (@nd)
each tank of the network in order to decrease the probabilify the individual safety stock for eaghth tank.

of shortages (when a tank or a node has insufficient water | this way, the vector of water base-stocks defined as
to satisfy external demands or the transfer request comi%j a [(x 2) (@) ]T c R™. is introduced in the

. . s,k)1ly s,k)n ’
from other tank/node) due uncertain events. To determiae th, 5 ~ design of Section II-C as a soft constraint to lead

s,k —
amount of safety water stocks, an inventory planning sjgate the tank volumes to be greater than such stocks (when

is addressed here to enrich previous control approaches (?)%ssible) and let the system employ safety volumiessface

[11], [15]), V‘{'th replenlshment policies. o uncertainties (when needed) but penalizing the used amount
The goal is to dynamically allocate the minimal volumeyt gatety. This soft constraint is expressed as follows:
x, in each tank to avoid stock-outs. To do so, the EOL first

estimates future flows for a short-term prediction horizms, X, > X, p — €, > 0. (10)
follows: ’ B

J

N_1 This strategy for the safety stock placement might be
S : tegorized as decentralized because there is no pooling
k= argmin J1 krilk (3a) Cate ) L :
B u ; . of disturbances into a consolidation storage unit and each
deposit keeps independent and sufficient safety amounts of

subject to
) water to face its underlying variability in lead-time derdan
Xjotit1lk = AXppije + Buyyipe + Bodi ik, (3b)  This strategy deals specifically with tanks reliability fas
Ejug . + Eady i, = 0, (3c) ming their faulty behaviour as the inability to satisfy thei
own demands), which is affected by both the capacity and
Xmin < xk+i|k < Xmaxs (3d) [T . f s
reliability of the system supplying it. If the supply capgds
Unin < Wetilk < Umax (3€)  less than the average demand, no tank will be large enough to
T provide a sustained service. Therefore, despite the agsump
where_ﬁ)syk = uzk‘k, . ,u§k+N,1|k} . on of unlimited capacity of water production at sourcessit i

necessary to monitor water transport infrastructure odiig,



TABLE |

which relies on actuators availability to guarantee a qusto
KEY PERFORMANCE INDICATORS FOR THE DIFFERENT APPROACHES

service level.
Controller Economic Safety Smoothness Time
C. Actuators Health Degradation Policy (x10° ew) 10 m’) (@’/n)*) ()
MPCo 23453 214 80.82 202.89
Unless some damage mitigating policy is adopted to ensu-__MPCsr 219.92 3.47 68.28 288.94

re the availability of actuators for a maintenance horizba,
inherent degradation of them could compromise the overa[q Demand Forecastin
service reliability. Therefore, system safety can be enbdn — 9
by taking into account the health of the components in the This module focuses on the problem of water demand
controller design. forecasting for real-time operation of the DWN. An hourly
Several models have been proposed in literature to desc¢RnNsumption data analysis is used for training an artificial
be reliability and actuators ageing under nominal openatioh€ural network multilayer perceptron (MLP) with Bayesian
(see, e.g., [5], [10]). In control systems, where conditionregulation back-propagation. _The inputs fto the forecgstin
usually change, it is also required to include the impact ghodel are chosen based on literature review [2], and corre-
the exerted control effort into the model [8]. For the sake oftion analysis, considering consumption historical e
simplicity, the linear proportional ware model presented | meteorological variables such as temperature and aiivelat
[17] and its uniform rationing heuristic are adopted in thigiumidity. Principal component analysis (PCA) preprogegsi
paper to estimate and manage the health of the actuatorsi$i§Pplied to the training patterns. See, [4] for more dstail

follows: IV. SIMULATION RESULTS
Zpy1 = 2zp, + Ly + ¥[Auy|, (11a) A. Case Study
The proposed approach has been implemented taking the
), < Ziresh (11b) DWN of Barcelona as case study, which consists of 63
tanks, 114 manipulated actuators, 88 measured demands and
ZirH, < Zmax.k (11c) 17 pipes intersection nodes. Figure 2 shows the meshed

topology of the network and the interconnections between
Ziresh, — Zi elements. Simulations have been carried out using M8tlab
Ziax,k = Zk +Hpm, (11d) R2011b (64 bits) with the TOMLA® 7.6 optimization
g package and the Neural Network ToolboxThe computer

wherez € R™ is the vector of actuators health degradationysed to run the simulations is a PC |,@e(;0rew ES8600
I' = diag(y1,72, - %m) and ¥ = diag(¢y,%s,..,%)  running both cores at 3.33GHz with 8GB of RAM. The
are diagonal matrices of constant degradation coefficientoblem has been modelled and solved for a four days
associated with the: elements ofy;, andAu,,, respectively; operation (96 hours) with a prediction horizon of one day (24
Ziresh € R™ @Ndzp,, i, € R™ are vectors of safe thresholds, hours) and an hourly update of demands and states. Results
and ky; is a maintenance horizon over which is desired t@re compared with a baseline strategy developed in [11]. The
keep actuators in reliable conditions. controllers are:

This approach controls the maximum allowable degra- , mpCo: baseline approach of MPC with fixed prediction
dation of actuators health by adding (11c) as a terminal  ang control horizons (24h), constant safety water stocks

constraint for the accumulated degradation in the operalio and constant tuning weights for the prioritization of
control problem of Section 1I-C when solving (2). management objectives.

A more realistic ageing process is usually represented by, MPCsr: current approach of a two-layer MPC, which
non-linear models. Hence, the estimationzefand setting implements analytically the dynamic optimization of
of Zax,x CAN be improved in the EOL using a modified  safety stocks and takes into account actuators health. It
2-parameters Weibull distribution function presented8i [ considers fixed horizons (24h) and fixed tuning weights.

The cumulative probability function of failure rate for the

th : Table 1 shows the value of specific key performance
¢ actuator can be written as follows:

indicators for the aforementioned controllers, where the e
kAL exp(rms(u; o)) 8, nomic indicator is expressed in economic units (e.u.) rathe
Fp=1-exp|— : = Zis

5 than in real values (Euro) due to confidentiality reasons.

a;

(12) B. Service Reliability Control

where rms(u; o.,) = % is the root-mean-square of It is important to notice how the control strategy proposed

the historical control inputs applied duririgtime instants, in this work outperforms the baseline approach, where wafet

a? is the scale parameter representing the time to take totstbcks were fixed for all the horizon and the actuators health
cumulative failure under nominal conditions, apgd < 1  was not considered. Simulations show that fixed parameters
is the shape parameter that reveals the trend of componenth as safety stock, tuning weights and horizons are a
failure in the test time. drawback for the management of complex systems.
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Fig. 2. Case Study: Drinkin Water Network of Barcelona
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Figure 3 shows both control strategies for the operation ¢ s
two tanks. The difference between controllers is the dysam .|/
safety stock acting as a soft constraint in MPCsr. Thi
lower relaxed boundary helps managers to deal with dema
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the best economic performance but the highest computétior ime [ ime i

effort since it involves more optimization problems. The o MPCor ” Tank#1 x10t MPCor_ Tanki1z

highest cost of the MPCo strategy is due to the static wat | A~ """~ """"""7""°~ :
stocks in the tanks, which limit the solution space to adahiev «
economic optimization. In this application, computatibna
time is not an issue due to the time scale at which the EC
and OFCL operate (one hour sampling time). P ST
Figure 4 presents the operation of three actuators, showi 0 “ e
the effectiveness of the strategy to decide pumping actiol
in periods where electric tariff is lower and also the apilit
to manage the control effort between actuators according E? 3
their health. It is shown how the exerted controls changeg' '
according to different degradation coefficients.
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Dynamic variation of tanks volumes for the differeproaches

V. CONCLUDING REMARKS the inherent optimization process by maintaining the dyna-

This paper has shown, through a real case study, the efféBic model and constraints in the linear domain.
tiveness of the proposed hierarchical MPC strategy enfiance The core of the approach relies on the quality of the
with forecasting demand, dynamic planning of safety stockirecasting demand. An increment in the forecasting error
and actuators health monitoring, to assure reliabilityhia t leads to require greater amounts of safety stocks, causing a
water supply given a customer service level and to minimizééduction of the available capacity in the tank to perform
operational costs. The EOL allows to efficiently solve thé@ptimal excursions, which increases operational costs.
non-linear problems and the tuning of strategic target® suc Future avenues for research in this area include: multi-
as minimum tank volumes and maximum degradation gferiod analysis with different replenishment cycle for leac
actuators, before the MPC algorithm executes; this sineglifi tank, distributed control of the network with pooling risk
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Fig. 4. Control actions for the MPCsr at different degranfatrates

analysis and actuators ageing models enriched with theteff¢13]
of maintenance quality, fault tolerant control and readitgb
analysis.
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