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Abstract— This paper presents a model predictive control
strategy to assure reliability in drinking water networks given
a customer service level and a forecasting demand. The un-
derlying idea concerns a two-layer hierarchical control struc-
ture. The upper layer performs a local steady-state optimization
to set up an inventory replenishment policy based on dynamic
safety stocks for each tank in the network. At the same stage,
actuators health is revised to set up their next maximum
allowable degradation in order to efficiently distribute overall
control effort and guarantee system availability. In the lower
layer, a model predictive control algorithm is implemented
to compute optimal control set-points to minimize a multi-
objective cost function. Simulation results in the Barcelona
drinking water network have shown the effectiveness of the
dynamic safety stocks allocation and the actuators health
monitoring to assure service reliability and optimizing network
operational costs.

I. INTRODUCTION

Drinking Water Networks (DWNs) are large-scale multi-
source/multi-node supply chain (SC) systems which must
be reliable and resilient while being subject to constraints
and continuously varying conditions with both deterministic
and probabilistic nature [24]. In general, DWNs operate
as pull interconnected systems driven by exogenous and
endogenous demands. The overall objective of managers is to
provide a reliable water supply in the most economical way,
guaranteeing availability and continuity of the service with a
certain probability and without delay under some operating
conditions, specific environments and uncertain events.

Supply chain management (SCM) is a complex task and
has become an increasingly research subject worldwide [?],
with special attention to efficient handling of resources
and planning against uncertainty of demand and/or supply.
Strategical and tactical decisions in networks operation can
be addressed by different methods (see, e.g., [14], [18]), but
control and systems theory have shown to be suitable in SCM
to handle the problem consisting of uncertainties, delays and
lack of information (see, e.g., [12], [20]). A central coordi-
nator, who controls the SC, can account for these issues and
provide optimal operation. Hence, decision policies inspired
from the model predictive control (MPC) framework, see
[9], are used due to its flexibility to manage constraints
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and optimize multi-objective problems of complex dynamic
systems. Relevant works apply MPC to DWNs and general
SC in different schemes such as: centralized, decentralized,
distributed, hierarchical, and robust, see, e.g., [1], [11], [15],
[16], [21], [25].

Reliability assurance of supply chains is mainly associated
with demand forecasting and safety stocks allocation in stora-
ge units as a countermeasure to secure network performance
against forecast inaccuracy, (see, e.g., [7], [6], [13], [19],
[22]). Most of the results reported in the literature assume
that demand forecast error is stationary and usually normally
distributed while replenishment lead time (the time from the
moment a supply requirement is placed to the moment it is
received) is stationary and usually certain [7].

In practical operation of DWNs, the settling of the safety
stock is typically determined by experience, estimating risk
and assigning a fixed value (i.e., a proportion of the volume
of the storage) for the entire planning horizon. This approach
is too conservative and reduces the manoeuvrability space
for economic optimization since the full tank excursion is
limited and its capacity is not usable to save energetic costs
in pumping actions [4]. On the other hand, lead time do vary
over when capacity is limited or time varying, nevertheless,
models that take into account non-stationary behaviours are
not completely helpful if they use this information to just
calculate safety stocks, especially when variations are caused
by network supply components ageing. Demand behaviour is
an exogenous disturbance in DWNs, but flows and actuators
are manipulated and monitored elements, therefore reliability
and control effort allocation in supply chains should be also
assessed considering system health.

To the best of the authors’ knowledge, reliability degra-
dation models (see, e.g., [5], [8], [10], [17]), have not been
addressed for supply components in the framework of inven-
tory control and supply chains optimization simultaneously
with dynamic planned safety stocks in DWNs. In addition,
inventory management for supply chains literature, even in
multi-stage multi-echelon schemes, supposes a hierarchical
and descendant flow of products, in a way that predicted
safety stock changes are easily communicated backwards
in order to support availability of quantities when they are
needed [7], but this behaviour is not true in real large-
scale supply networks (i.e., the Barcelona DWN), because a
meshed topology with multi-directional flows between tanks
and nodes prevails instead of spread tree configurations.

To circumvent the aforementioned difficulties, this paper
presents a hierarchical control scheme based on two optimi-
zation layers and forecast modules. The main contribution



of this work is the enhancement of an MPC controller
with capabilities to dynamically allocate the minimal safety
volume in each storage unit to satisfy customer demand
in the presence of uncertainties and operational constraints,
avoiding stock-outs and distributing control efforts within
actuators to extend their useful life and improve overall
system service reliability.

The paper is organized as follows: Section II briefly descri-
bes a control-oriented model of DWNs. Section III concerns
to the proposed MPC strategy with reliability enhancements.
Section IV describes the case study where the effectiveness
of the proposed approach is analysed via simulations. Section
V highlights the concluding remarks that can be drawn from
the results presented in this paper, as well as some ideas for
future research.

II. DRINKING WATER NETWORK MANAGEMENT

A. Assumptions

(i) The DWN is modelled as the interconnection of storage
tanks, actuators (pumps and valves), intersection nodes,
sectors of consume (demands), and sources (superficial or
underground). The relation between elements is only by
material flows, but there are no dynamic couplings. (ii) Each
tank and node can receive and place flows from and to
multiple tanks/nodes and are modelled by a single first-
principle mass balance equation. (iii) Each tank may face
variability in the downstream demands or in the upstream
lead times. (iv) Every source can supply its underlying
demand. (v) Demands and lead times behave non-stationary.
(vi) Demands follow a periodic behaviour and are measured
in an hourly base. (vii) Each path between elements has
an associated cost and transportation time. (viii) Network
managers can estimate demandsN time instants ahead. (ix)
All elements operate with a common review period∆t and
storage tanks are subject to the same replenishment MPC
policy. (x) There is no delay in ordering.

B. Discrete-Time Dynamic Model

The control-oriented model of a water transport system
is a simplified but representative model of the non-linear
dynamic behaviour, which allows predicting the effect of
control actions on the entire network. Modelling principles
of DWNs have been reported in the literature, see [3], [11].
Considering the aforementioned references, the model of a
DWN in discrete-time state space may be written as

xk+1 = Axk +Buk +Bpdk, (1a)

E1uk +E2dk = 0, (1b)

xmin ≤ xk ≤ xmax, (1c)

umin ≤ uk ≤ umax, (1d)

wherex ∈ R
n is the measurable state vector of water stock

levels in m3 corresponding to then buffer tanks at the current
time instantk ∈ N0, subject to physical constraintsxmin and
xmax; u ∈ R

m is the vector of manipulated flows in m3/s
through them actuators subject to operational constraints

umin and umax; d ∈ R
p corresponds to the vector of

the p water demands (sectors of consume) in m3/s; A, B,
Bp, E1 andE2 are state-space system matrices of suitable
dimensions dictated by the network topology.

C. DWN Operational Control

The main goal of the operational control of water transport
networks is to satisfy demands at consumer sectors but opti-
mizing, at the same time, management policies expressed as a
multi-objective problem. Hence, MPC is a suitable technique
to control a DWN due to its capability to deal efficiently with
multi-variable dynamic constrained systems and predict the
proper actions to achieve the optimal performance according
to a user defined cost function. Specifically, the interest isto
minimize the following objectives [15]:

J = min
∆u,ε
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 ,

(2)
whereHp andHu are the prediction and control horizons,
respectively; indexi represents the predicted time along
the horizons;f1,k = |

(

α1 +α2,k

)

uk∆t|We
minimizes the

economic cost of network operation taking into account
water production cost (α1) and water pumping electric cost
(α2); f2,k = ‖εk‖

2
2,Wx

is a performance index which
penalizes the amount of volumeε that goes down from
a safety volume value;f3,k = ‖∆uk‖

2
2,Wu

minimizes
control signal variations to extend actuators life and assure a
smooth operation;We, Wx, andWu are diagonal weighting
matrices included to prioritize the objectives.

With the above information, the MPC design follows a sys-
tematic procedure, which generates the control input signals
to the plant by combining a prediction model and a receding-
horizon control strategy [9]. The cost function (2) subjectto
(1), (10) and (11) represents the desired system performance
over a future horizon. Once the minimization is performed,
only the first computed control action is implemented and
the system operates with this constant input until the next
sampling instant. Then, the optimization is solved again with
new feedback measurements to compensate for unmeasured
disturbances and model inaccuracies. This scheme is repea-
ted at each future sampling period.

III. HIERARCHICAL MPC STRATEGY FOR
SERVICE RELIABILITY IN DWN

A. Control System Structure

The control strategy addressed in this paper is based on a
multilayer (hierarchical) control system structure enhanced
with forecasting demand and actuators health estimation
modules (see Fig. 1). The hierarchical architecture has been
widely used in process control with satisfactory results,
optimizing economic profits when disturbances are slowly
varying, see [23]. In a DWN, these disturbances follow a
pattern in an daily basis and can be well predicted for an
hourly sampling time, which makes the hierarchical structure
suitable to optimize targets for the policies of the operation
level.
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Fig. 1. Hierarchical MPC Control Strategy

The proposed control system is a two-layer structure
combining an Economic Optimization Layer (EOL) and an
Optimal Feedback-Control Layer (OFCL). The EOL is a
strategic layer that deals with the adjustment of targets,
bounds and weights for the control problem taking into
account economic cost functions. The OFCL is a tactical
layer which executes a dynamic optimization within an MPC
algorithm to translate strategic policies into desired control
actions for the operational control level by solving (2).

B. Safety Stocks Allocation Policy

There is the need to guarantee a safety water stock in
each tank of the network in order to decrease the probability
of shortages (when a tank or a node has insufficient water
to satisfy external demands or the transfer request coming
from other tank/node) due uncertain events. To determine the
amount of safety water stocks, an inventory planning strategy
is addressed here to enrich previous control approaches (see
[11], [15]), with replenishment policies.

The goal is to dynamically allocate the minimal volume
xs in each tank to avoid stock-outs. To do so, the EOL first
estimates future flows for a short-term prediction horizon,as
follows:

û−→s,k = argmin
u

N−1
∑

i=0

f1,k+i|k, (3a)

subject to

xk+i+1|k = Axk+i|k +Buk+i|k +Bpdk+i|k, (3b)

E1uk+i|k +E2dk+i|k = 0, (3c)

xmin ≤ xk+i|k ≤ xmax, (3d)

umin ≤ uk+i|k ≤ umax, (3e)

where û−→s,k ,

[

u
T
s,k|k, . . . ,u

T
s,k+N−1|k

]T

.

The previous linear programming problem (LPP) uses the
same model structure as in (1) but including a stochastic fo-
recasting demand. The resultant sequence of estimated flows
û−→s,k, allows to virtually decouple tanks interconnections and

estimate their net demand̂dnet, and mean forecasted demand
d̂avg, for a short horizonN ∈ N+, N ≤ Hp. Then, it is
possible to computen individual safety volumes(xs,k)j=1:n

based on forecasting error deviation and a given service level,
as follows:

d̂net,k+i = |Boutus,k+i +Bpdk+i|, ∀i ∈ N
N−1
0 , (4)

d̂avg,k =

∑N−1
i=0 d̂net,k+i

N − 1
, (5)

σj,k =

√

(σ2
d,k)j(τk)j + (σ2

τ,k)j(d̂avg,k)j , (6)

σk =
[

σ1,k, . . . , σn,k
]T
, (7)

sk = Φ−1(γ)σk, (8)

(xs,k)j = (τk)j(d̂avg,k)j + (sk)j , ∀j ∈ N
n
1 (9)

whereBoutus,k+i is the outflow of the tanks caused by water
requirements from neighbouring tanks or nodes, andBpdk+i

is the estimated exogenous demand for a given time instant;
σk ∈ R

n is the vector of total forecast deviations, where
for eachj-th tank at every time instantk, the deviation is
given by σj,k ∈ R. This individual total deviation, takes
into account the sample standard deviation(σd,k)j ∈ R

of the individual net demand forecast error, and the sample
standard deviation(στ,k)j ∈ R of the individual lead-time
error. Moreover,sk ∈ R

n is the vector of safety stocks in
m3; Φ−1(·) is the inverse cumulative normal distribution;γ ∈
(0, 100]% is the desired customer service level (percentage
of customers that do not experience a stock-out); and(xs,k)j
is the individual safety stock for eachj-th tank.

In this way, the vector of water base-stocks defined as
xs,k ,

[

(xs,k)1, . . . , (xs,k)n
]T

∈ R
n, is introduced in the

MPC design of Section II-C as a soft constraint to lead
the tank volumes to be greater than such stocks (when
possible) and let the system employ safety volumess to face
uncertainties (when needed) but penalizing the used amount
of safety. This soft constraint is expressed as follows:

xk ≥ xs,k − εk ≥ 0. (10)

This strategy for the safety stock placement might be
categorized as decentralized because there is no pooling
of disturbances into a consolidation storage unit and each
deposit keeps independent and sufficient safety amounts of
water to face its underlying variability in lead-time demand.
This strategy deals specifically with tanks reliability (assu-
ming their faulty behaviour as the inability to satisfy their
own demands), which is affected by both the capacity and
reliability of the system supplying it. If the supply capacity is
less than the average demand, no tank will be large enough to
provide a sustained service. Therefore, despite the assumpti-
on of unlimited capacity of water production at sources, it is
necessary to monitor water transport infrastructure reliability,



which relies on actuators availability to guarantee a customer
service level.

C. Actuators Health Degradation Policy

Unless some damage mitigating policy is adopted to ensu-
re the availability of actuators for a maintenance horizon,the
inherent degradation of them could compromise the overall
service reliability. Therefore, system safety can be enhanced
by taking into account the health of the components in the
controller design.

Several models have been proposed in literature to descri-
be reliability and actuators ageing under nominal operation
(see, e.g., [5], [10]). In control systems, where conditions
usually change, it is also required to include the impact of
the exerted control effort into the model [8]. For the sake of
simplicity, the linear proportional ware model presented in
[17] and its uniform rationing heuristic are adopted in this
paper to estimate and manage the health of the actuators, as
follows:

zk+1 = zk + Γ|uk|+Ψ|∆uk|, (11a)

zk ≤ ztresh, (11b)

zk+Hp
≤ zmax,k, (11c)

zmax,k = zk +Hp

ztresh − zk

kM +Hp − k
, (11d)

wherez ∈ R
m is the vector of actuators health degradation,

Γ = diag(γ1, γ2, ..., γm) and Ψ = diag(ψ1, ψ2, ..., ψm)
are diagonal matrices of constant degradation coefficients
associated with them elements ofuk and∆uk, respectively;
ztresh ∈ R

m andzmax,k ∈ R
m are vectors of safe thresholds,

and kM is a maintenance horizon over which is desired to
keep actuators in reliable conditions.

This approach controls the maximum allowable degra-
dation of actuators health by adding (11c) as a terminal
constraint for the accumulated degradation in the operational
control problem of Section II-C when solving (2).

A more realistic ageing process is usually represented by
non-linear models. Hence, the estimation ofzk and setting
of zmax,k can be improved in the EOL using a modified
2-parameters Weibull distribution function presented in [8].
The cumulative probability function of failure rate for the
i
th actuator can be written as follows:

Fi,k = 1− exp

(

−

(

k∆t exp(rms(ui,0:k))

α
0
i

)βi

)

= zi,k,

(12)
where rms(ui,0:k) =

‖ui,0:k‖2√
k

is the root-mean-square of
the historical control inputs applied duringk time instants,
α
0
i is the scale parameter representing the time to take total

cumulative failure under nominal conditions, andβi < 1
is the shape parameter that reveals the trend of component
failure in the test time.

TABLE I

KEY PERFORMANCE INDICATORS FOR THE DIFFERENT APPROACHES

Controller Economic Safety Smoothness Time
(×10

3 e.u.) (×10
10 m3) ((m

3
/h)

2
) (s)

MPCo 234.53 2.14 80.82 202.89
MPCsr 219.92 3.47 68.28 288.94

D. Demand Forecasting

This module focuses on the problem of water demand
forecasting for real-time operation of the DWN. An hourly
consumption data analysis is used for training an artificial
neural network multilayer perceptron (MLP) with Bayesian
regulation back-propagation. The inputs to the forecasting
model are chosen based on literature review [2], and corre-
lation analysis, considering consumption historical dataand
meteorological variables such as temperature and air relative
humidity. Principal component analysis (PCA) preprocessing
is applied to the training patterns. See, [4] for more details.

IV. SIMULATION RESULTS

A. Case Study

The proposed approach has been implemented taking the
DWN of Barcelona as case study, which consists of 63
tanks, 114 manipulated actuators, 88 measured demands and
17 pipes intersection nodes. Figure 2 shows the meshed
topology of the network and the interconnections between
elements. Simulations have been carried out using MatlabR©

R2011b (64 bits) with the TOMLABR© 7.6 optimization

package and the Neural Network Toolbox
TM

. The computer

used to run the simulations is a PC IntelR© Core
TM

E8600
running both cores at 3.33GHz with 8GB of RAM. The
problem has been modelled and solved for a four days
operation (96 hours) with a prediction horizon of one day (24
hours) and an hourly update of demands and states. Results
are compared with a baseline strategy developed in [11]. The
controllers are:

• MPCo: baseline approach of MPC with fixed prediction
and control horizons (24h), constant safety water stocks
and constant tuning weights for the prioritization of
management objectives.

• MPCsr: current approach of a two-layer MPC, which
implements analytically the dynamic optimization of
safety stocks and takes into account actuators health. It
considers fixed horizons (24h) and fixed tuning weights.

Table 1 shows the value of specific key performance
indicators for the aforementioned controllers, where the eco-
nomic indicator is expressed in economic units (e.u.) rather
than in real values (Euro) due to confidentiality reasons.

B. Service Reliability Control

It is important to notice how the control strategy proposed
in this work outperforms the baseline approach, where safety
stocks were fixed for all the horizon and the actuators health
was not considered. Simulations show that fixed parameters
such as safety stock, tuning weights and horizons are a
drawback for the management of complex systems.
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Fig. 2. Case Study: Drinkin Water Network of Barcelona

Figure 3 shows both control strategies for the operation of
two tanks. The difference between controllers is the dynamic
safety stock acting as a soft constraint in MPCsr. This
lower relaxed boundary helps managers to deal with demand
uncertainty and prediction errors in an optimal and cheaper
way. Considering the different approaches, the MPCsr shows
the best economic performance but the highest computational
effort since it involves more optimization problems. The
highest cost of the MPCo strategy is due to the static water
stocks in the tanks, which limit the solution space to achieve
economic optimization. In this application, computational
time is not an issue due to the time scale at which the EOL
and OFCL operate (one hour sampling time).

Figure 4 presents the operation of three actuators, showing
the effectiveness of the strategy to decide pumping actions
in periods where electric tariff is lower and also the ability
to manage the control effort between actuators according to
their health. It is shown how the exerted controls change
according to different degradation coefficients.

V. CONCLUDING REMARKS

This paper has shown, through a real case study, the effec-
tiveness of the proposed hierarchical MPC strategy enhanced
with forecasting demand, dynamic planning of safety stocks
and actuators health monitoring, to assure reliability in the
water supply given a customer service level and to minimize
operational costs. The EOL allows to efficiently solve the
non-linear problems and the tuning of strategic targets such
as minimum tank volumes and maximum degradation of
actuators, before the MPC algorithm executes; this simplifies
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Fig. 3. Dynamic variation of tanks volumes for the differentapproaches

the inherent optimization process by maintaining the dyna-
mic model and constraints in the linear domain.

The core of the approach relies on the quality of the
forecasting demand. An increment in the forecasting error
leads to require greater amounts of safety stocks, causing a
reduction of the available capacity in the tank to perform
optimal excursions, which increases operational costs.

Future avenues for research in this area include: multi-
period analysis with different replenishment cycle for each
tank, distributed control of the network with pooling risk
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Fig. 4. Control actions for the MPCsr at different degradation rates

analysis and actuators ageing models enriched with the effect
of maintenance quality, fault tolerant control and reachability
analysis.
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