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Abstract The recently proposed ImageNet dataset consists
of several million images, each annotated with a single ob-
ject category. These annotations may be imperfect, in the
sense that many images contain multiple objects belonging
to the label vocabulary. In other words, we have a multi-
label problem but the annotations include only a single label
(which is not necessarily the most prominent). Such a set-
ting motivates the use of a robust evaluation measure, which
allows for a limited number of labels to be predicted and,
so long as one of the predicted labels is correct, the over-
all prediction should be considered correct. This is indeed
the type of evaluation measure used to assess algorithm per-
formance in a recent competition on ImageNet data. Opti-
mizing such types of performance measures presents several
hurdles even with existing structured output learning meth-
ods. Indeed, many of the current state-of-the-art methods op-
timize the prediction of only a single output label, ignoring
this ‘structure’ altogether. In this paper, we show how to di-
rectly optimize continuous surrogates of such performance
measures using structured output learning techniques with
latent variables. We use the output of existing binary clas-
sifiers as input features in a new learning stage which op-
timizes the structured loss corresponding to the robust per-
formance measure. We present empirical evidence that this
allows us to ‘boost’ the performance of binary classification
on a variety of weakly-supervised labeling problems defined
on image taxonomies.
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1 Introduction

The recently proposed ImageNet project consists of build-
ing a growing dataset of images, organized into a taxonomy
based on the WordNet hierarchy (Deng et al., 2009). Each
node in this taxonomy includes a large set of images (in the
hundreds or thousands). From an object recognition point of
view, this dataset is interesting because it naturally suggests
the possibility of leveraging the image taxonomy in order
to improve recognition beyond what can be achieved inde-
pendently for each image. Indeed this question has been the
subject of much interest recently, culminating in a competi-
tion in this context using ImageNet data (Berg et al., 2010;
Lin et al., 2011; Sánchez and Perronnin, 2011).

Each image in ImageNet may contain several objects
from the label vocabulary, however the annotation includes
only a single label per image, and this label is not neces-
sarily the most prominent. This ‘imperfect’ annotation sug-
gests that a meaningful performance measure in this dataset
should somehow not penalize predictions that contain legit-
imate objects that are missing from the annotation. One way
to deal with this issue is to use a robust performance mea-
sure based on the following idea: an algorithm is allowed to
predict more than one label per image (up to a maximum of
K labels, so that the solution is not degenerate), and so long
as at least one of those labels agrees with the ground-truth la-
bel, no penalty is incurred. This is precisely the type of per-
formance measure used to evaluate algorithm performance
in the aforementioned competition (Berg et al., 2010).

Another form of ‘weak’ labeling that one typically ob-
serves in image datasets is the set of tags associated with
an image, i.e., annotations provided by the community of
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users on image hosting websites such as Flickr. As with Im-
ageNet data, one observes only positive labels, i.e., we only
observe whether an image wasn’t assigned a particular tag,
not whether it couldn’t have been. This suggests that sim-
ilar performance measures could be used to train a system
for tag recommendation: it is sufficient that one of the sug-
gested tags is similar to one of the groundtruth tags, though
to our knowledge, this type of robust, hierarchical perfor-
mance measure has not been applied to tag prediction.

In this paper, we present an approach for directly opti-
mizing a continuous surrogate of these robust performance
measures. In other words, we try to optimize the very mea-
sure that is used to assess recognition quality in the Ima-
geNet 2010 Challenge dataset. We show empirically that by
using binary classifiers as a starting point, which are state-
of-the-art for this task, we can boost their performance by
means of optimizing the structured loss. We also apply a
variant of the same performance measure to the problem of
tag recommendation, using a recently proposed dataset de-
rived from Flickr images (Huiskes et al., 2010).

Essentially, we use latent variables to ‘strengthen’ the
weakly labeled groundtruth. Intuitively, our latent variables
are designed to represent those objects that appear in an
image, but were not annotated. Given that the problem be-
comes one of fully-supervised structured learning when the
latent variables are observed, we can use recently proposed
techniques on structured learning with latent variables (Yu
and Joachims, 2009) to simultaneously optimize the latent
variables and the model parameters.

In addition to experiments on the ImageNet 2010 Chal-
lenge dataset, we study labeling problems on two other im-
age taxonomies: the MIR Flickr Retrieval Evaluation (MIR,
Huiskes and Lew, 2008), and the ImageCLEF Annotation
Task (ImageCLEF, Nowak et al., 2011). From the former
dataset we also obtain tag information from Flickr. The la-
bel vocabularies in MIR and ImageCLEF are much smaller
than that of the ImageNet 2010 Challenge dataset (24 and 99
labels, respectively), meaning that taxonomic information is
not typically used in training or evaluation on these datasets.
However, they are useful in the sense that they allow us to
study the behaviour of the latent variables mentioned above:
since these datasets are fully annotated, we can ‘pretend’
that they are weakly labeled by withholding part of the an-
notation, allowing us to compare the predicted values of the
latent variables with those of the withheld annotation.

Our experiments reveal that our latent variable model is
beneficial for learning in all four of the taxonomies we ex-
amine.

An initial version of this paper appeared in McAuley
et al. (2011).

1.1 Literature Review

The success of visual object classification achieved in recent
years is pushing computer vision research towards more dif-
ficult goals in terms of the number of object classes and the
size of the training sets used. For example, Perronnin et al.
(2010) used increasingly large training sets of Flickr im-
ages together with online learning algorithms to improve the
performance of linear SVM classifiers trained to recognize
the 20 Pascal Visual Object Challenge 2007 objects; or Tor-
ralba et al. (2008), who defined a gigantic dataset of 75,062
classes (using all the nouns in WordNet) populated with 80
million tiny images of only 32 × 32 pixels. The WordNet
nouns were used in seven search engines, but without any
manual or automatic validation of the downloaded images.
Despite their low resolution, the images were shown to still
be useful for classification.

Similarly, Deng et al. (2009) created ImageNet: a vast
dataset with thousands of classes and millions of images,
also constructed by taking nouns from the WordNet tax-
onomy. These were translated into different languages, and
used as query terms in multiple image search engines to col-
lect a large amount of pictures. However, as opposed to the
case of the previously mentioned 80 Million Tiny Images
dataset, in this case the images were kept at full resolu-
tion and the labels were manually verified using Amazon
Mechanical Turk. Currently, the full ImageNet dataset con-
sists of over 17,000 classes and 12 million images. Figure 1
shows a few example images from various classes.

Deng et al. (2010) performed classification experiments
using a substantial subset of ImageNet, including more than
ten thousand classes and nine million images. Their experi-
ments highlighted the importance of algorithm design when
dealing with such quantities of data, and showed that meth-
ods believed to be better in small scale experiments turned
out to under-perform when brought to larger scales. Also a
cost function for classification taking into account the hierar-
chy was proposed. In contrast with Deng et al. (2010), most
of the works using ImageNet for large scale classification
make no use of its hierarchical structure.

As mentioned before, in order to encourage large scale
image classification using ImageNet, a competition using a
subset of 1,000 classes and 1.2 million images, called the
ImageNet Large Scale Visual Recognition Challenge (Berg
et al., 2010), was conducted together with the 2010 Pascal
Visual Object Challenge competition. Notoriously, the bet-
ter classified participants of the competition used traditional
one-versus-all approaches and completely disregarded the
taxonomic information.

Lin et al. (2011) obtained the best score in the compe-
tition using a conventional one-vs-all approach. Two state-
of-the-art coding and pooling techniques, Local Coordinate
Coding and Super-Vector Coding, were used to construct the
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Fig. 1 Example images from ImageNet. Classes range from very general to very specific, and since there is only one label per image, it is not rare
to find images with unannotated instances of other classes from the dataset.

descriptor vectors for each image. Finally, averaged stochas-
tic gradient descent (ASGD) was used to efficiently train a
thousand linear SVM classifiers.

Sánchez and Perronnin (2011) got the second best score
in the competition. In their approach, they used high-dimensional
Fisher Kernels for image representation with lossy compres-
sion techniques: first, dimensionality reduction using Hash
Kernels (Shi et al., 2009) was attempted and secondly, since
the results degraded rapidly with smaller descriptor dimen-
sionality, coding with Product Quantizers (Jégou et al., 2010)
was used to retain the advantages of a high-dimensional rep-
resentation without paying a high price in terms of memory
and I/O usage. To train the standard binary one-vs-all linear
classifiers, they also used Stochastic Gradient Descent.

The difficulty of using hierarchical information for im-
proving classification may be explained by the findings of
Russakovsky and Fei-Fei (2010). They showed that in Ima-
geNet, the relationships endowed by the WordNet taxonomy
do not necessarily correspond to visual similarity, and that in
fact new relations based only on visual appearance informa-
tion can be established between some classes, possibly far
away in the hierarchy.

In contrast with the findings of Russakovsky and Fei-
Fei (2010), Deselaers and Ferrari (2011) experimentally val-
idated, to a large degree, the common assumptions that se-
mantic categories are visually separable and that visual sim-
ilarity is correlated with semantic similarity in the ImageNet
dataset; this was achieved by comparing the visual variabil-
ity of images within a particular class, measured using GIST
signatures. They also studied the relationship between se-
mantic and visual distance, and proposed an image distance
measure based on ImageNet data, termed the ImageNet Dis-
tance in their paper, to assess whether two images contain an

instance of the same base-level category. This distance mea-
sures the visual and semantic similarity between the cate-
gories associated with the nearest neighbors in ImageNet of
the images being compared.

A different image distance, also based on the ImageNet
hierarchy, was proposed by Deng et al. (2011). There, the
authors exploit semantic knowledge in the form of a hier-
archy to compute a similarity measure for large scale same-
category image retrieval. Provided that training data is avail-
able on the nodes of the hierarchy, classifiers are learned and
mapped to probability values. Then, the class probabilities
for two images can be compared using a ‘cost’ matrix that
penalizes pairs of classes that have their first common an-
cestor higher in the hierarchy.

Kim et al. (2011) proposed a method to decompose an
image descriptor into a sparse mixture of training ‘base’ de-
scriptors to incorporate hierarchical information. The class
labels of the training descriptors active in the mixing weights
for the query descriptor can be seen as labels for the image.

Cai and Hofmann (2004) defined a taxonomy over cate-
gories in a text classification task, and showed that optimiz-
ing a structured loss defined on this taxonomy can improve
performance. Binder et al. (2011) discussed similar learning
methods for multiclass image classification, where training
classes and examples are organized in a pre-defined taxon-
omy. Local SVM learning methods (where descendants of
a node are used as positive examples, and other nodes are
treated as negative examples) were shown to obtain similar
performance to structured SVMs, while requiring less train-
ing time and being highly parallelizable. While not always
improving upon the flat classifiers in terms of the 0/1 loss,
the taxonomy-based classifiers consistently achieved lower
hierarchical error, which translates into more meaningful,
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‘human-like’, confusions. Multilabel experiments were also
performed in Binder et al. (2011), but always with fully an-
notated images and in datasets with about 20 classes.

Blaschko et al. (2010) successfully exploited weakly an-
notated data to improve the performance of an object de-
tection method framed in a structured output formulation.
Annotations indicated the presence or absence of objects in
images and weak information about object location. The lo-
cations of bounding boxes were treated as latent variables to
be inferred during training, constrained by the type of anno-
tation for each image. With this approach and a single full
annotation, they were able to attain performance compara-
ble to that obtained with complete annotation in the INRIA
pedestrian dataset.

Other works aim to learn hierarchies directly from im-
age information. Marszałek and Schmid (2008) proposed a
method to construct a Relaxed Hierarchy DAG which avoids
introducing aliasing due to hard-assigning a class to a partic-
ular branch of the tree, instead postponing the decision until
fewer classes are present by assigning it to both branches.
With this approach they show performance comparable to
one-versus-all classification, while being sub-linear in com-
plexity. Bart et al. (2008) proposed a generative modeling
approach similar to Latent Dirichlet Allocation (LDA) for
taxonomy learning. A category is defined as a mixture of
topics, each representing certain features (like sea, sand, fur,
sky, etc.). Then, categories are arranged in a tree structure by
performing inference efficiently with a nonparametric prior
over tree structures similar to a nested Chinese restaurant
process, as used in text modeling. Qualitative results are
given for the Corel dataset, and the method is shown to im-
prove with respect to LDA in the 13-scenes dataset. Simul-
taneously (and independently), Sivic et al. (2008) also used
a hierarchical LDA model with a nested Chinese restaurant
process prior to discover a taxonomy of categories from vi-
sual information without supervision, and also showed im-
provements with respect to plain LDA in a pixel-level seg-
mentation task using the MSRC-B1 dataset.

As mentioned in the introduction, the problem of tag
prediction has many parallels with multi-label classification.
In the following paragraphs we review some recent work on
tag prediction.

Verbeek et al. (2010) used the MIR Flickr dataset to eval-
uate their previously proposed TagProp algorithm (Guillau-
min et al., 2009). TagProp is a weighted nearest-neighbor
model that propagates tag terms among images in a dataset
to obtain a more complete annotation. Different visual fea-
tures (e.g. SIFT, color histograms) as well as textual fea-
tures derived from the tags were used. When compared to
standard SVMs, the TagProp model performed worse when
precise manual annotations were used, but better when us-
ing noisy Flickr tags as training labels. Tag-derived features

proved beneficial in terms of accuracy both for SVMs and
for TagProp.

Dimitrovski et al. (2010) performed hierarchical clas-
sification on the ImageCLEF dataset using a random for-
est approach. An ensemble of Predictive Clustering Trees
were learned using multiple types of features. The tags of a
novel query image are determined by propagating it down
the trees and averaging the tag probabilities of the selected
leaf from each tree of the forest. Despite the simplicity of the
approach, it achieved the second position in the 2010 Image-
CLEF photo annotation competition out of twelve compet-
ing groups.

Bucak et al. (2011) addressed the problem of incom-
plete annotations in the context of multi-label learning. They
proposed a group-lasso based method to train a multi-label
model that predicts a ranking of classes given a test image.
The method was shown to attain results better than those of
a standard SVM in the 2007 Pascal Visual Object Challenge,
the MIR, and the ESP Game datasets.

Mensink et al. (2011) proposed a label prediction system
that uses structured models to learn the dependencies among
image labels. In an interactive setting, a small amount of
user input can be used to significantly improve classifica-
tion results by selectively asking questions to the user that
minimize uncertainty in the remaining labels. The proposed
models also improve the results of plain SVM classifiers in
a non-interactive (i.e., automatic) setting, although the per-
formance gain is modest. The system was tested in Image-
CLEF, as well as in the SUN09 and in the Animals with
Attributes datasets.

Wang et al. (2011) proposed a semi-supervised image
annotation method that uses a bi-relational graph. The graph
can be divided into a label correlation subgraph and an im-
age similarity subgraph, with an additional bipartite sub-
graph defined by class assignments to images. A random
walk with restarts was used to learn class-to-class and class-
to-image relevances. In contrast to related work, asymmetric
relationships between classes are considered (e.g. the prob-
ability of road given car is not the same as car given road).
Finally, a method to learn these bi-directional probabilities
was proposed and shown to perform better than the symmet-
ric version.

Moran and Lavrenko (2011) modified the Continuous-
Space Relevance Model of Lavrenko et al. (2003). Rather
than using the top-ranked tags for an image, a set of tags is
predicted jointly: their approach increases the probability of
predicting less likely (but consistent) tags and reduces that
of predicting irrelevant or contradictory, but highly scored,
ones.

Other works exploited tags as a form of weak supervi-
sion, using them to complement purely visual information
for image classification.
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Guillaumin et al. (2010) showed how images with asso-
ciated tags, but for which reliable labels are not known, can
be used to complement a potentially smaller set of images
with both tags and labels and, ultimately, compute better vi-
sual classifiers. The motivation of their work comes from the
understanding that classifiers that exploit image and (weak)
textual information significantly outperform those based on
visual features alone, which makes them suitable for use
in semi-supervised learning scenarios. This technique facili-
tates training on the large amounts of images available from
online photo sharing sites for which expensive label infor-
mation is not available.

Kawanabe et al. (2011) proposed kernels tailored to tags
associated with Flickr images to complement and improve
visual-feature-based image classification. The authors build
on the ‘tag kernel’ proposed by Guillaumin et al. (2010) and
address the issue of sparsity in tag-based feature representa-
tions by smoothing using Markov Random Walks over the
tags. They showed a small but statistically significant im-
provement (according to the Wilcoxon test) over the original
tag kernel formulation.

2 Problem Statement

Our notation is summarized in Table 1. We are given the
dataset S =

{
(x1,Y1), . . . , (xN ,YN)

}
, where xn ∈ X denotes

an F-dimensional feature vector representing an image with
a set of groundtruth labels Yn.1 Our goal is to learn a clas-
sifier Ȳ(x; θ) that for an image x outputs a set of K distinct
object categories. The vector θ parameterizes the classifier
Ȳ; we wish to learn θ so that the labels predicted by Ȳ(xn; θ)
are ‘similar to’ the training labels Yn under some loss func-
tion ∆(Ȳ(xn; θ),Yn). Our specific choice of classifier and loss
function shall be given in Section 2.1. In short, the goal
and contribution of this paper is to learn the classifier Ȳ for
precisely the loss function ∆ that is used to measure per-
formance in the ImageNet Large Scale Visual Recognition
Challenge (Berg et al., 2010, or just ‘the ImageNet Chal-
lenge’ from now on).

We assume an estimator based on the principle of regu-
larized risk minimization, i.e., we aim to find θ∗ such that

θ∗ = argmin
θ

[
1
N

N∑
n=1

∆(Ȳ(xn; θ),Yn)︸                     ︷︷                     ︸
empirical risk

+
λ

2
‖θ‖2︸ ︷︷ ︸

regularizer

]
. (1)

Note that in the case of ImageNet, each image is annotated
with a single label, while the output space consists of a set of

1 Note that in McAuley et al. (2011) we assumed that there was
only a single groundtruth label yn for each image, as is the case for
ImageNet. In the case of the MIR and ImageCLEF datasets there are a
variable number (possibly zero) of groundtruth labels for each image,
hence the change of notation.

Table 1 Notation

Notation Description
x the feature vector for an image (or just ‘an image’ for

simplicity)
xn the feature vector for the nth training image
X the feature space, i.e., xn ∈ X

F the feature dimensionality, i.e., F = |xn|

N the total number of training images
y an image label, consisting of a single object class
Yn the set of groundtruth labels for the image xn

C the set of classes, i.e., Yn ⊆ C

C the total number of classes, i.e., C = |C|

Ȳ(x; θ) the set of output labels predicted by the classifier
Ŷ(x; θ) the output labels resulting in the most violated con-

straints during column-generation
Ȳn shorthand for Ȳ(xn; θ)
Ŷn shorthand for Ŷ(xn; θ)
K the number of output labels produced by the classi-

fier, i.e., K = |Ȳn| = |Ŷn|

Y the space of all possible sets of K labels
θ a vector parameterizing our classifier
θ

y
binary a binary classifier for the class y
λ a constant that balances the importance of the empir-

ical risk versus the regularizer
φ(x, y) the joint parameterization of the image x with the la-

bel y
Φ(x,Y) the joint parameterization of the image x with a set of

labels Y
∆(Y,Yn) the error induced by the set of labels Y when the cor-

rect labels are Yn

d(y, yn) a distance measure between the two classes y and yn

in our image taxonomy
Zn latent annotation of the image xn, consisting of K −

|Yn| object classes distinct from Yn

Ωn the ‘complete annotation’ of the image xn, i.e., Yn ∪

Zn

G the number of groundtruth labels used when we ana-
lyze the effect of our latent variables

K labels; in the other datasets we study, the annotation may
consist of any number of labels, including none (we use y to
denote a single label, Y to denote a set of labels, and Y to de-
note the space of sets of K labels). This setting presents sev-
eral issues when trying to express (eq. 1) in the framework of
large-margin structured prediction: primarily, the margin be-
tween the prediction and the groundtruth is not well-defined
when they are drawn from different spaces (Tsochantaridis
et al., 2005), a problem we discuss in Section 2.3. Perhaps it
is for this reason that many of the state-of-the-art methods in
the ImageNet Challenge consisted of binary classifiers, such
as multiclass SVMs, that merely optimized the score of a
single prediction (Lin et al., 2011; Sánchez and Perronnin,
2011).

Motivated by the surprisingly good performance of these
binary classifiers, in the following sections we shall propose
a learning scheme that will ‘boost’ their performance by re-
weighting the dimensions of their parameters so as to take
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into account the structured nature of the loss function from
the ImageNet Challenge.

2.1 The Loss Function

We begin by defining the loss function for the ImageNet
Challenge, in which each image is annotated with a single
label Yn = {yn}. Each image may contain multiple objects
that are not labeled, and the labeled object need not neces-
sarily be the most salient, so a method should not be penal-
ized for predicting ‘incorrect’ labels in the event that those
objects actually appear in the scene. Note that this is not an
issue in some similar datasets, such as the Caltech datasets
(Griffin et al., 2007), where images have been selected to
avoid such ambiguity in the labeling, nor in datasets where
all objects are annotated in every image, as in the Pascal
Visual Object Challenge (Everingham et al., 2010), or in
the MIR and ImageCLEF datasets which we discuss later
(Huiskes et al., 2010; Nowak et al., 2011).

To address this issue, a loss is given over a set of pre-
dicted output labels Y , that only penalizes the method if none
of those labels is similar to the annotated object. For a train-
ing image annotated with a single label Yn = {yn}, the loss
incurred by predicting the set of labels Y is given by

∆(Y, {yn}) = min
y∈Y

d(y, yn). (2)

In principle, d(y, yn) could be any difference measure be-
tween the classes y and yn. If d(y, yn) = 1 − δ(y = yn) (i.e.,
0 if y = yn, 1 otherwise), this recovers the ImageNet Chal-
lenge’s ‘flat’ error measure. If d(y, yn) is the shortest-path
distance from yn to the nearest common ancestor of y and
yn in a taxonomic tree, this recovers the ‘hierarchical’ error
measure (which we shall use in our experiments). WordNet
is used to build the taxonomic tree for ImageNet, since it
is also the source of the object vocabulary (Miller, 1995).
Note that this error measure is not symmetric: no penalty is
incurred if the prediction y is more specific (with respect to
the taxonomy) than the annotation yn, but a penalty is in-
curred if the prediction is too general.

For problems where multiple groundtruth annotations
are available, we desire a loss function that does not penalize
the method so long as any of the predicted labels are similar
to any of the groundtruth labels. Using the same difference
measure d(y, yn) as in (eq. 2), our loss becomes

∆(Y,Yn) = min
y∈Y

min
yn∈Yn

d(y, yn) (3)

(if there are no training annotations we define ∆(Y,∅) = 0).
This is certainly not the only loss function we could choose
for multiple labels, but in our case it is motivated by the
problem of tag recommendation: we are satisfied so long
as some plausible tags are suggested to the user. Indeed we

could optimize a number of other loss functions using the
framework we describe, for example

∆(Y,Yn) =
1
|Yn|

∑
yn∈Yn

min
y∈Y

d(y, yn), (4)

though for our experiments we use the loss of (eq. 3).

2.2 ‘Boosting’ of Binary Classifiers

Many of the state-of-the-art methods for image classification
consist of learning a series of binary ‘one vs. all’ classifiers
that distinguish a single class from all others. That is, for
each class y ∈ C (where C is the object vocabulary), one
learns a separate parameter vector θy

binary, and then performs
classification by choosing the class with the highest score,
using a classifier of the following form:

ȳbinary(x) = argmax
y∈C

〈
x, θy

binary

〉
. (5)

In order to predict a set of K labels, such methods simply
return the labels with the K highest scores:

Ȳbinary(x) = argmax
Y∈Y

∑
y∈Y

〈
x, θy

binary

〉
, (6)

where Y is the space of sets of K distinct labels. The above
equations describe many of the competitive methods from
the ImageNet Challenge, including Lin et al. (2011) and
Sánchez and Perronnin (2011).

One obvious improvement is simply to learn a new set of
classifiers {θy}y∈C that optimize the structured error measure
of (eq. 1). However, given the large number of classes in the
ImageNet Challenge (|C| = 1000), and the high dimension-
ality of standard image features, this would mean simulta-
neously optimizing several million parameters, which in our
experience proved impractical in terms of running time and
performance. For the smaller datasets that we study (MIR
and ImageCLEF), it is possible to train the individual clas-
sifiers directly so as to optimize (eq. 1), though as we shall
report doing so does not lead to good performance.

Instead, we would like to leverage the already good clas-
sification performance of existing binary classifiers, simply
by re-weighting their dimensions to account for the struc-
tured nature of (eq. 3). Hence we will learn a single param-
eter vector θ that re-weights the parameters of every class.
Our proposed learning framework is designed to extend lin-
ear classifiers of the form given in (eq. 6). Given a set of
binary classifiers {θy

binary}
y∈C, we propose a new classifier of

the form

Ȳ(x; θ) = argmax
Y∈Y

∑
y∈Y

〈
x � θy

binary, θ
〉
, (7)

where x � θy
binary is simply the Hadamard product of x (the

feature vector) and θy
binary (the parameter vector). Note that
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when θ = 1 this recovers precisely the original model of
(eq. 6).

To use the standard notation of structured prediction, we
define the joint feature vector Φ(x,Y) as

Φ(x,Y) =
∑
y∈Y

φ(x, y) =
∑
y∈Y

x � θy
binary, (8)

so that (eq. 6) can be expressed as

Ȳ(x; θ) = argmax
Y∈Y

〈Φ(x,Y), θ〉 (9)

(i.e., the predictor is linear in θ). We will use the shorthand
Ȳn B Ȳ(xn; θ) to avoid excessive notation. In the following
sections we shall discuss how structured prediction methods
can be used to optimize models of this form.

2.3 The Latent Setting

As mentioned, the joint parameterization of (eq. 8) is prob-
lematic, since the energy of the groundtruth labeling Yn,
〈Φ(xn,Yn), θ〉, is not readily comparable with the energy of
the predicted output Y , 〈Φ(xn,Y), θ〉, due to the fact that
the size of the two sets is in general different, specifically
|Yn| ≤ |Y |.

To address this, we propose the introduction of a set of
latent variables, Z = {Z1 . . . ZN}, which for each image xn

is designed to encode the set of objects that appear in xn

that were not annotated. The full set of labels for the image
xn is now Ωn = Yn ∪ Zn (note that Yn ∩ Zn = ∅). If our
method outputs K objects, then we fix |Zn| = K − |Yn|, so
that |Ωn| = K. It is now possible to meaningfully compute
the difference between Φ(xn,Y) and Φ(xn, Ωn), where the
latter is defined as

Φ(xn, Ωn) =
∑
y∈Yn

φ(xn, y) +
∑
z∈Zn

φ(xn, z). (10)

The importance of this step shall become clear in Section
3.1, (eq. 15). Note that we still define ∆(Y,Yn) only in terms
of the training labels Yn, as in (eq. 3).

Following the programme of Yu and Joachims (2009),
learning proceeds by alternately optimizing the latent vari-
ables and the parameter vector. Optimizing the parameter
vector θi given the latent variables Zi is addressed in Section
3.1; optimizing the latent variables Zi given the parameter
vector θi−1 is addressed in Section 3.2.

3 The Optimization Problem

The optimization problem of (eq. 1) is non-convex. More
critically, the loss is a piecewise constant function of θ.2 A

2 There are countably many values for the loss but uncountably
many values for the parameters, so there are large equivalence classes
of parameters that correspond to precisely the same loss.

similar problem occurs when one aims to optimize a 0/1 loss
in binary classification; in that case, a typical workaround
consists of minimizing a surrogate convex loss function that
upper-bounds the 0/1 loss, such as the hinge loss, which
gives rise to support vector machines. We will now see that
we can construct a suitable convex relaxation for the prob-
lem defined in (eq. 1).

3.1 Convex Relaxation

Here we use an analogous approach to that of SVMs, no-
tably popularized in Tsochantaridis et al. (2005), which opti-
mizes a convex upper bound on the structured loss of (eq. 1).
The resulting optimization problem is

[θ∗, ξ∗] = argmin
θ,ξ

 1
N

N∑
n=1

ξn +
λ

2
‖θ‖2

 (11a)

s.t. 〈Φ(xn, Ωn), θ〉 − 〈Φ(xn,Y), θ〉 ≥ ∆(Y,Yn) − ξn (11b)

∀n,Y ∈ Y.

It is easy to see that ξ∗n upper-bounds ∆(Ȳn,Yn) (and there-
fore the objective in (eq. 11) upper bounds that of (eq. 1)
for the optimal solution). First note that since the constraints
of (eq. 11b) hold for all Y , they also hold for Ȳn. Second,
the left hand side of the inequality for Y = Ȳn must be non-
positive since Ȳ(x; θ) = argmaxY 〈Φ(x,Y), θ〉. It then follows
that ξ∗n ≥ ∆(Ȳn,Yn). This implies that a solution of the re-
laxation is an upper bound on the solution of the original
problem, and therefore the relaxation is well-motivated.

The constraints of (eq. 11b) basically enforce a loss-
sensitive margin: θ is learned so that mispredictions Y that
incur some loss end up with a score 〈Φ(xn,Y), θ〉 that is
smaller than the score 〈Φ(xn, Ωn), θ〉 of the ‘correct’ predic-
tion Ωn by a margin equal to that loss (minus the slack ξn).
The formulation is a generalization of support vector ma-
chines for multi-class problems.

There are two options for solving the convex relaxation
of (eq. 11). One is to explicitly include all N × |Y| con-
straints and then solve the resulting quadratic program using
one of several existing methods. This may not be feasible if
N × |Y| is too large. In this case, we can use a constraint
generation strategy. This consists of iteratively solving the
quadratic program by adding at each iteration the constraint
corresponding to the most violated Y for the current model
θ and training instance n. This is done by maximizing the
violation gap ξn, i.e., solving at each iteration the problem

Ŷ(xn; θ) = argmax
Y∈Y

{∆(Y,Yn) + 〈Φ(xn,Y), θ〉} , (12)

(as before we define Ŷn B Ŷ(xn; θ) for brevity). The solu-
tion to this optimization problem (known as ‘column gen-
eration’) is somewhat involved, though it turns out to be
tractable as we shall see in Section 3.3.
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Several publicly available tools implement precisely this
constraint generation strategy. A popular example is Svm-
Struct (Tsochantaridis et al., 2005), though we use BMRM
(‘Bundle Methods for Risk Minimization’; Teo et al., 2007)
in light of its faster convergence properties. Algorithm 1 de-
scribes pseudocode for solving the optimization problem of
(eq. 11) with BMRM. In order to use BMRM, one needs to
compute at the optimal solution ξ∗n for the most violated con-
straint Ŷn, both the value of the objective function (eq. 11)
and its gradient. At the optimal solution for ξ∗n with fixed θ
we have

〈Φ(xn, Ωn), θ〉 − 〈Φ(xn, Ŷn), θ〉 = ∆(Ŷn,Yn) − ξ∗n. (13)

(recall that Ωn is the ‘complete’ annotation consisting of the
union of the groundtruth and the latent variables). By ex-
pressing (eq. 13) as a function of ξ∗n and substituting into the
objective function we obtain the following lower bound on
the objective of (eq. 11a):

oi =
1
N

∑
n

∆(Ŷn,Yn)−〈Φ(xn, Ωn), θ〉+〈Φ(xn, Ŷn), θ〉+
λ

2
‖θ‖2,

(14)

whose gradient with respect to θ is

gi = λθ +
1
N

∑
n

(Φ(xn, Ŷn) −Φ(xn, Ωn)). (15)

The method described above could in principle be used
for regularizers other than the `2 norm (see Teo et al., 2007),
though we require that the model is linear in θ (i.e., it can
be expressed in the form of (eq. 9)), and that (eq. 12) is
tractable. Extensions of such approaches exist, for example
kernelized variants are discussed in Yu and Joachims (2008).
Here we focus on linear models for efficiency reasons – effi-
cient bundle methods cannot be readily applied to solve the
dual problem (see Teo et al. (2007) for details). We refer the
reader to Tsochantaridis et al. (2005) and Yu and Joachims
(2009) for further discussion of the limitations of this type
of approach.

3.2 Learning the Latent Variables

To learn the optimal value of θ, we alternate between opti-
mizing the parameter vector θi given the latent variables Zi,
and optimizing the latent variables Zi given the parameter
vector θi−1. Given a fixed parameter vector θ, the optimal
values of the latent variables Zn can be found greedily; do-
ing so is in fact equivalent to performing inference, with the
restriction that the true labels Yn cannot be part of the latent
variable Zn (see Algorithm 2, Line 5).

It is shown in Yu and Joachims (2009) that this type of
alternating optimization is a specific instance of a convex-
concave procedure (‘CCCP’, Yuille and Rangarajan, 2002).

Algorithm 1 Taxonomy Learning
1: Input: training set {(xn,Yn,Zn)}Nn=1
2: Output: θ
3: θ B 0 {in the setting of Algorithm 2, θ can be ‘hot-started’ with its

previous value}
4: repeat
5: for n ∈ {1 . . .N} do
6: Ŷn B argmaxY∈Y

{
∆(Y,Yn) + 〈φ(xn,Y), θ〉

}
(see Section 3.3)

7: end for
8: Compute gradient gi (equation (eq. 15))
9: Compute objective oi (equation (eq. 14))

10: θ B argminθ
λ
2 ‖θ‖

2 + max(0,max
j≤i

〈
g j, θ

〉
+ o j)

11: until converged (see Teo et al. (2007))
12: return θ

What this means in practice is that by alternately optimiz-
ing θ and Z as in Algorithms 1 and 2, we will arrive at
a local optimum of (eq. 1). Naturally this implies that the
algorithm is sensitive to initialization, though as we noted,
setting θ = 1 recovers the already good performance of our
initial binary classifiers, making this an ideal starting point
for a local search.

See Yu and Joachims (2009) for further discussion of
this type of approach.

Algorithm 2 Taxonomy Learning with Latent Variables
1: Input: training set {(xn,Yn)}Nn=1
2: Output: θ
3: θ0 B 1
4: for i = 1 . . . I {I is the total number of iterations} do
5: Zn

i B
{
argmaxY∈Y

〈
Φ(xn,Y), θi−1

〉}
\ Yn {choose only K − |Yn|

distinct labels}

6: θi B Algorithm1
({(

xn,Yn,Zn
i

)}N

n=1

)
7: end for
8: return θI

3.3 Column Generation

Given the loss function of (eq. 3), obtaining the most vio-
lated constraints (Algorithm 1, Line 6) takes the form

Ŷn = argmax
Y∈Y

min
y∈Y

min
yn∈Yn

d(y, yn) +
∑
y∈Y

〈φ(xn, y), θ〉

 , (16)

which appears to require enumerating through all Y ∈ Y,
which if there are C = |C| classes amounts to

(
C
K

)
possibili-

ties. However, if we had an oracle which told us that

argmin
y∈Ŷn

[
min
yn∈Yn

d(y, yn)
]

= c, (17)

then (eq. 12) becomes

Ŷn = argmax
Y∈Y′

min
yn∈Yn

d(c, yn) +
∑
y∈Y

〈φ(xn, y), θ〉

 , (18)
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where Y′ is just Y restricted to those y for which

min
yn∈Yn

d(y, yn) ≥ min
yn∈Yn

d(c, yn). (19)

The important difference between (eq. 16) and (eq. 18) is
simply that the part of (eq. 16) involving the loss has been
replaced by a constant, minyn∈Yn d(c, yn), which we will show
is enough to make (eq. 18) tractable. Of course we have yet
to determine the value of this constant, though we show be-
low that this can also be done efficiently.3

We can obtain the optimal solution to (eq. 18) greedily
by sorting 〈φ(xn, y), θ〉 for each class y ∈ C such that

min
yn∈Yn

d(y, yn) ≥ min
yn∈Yn

d(c, yn) (20)

and simply choosing the top K classes. Since we don’t know
the optimal value of c in advance, we must consider all c ∈
C, which means solving (eq. 18) a total of C times (recall
that C is the number of classes). Solving (eq. 18) greedily
takes O(C log C) (to sort C values), so that solving (eq. 12)
takes O(C2 log C).

Although this method works for any loss of the form
given in (eq. 3), for the specific distance function d(y, yn)
used for the ImageNet Challenge, further improvements are
possible. As mentioned, for the ImageNet Challenge’s hier-
archical error measure, d(y, yn) is the shortest-path distance
from yn to the nearest common ancestor of y and yn in a
taxonomic tree. One would expect the depth of such a tree
to grow logarithmically in the number of classes, and indeed
we find that we always have d(y, yn) ∈ {0 . . . 18} (the trees for
the other datasets we study are shallower). Since the num-
ber of distinct possibilities for ∆(Y,Yn) is small, instead of
enumerating each possible value of

c = argmin
y∈Ŷn

[
min
yn∈Yn

d(y, yn)
]
, (21)

we can directly enumerate each value of

δ =

[
min
y∈Ŷn

min
yn∈Yn

d(y, yn)
]
, (22)

i.e., each possible value for the loss ∆(Y,Yn). If there are
L distinct values of the loss, (eq. 12) can now be solved
in O(LC log C). In ImageNet Challenge we have L = 19
whereas C = 1000, so this is clearly a significant improve-
ment.

Additional minor improvements can be made, for exam-
ple we do not need to sort all C values in order to compute
the top K items, and we do not need to re-sort all items for
each value of the loss δ. The implementation used in our
experiments is available online.4

3 Note that somewhat simpler notation was used in McAuley et al.
(2011), in which there was only a single output label yn, but otherwise
the idea remains the same.

4 see http://i.stanford.edu/˜julian

4 Experiments

4.1 Binary Classifiers

As previously described, our approach needs, for each class,
one binary classifier able to provide some reasonable score
as a starting point for the proposed method. Since the ob-
jective of this paper is not beating the state-of-the-art, but
rather demonstrating the advantage of our structured learn-
ing approach to improve overall classification results, we
used a standard, simple image classification setup. As men-
tioned, should the one-vs-all classifiers of Lin et al. (2011)
or Sánchez and Perronnin (2011) become available in the
future, they should be immediately compatible with the pro-
posed method.

First, images have to be transformed into descriptor vec-
tors sensible for classification using machine learning tech-
niques. For this we have chosen the very popular Bag of Fea-
tures model (Csurka et al., 2004): dense SIFT features are
extracted from each image xn and quantized using a visual
vocabulary of F visual words. Next, the visual words are
pooled in a histogram that represents the image. This rep-
resentation is widely used in state-of-the-art image classifi-
cation methods, and in spite of its simplicity achieves very
good results.

Regarding our basic classifiers, a sensible first choice,
considering existing related work, would be to use a Linear
SVM for every class. However, since our objective is to pre-
dict the correct class of a new image, we would need to com-
pare the raw scores attained by the classifier, which would
not be theoretically satisfying. Although it is possible to ob-
tain probabilities from SVM scores using a sigmoid trained
with the Platt algorithm, we instead opted to train logistic
regressors, which directly give probabilities as outputs and
do not depend on a separate validation set.

In order to deal with the computational and memory re-
quirements derived from the large number of training im-
ages, we used Stochastic Gradient Descent (SGD) from Bot-
tou and Bousquet (2008) to train the classifiers. SGD is a
good choice for our problem, since it has been shown to
achieve performance similar to that of batch training meth-
ods in a fraction of the time (Perronnin et al., 2010). Further-
more, we validated its performance against that of LibLin-
ear in a small-scale experiment using part of the ImageNet
Challenge hierarchy with satisfactory results. One limitation
of online learning methods is that the optimization process
iterations are limited by the amount of training data avail-
able. In order to add more training data, we cycled over all
of the training data for 10 epochs.

For the MIR and ImageCLEF experiments we used SIFT
features based on the implementation of (van de Sande et al.,
2010). Due to the more manageable size of these datasets,
the classifiers were trained using LibLinear.

http://i.stanford.edu/~julian
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Using the above approach, the parameters θy
binary for each

class used in the structured learning methods in the follow-
ing sections were generated.

4.2 Structured Classifiers on ImageNet Data

For our first experiment, we consider structured classifica-
tion on the ImageNet Challenge dataset. This dataset con-
sists of 1.35 million images (1.2 million for training, the rest
for testing), each of which is labeled with a single positive
class.

For every image xn and every class y we must compute
〈φ(xn, y), θ〉. Earlier we defined φ(x, y) = x � θy

binary. If we
have C classes and F features, then this computation can
be made efficient by first computing the (C × F) matrix A
whose yth row is given by (θy

binary � θ). Similarly, if we have
N images then the set of image features can be thought of as
an (N×F) matrix X. Now the energy of a particular labeling
y of xn under θ is given by the matrix product

〈φ(xn, y), θ〉 =
(
X × AT

)
n,y
. (23)

This observation is critical if we wish to handle a large num-
ber of images and feature vectors of high-dimension. In our
experiments, we performed this computation using Nvidia’s
high-performance BLAS library CUBLAS. Although GPU
performance is often limited by a memory bottleneck, this
particular application is ideally suited as the matrix X is far
larger than either the matrix A, or the resulting product, and
X needs to be copied to the GPU only once, after which it
is repeatedly reused. After this matrix product is computed,
we must sort every row, which can be naı̈vely parallelized.

In light of these observations, our method is no longer
prohibitively constrained by its running time (running ten
iterations of Algorithm 2 takes around one day for a single
regularization parameter λ). Instead we are constrained by
the size of the GPU’s onboard memory, meaning that we
only used 25% of the training data (half for training, half
for validation). To measure the effect of this limitation, we
also trained our model using the entire training set, using
a parallel implementation on a 64 core machine; here we
used Intel’s Math Kernel Library to parallelize the matrix
multiplication step.5

The results of our algorithm using features of dimen-
sion F = 1024 and F = 4096 are shown in Figures 2 and
3, respectively. Note that the ‘non-learning’ results refer to
the version of the algorithm without reweighted classifiers,
though the initial classifiers are themselves the result of a
previous learning stage. Here we ran Algorithm 2 for ten it-
erations, ‘hot-starting’ θi using the optimal result from the
previous iteration. The reduction in training error is also

5 http://software.intel.com/en-us/articles/

intel-mkl/

shown for each iteration of Algorithm 2, showing that min-
imal benefits are gained after ten iterations. We used regu-
larization parameters λ ∈ {10−1, 10−2 . . . 10−8}, and as usual
we report the test error for the value of λ that resulted in the
best performance on the validation set. We show the test er-
ror for different numbers of nearest-neighbors K, though the
method was trained to minimize the error for K = 5.

Interestingly, we see negligible benefit when using the
entire training set versus using merely 25%. In light of the
fact that a single round of training (for the 4096 dimensional
features) takes approximately six times longer on the CPU
(using non-commodity hardware), we advocate use of the
GPU implementation. In the experiments that we consider
later, the datasets are sufficiently small that neither memory
requirements nor running times present a significant issue.

In both Figures 2 and 3, we find that the optimal θ is non-
uniform, indicating that there are interesting relationships
that can be learned between the features when a structured
setting is used. As hoped, a reduction in test error is obtained
over already good classifiers, though the improvement is less
significant for the better-performing high-dimensional clas-
sifiers.

Ideally, we would like to apply our method to features
and classifiers like those of Lin et al. (2011) or Sánchez and
Perronnin (2011). It remains to be seen whether the setting
we have described could yield additional benefits over their
already excellent classifiers.

4.3 Multiple Observed Labels

Our model was designed based on the intuition that the la-
tent variables should capture those objects that appear in
an image, but are not present in the groundtruth. However,
as we observe only a single (positive) label for each im-
age in ImageNet Challenge, we were unable to test this hy-
pothesis on that data. In this experiment, we study two tax-
onomies for which a complete labeling is provided for each
image. By training using only a fraction of the groundtruth
labels, this allows us to examine the extent to which the
latent variables align with those categories withheld from
the groundtruth. These datasets also allow us to measure the
benefit obtained by our latent variable model as the labeling
becomes ‘stronger’, i.e., as a more complete groundtruth is
provided.

In the MIR Flickr Retrieval Evaluation (MIR) dataset,
25,000 images are labeled into 24 object categories (Huiskes
et al., 2010). Although the classifiers discussed in Huiskes
et al. (2010) are concerned with optimizing average pre-
cision, the object categories are organized into topics and
subtopics, which can be treated as a taxonomy. The taxon-
omy we derive is shown in Figure 4 (see Huiskes et al., 2010,
Table 2). Although the small number of categories in this

http://software.intel.com/en-us/articles/intel-mkl/
http://software.intel.com/en-us/articles/intel-mkl/
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(c)

Test error:
1nn 2 3 4 5

Before learning 11.35 9.29 8.08 7.25 6.64
After learning (25% of training set) 10.88 8.85 7.71 6.93 6.36
After learning (entire training set) 10.81 8.82 7.68 6.94 6.37

Fig. 2 Results for training with 1024 dimensional features on ImageNet Challenge data. (a) feature weights; (b) reduction in training error during
each iteration of Algorithm 2; (c) error for different numbers of nearest-neighbors K (the method was trained to optimize the error for K = 5).
Results are reported for the best value of λ on the validation set (here λ = 10−4). Due to the large size of the datasets in question, standard errors
are ' 0 for all datapoints.

dataset does not demand the use of a hierarchical loss (the
labels are sufficiently distinct that the 0/1 loss is sufficient),
it is valuable as a first step in identifying the function of the
latent variables in our model.

The ImageCLEF dataset uses a subset of 18,000 images
from the MIR dataset (Nowak and Huiskes, 2010). The im-
ages are categorized into 99 concepts, forming a richer and
deeper hierarchy than that of the MIR dataset. The taxon-
omy for the ImageCLEF dataset is shown in Figure 5.

In both of these datasets, images may have any num-
ber of labels from the label vocabulary, including none (the
MIR and ImageCLEF datasets have up to 14 and 26 labels
per image, respectively). To analyze the role of the latent
variables, we randomly select a fixed number of (up to) G
labels for each image. These G labels form our training an-
notations Yn. Note that when G = 1 we recover precisely
the setting used in the experiment of Section 4.2 for the Im-
ageNet Challenge data.

Results for learning on both the MIR and the Image-
CLEF datasets for different values of G are shown in Figure
8. Two aspects of these results are interesting at first glance:
firstly, the improvement of learning over non-learning is the
most significant in the MIR taxonomy, in spite of our previ-
ous comment that a loss derived from this taxonomy, being
the shallowest, most closely resembles the simpler 0/1 loss.
In fact, on further inspection we discover that among all of
our experiments, the largest improvements are achieved in

the smallest taxonomies. However, it should be noted that
the loss of (eq. 3) still differs from the 0/1 loss due to the fact
that we predict multiple labels simultaneously, so this find-
ing merely reveals that our model is better able to leverage
the structured nature of the loss when the label vocabulary
is smaller.

Figure 6 shows the results on some example images from
ImageCLEF, for G = 1 (i.e., we randomly choose a single la-
bel from the complete groundtruth for training). Some com-
mon patterns emerge which explain how our latent variable
model is able to leverage the structured nature of the loss
function: Firstly, higher scores are given to extremely com-
mon classes such as ‘no blur’, which are rarely given high
scores by the original binary classifiers. Secondly, the origi-
nal classifiers often predict semantically similar labels (such
as ‘happy’ and ‘funny’, or ‘shadow’ and ‘night’), whereas
more semantically distinct classes are chosen after learning.

Secondly, we note that as G increases (meaning that the
groundtruth becomes more complete), the relative improve-
ment of learning over non-learning increases in almost all
cases (naturally the absolute value of the loss decreases for
larger G, as the problem becomes easier due to the ‘min’ in
(eq. 3)). This is an interesting result, since for images with
fully-labeled groundtruth, the latent variables no longer play
any readily interpretable role. Again we note that no matter
what the values of the latent variables, we still gain a consid-
erable advantage in all cases simply due to the fact that we
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After learning (25% of training set) 9.02 7.08 6.05 5.38 4.91
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Fig. 3 Results for training with 4096 dimensional features on ImageNet Challenge data. (a) feature weights; (b) reduction in training error during
each iteration of Algorithm 2; (c) error for different numbers of nearest-neighbors K (the method was trained to optimize the error for K = 5).
Results are reported for the best value of λ on the validation set (here λ = 10−6).
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Fig. 4 The MIR taxonomy. Twenty-four of the tree’s nodes are the possible labels for each image.

are optimizing the correct loss. Ultimately, what this does
imply is that while the 0/1 loss (or some surrogate such as
the hinge loss) appears to be a reasonable proxy for the loss
of (eq. 3) when G = 1, the importance of optimizing the
correct loss becomes more important when it is a function
of multiple groundtruth labels.

In Figure 9 we assess whether the predicted values of
the latent variables Zn match those groundtruth annotations
that were withheld from Yn. If we have C classes and G′ =

min(G, |Yn|) groundtruth labels (i.e., we have G labels except

when the complete annotation Yn has fewer than G labels),
then the number of ways of predicting the remaining K − P
labels is

(
C −G′

K −G′

)
. (24)
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Fig. 5 A partial view of the ImageCLEF taxonomy. The possible labels for each image are the ninety-nine leaves of the tree.
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no blur, no
persons, adult,
male, visual arts

4 1

day no blur, neutral
illumination, no
persons, big
group, child

no persons, no
blur, day,
summer, cute

3 0

no persons sky, clouds,
outdoor, day,
mountains

no persons, sky,
outdoor, day, no
blur

4 0

Fig. 6 Example results on some images from ImageCLEF. Recall that as the ‘correct’ labels we randomly choose a single label from the complete
groundtruth. Note that common classes such as ‘no blur’ are predicted more frequently in the hierarchical model, and that semantically similar
labels (such as ‘happy’ and ‘funny’, or ‘shadow’ and ‘night’), are rarely predicted together.
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Fig. 7 Improvement of learning over non-learning for the taxonomy
defined over MIR tags. All results are reported for the best value of λ
on the validation set.

The number of ways that c of them can be ‘correct’ (i.e.,
they appear in the withheld groundtruth) is(

K −G′

c

)
︸     ︷︷     ︸

correct predictions

×

(
C −G′ − c
K −G′ − c

)
︸          ︷︷          ︸
incorrect predictions

. (25)

Thus the expected number of correct predictions made by a
random classifier is

K−G′∑
c=1

c ×
(

K −G′

c

)
×

(
C −G′ − c
K −G′ − c

)
(

C −G′

K −G′

) . (26)

During each iteration of Algorithm 2, we measure the frac-
tion of withheld groundtruth labels that appear in the la-
tent variable Zn for each image, normalized by (eq. 26).
When G = 1 (as is the case in ImageNet Challenge), we
see that for both the MIR and ImageCLEF datasets, the la-
tent variables gradually align with the unannotated objects,
as we had expected. However, on the MIR dataset, for all
G > 1, we see that after an initial period of alignment, the la-
tent variables gradually become less similar to the withheld
groundtruth; apparently the model is better able to lever-
age the latent variables by assigning them some role other
than matching the withheld groundtruth. On the ImageCLEF
dataset, for G < 4, the latent variables actually agree with
the groundtruth less than would be expected of a random
classifier, implying that the latent variables play some other
role altogether.

Although it is indeed somewhat difficult to interpret the
complex dynamics of the upper 8 plots in Figure 9, an intu-
itive picture emerges after a sufficient number of iterations.
The two plots in the bottom of Figure 9 show at the tenth it-
eration, the agreement between the latent variables and with-
held groundtruth increases with G (the number of training
labels). We observe a monotonic improvement, which indi-
cates that the more labels we know, the better we can predict
the missing labels. This is intuitive in the sense that it agrees
with the fact that we use a structured loss that accounts for
dependencies between the predicted labels.

4.4 Image Tagging in a Taxonomy

Also provided in the MIR dataset are the Flickr tags for
each image. The loss function of (eq. 3) is a natural one
for the problem of tag recommendation, as one is satisfied
so long as some reasonable tags are suggested to the user.
It is also natural to penalize ‘incorrect’ tags using a taxon-
omy, as the space of all possible tags is too large for the 0/1
loss to be practical (in the 25,000 images in the MIR dataset,
there are around 20,000 unique tags). Such a dataset differs
from those of Sections 4.2 and 4.3: while the groundtruth
may contain multiple labels per image (as with MIR and
ImageCLEF), it may still be incomplete (as with ImageNet
Challenge), in the sense that we are never certain whether an
image couldn’t have been assigned a particular tag.

The problem of automatically deriving a taxonomy from
image tags is studied in Setia and Burkhardt (2007), though
for the current experiment it is simpler to manually assign
the most commonly used Flickr tags to existing concepts in
WordNet (Miller, 1995).

Among the 200 most popular tags in the MIR dataset,
152 correspond to readily identifiable concepts in WordNet
(of the other 48, many are camera brands or non-English
words). Having identified corresponding concepts in Word-
Net, we can define our loss function much as is done for the
ImageNet Challenge, i.e., by taking the shortest path dis-
tance in the WordNet taxonomy from the correct tag to the
nearest common ancestor of the predicted and the correct
tag. On average, each of the 25,000 images contains 1.44 of
these 152 tags. A selection of the tags, and their relation-
ships via homonymns in WordNet are shown in Figure 10.

Results for learning on the MIR tag taxonomy are shown
in Figures 7 and 11. In Figure 7 we use the experimental
setup from Section 4.3, i.e., we withhold some fraction of
the groundtruth labels so as to analyze the effect of training
with ‘stronger’ groundtruth information; results are similar
to those reported in Section 4.3. In Figure 11 we use the ex-
perimental setup from Section 4.2, i.e., we simply use all
of the available training evidence. Here we predict K = 10
nearest-neighbors, which in practice could represent sug-
gesting ten tags to a user in a tag-recommendation system.
Learning achieves an improvement over non-learning of ap-
proximately 12% when predicting ten tags, a more substan-
tial improvement than what we observed for ImageNet Chal-
lenge.

4.5 Optimization of Flat Losses

In order to optimize the performance measure used in the
ImageNet Challenge, we had to account for both the hier-
archical nature of the loss, as well as the fact that multiple
predictions can be made simultaneously. Although we have
demonstrated the benefit of optimizing such performance
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Fig. 8 Improvement of learning over non-learning for the MIR and ImageCLEF taxonomies as the number of groundtruth labels G increases.
‘Testing error’ refers to the average loss across all images in the test set. The plots are annotated to show the percentage improvement of learning
over non-learning. All results are reported for the best value of λ on the validation set. Note that the final two bars for the MIR dataset are almost
identical simply due to the fact that few images have as many as four labels owing to the small size of the label vocabulary.
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Fig. 9 The above plots measure how closely the latent variables match those labels withheld from the groundtruth during training. The y-axis
measures the fraction of withheld groundtruth labels that appear in the latent indicator Zi (normalized by the expected number of correct predictions
made by a random classifier). The eight upper plots show this quantity as a function of the iteration of Algorithm 2, while the two bottom plots
show this quantity for iteration 10, as a function of the number of known labels G. The two bottom plots reveal that the level of agreement between
the predicted latent variables and the withheld groundtruth increases monotonically in G, which is expected since our structured loss models
dependencies between the predicted labels.
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Fig. 11 Results for training with 1024 dimensional features on MIR tag data. (a) feature weights; (b) reduction in training error during each
iteration of Algorithm 2; (c) error for different numbers of nearest-neighbors K (the method was trained to optimize the error for K = 10). Results
are reported for the best value of λ on the validation set (here λ = 10−5). Note that although Algorithm 2 should produce a monotonic decrease in
training error (see Yuille and Rangarajan, 2002), we occasionally observe increase in training error when Algorithm 1 fails to converge.

measures directly, it is unclear to which of these two aspects
the improvement owes. One way to test this is to see whether
we can achieve similar gains using our latent variable model
using ‘flat’ (i.e., 0/1) losses.

Recall that the error measure used to evaluate perfor-
mance in the ImageNet Challenge took the form

∆(Y, {yn}) = min
y∈Y

d(y, yn), (27)

where d(y, yn) was some difference measure between a pre-
dicted label y and the groundtruth label yn. So far we have as-
sumed that d(y, yn) measured the shortest-path distance from
yn to the nearest common ancestor of y and yn in a taxonomic
tree, corresponding to the ImageNet Challenge’s ‘hierarchi-
cal’ performance measure. The ImageNet Challenge’s ‘flat’
performance measure replaces this by

d(y, yn) = 1 − δ(y = yn) (28)

(i.e., 0 if y = yn, 1 otherwise). In the context of (eq. 27) this
means that a loss of 0 is achieved so long as the groundtruth
label yn appears in Y , and 1 otherwise.

Optimizing the ImageNet Challenge’s ‘flat’ performance
measure using our latent variable model simply means re-
placing the hierarchical difference measure used in the pre-
vious experiments by that of (eq. 28). Results on the Im-
ageNet, CLEF, and MIR datasets, using 1024 dimensional
features are shown in Figure 12. The results are similar (in
terms of percentage improvement) to what we reported in
Sections 4.2 and 4.3 (except for ImageNet, where the im-
provement is smaller). Again the error is smallest on the
MIR dataset simply due to the fact that it has the smallest
label vocabulary.

To study the converse problem of optimizing the hierar-
chical performance measure without introducing latent vari-
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Fig. 12 Improvement of learning over non-learning using the Ima-
geNet Challenge’s ‘flat’ evaluation measure on all three datasets. All
results are reported for the best value of λ on the validation set.

ables, we use the hierarchical difference measure from the
previous experiments, but optimize the performance of only
a single prediction. As in the previous experiments, we eval-
uate the method using the hierarchical performance measure
from ImageNet. We found that doing so did not improve
over the non-learning performance (i.e., the performance of
the original binary predictors). This is not surprising, since
we are no longer optimizing the same performance measure
on which the method is evaluated.

It should be noted that Cai and Hofmann (2004) suc-
cessfully reported the benefit of directly optimizing hierar-
chical performance measures for multiclass document clas-
sification problems, and Binder et al. (2011) reported simi-
larly promising results for problems from computer vision.
However, their experiments differ critically from what we
present here due to the fact that their datasets have a small
label vocabulary and typically only a single plausible label
per document (meaning that they can directly evaluate their
algorithms on a single prediction).

4.6 Single-Stage Learning

In the case of ImageNet, we made the argument that it is not
feasible to learn parameters for all classes simultanetously
in a single unified stage, due to the high-dimensionality of
the parameters involved (e.g. learning all parameters for the
classifiers in 4.2 would require optimizing millions of pa-
rameters simultaneously). On the other hand, MIR and Im-
ageCLEF have only 24 and 99 categories (respectively), so
that learning all parameters simultaneously ought to be fea-
sible, at least with respect to running time.

Recall that in (eq. 7) we assumed a classifier of the form

Ȳ(x; θ) = argmax
Y∈Y

∑
y∈Y

〈
x � θy

binary, θ
〉
, (29)

where θy
binary was assumed to be given as input from a pre-

vious learning stage, so that our algorithm only had to learn
the weighting factor θ. A single stage approach replaces this

classifier by one of the form

Ȳ ′(x; θ) = argmax
Y∈Y

∑
y∈Y

〈
x, θy

binary

〉
, (30)

where each θy
binary is a parameter vector to be learned. Note

that this model is linear in the concatenation of all model
parameters, (θ1

binary, . . . , θ
C
binary), meaning that it is amenable

to the same structured learning approaches we described in
Section 3.

In principle the model of (eq. 30) is a generalization of
the original model of (eq. 7), though we found that train-
ing the model of (eq. 30) led to inferior performance on
both MIR and ImageCLEF data (in fact the performance
was inferior to the one-vs-all classifiers described in Section
4.1). There are several possible explanations for this phe-
nomenon: Firstly, given that the number of parameters ex-
ceeds the number of training images, overfitting is certainly
a problem that may be alleviated by a two-stage approach;
even for ImageNet, where there are over one million im-
ages for training, this problem would persist due to the high
number of classes. Secondly, in a two-stage approach the
base classifiers θy

binary are trained using methods that differ
significantly from the max-margin objective of (eq. 11a).

In terms of running time the model of (eq. 30) was also
inferior to that of (eq. 7), leading to an approximately 20-
fold running time increase in the case of MIR, and a 50-fold
increase in the case of ImageCLEF. The same experiment on
the ImageNet Challenge data proved impractical in terms of
running time.

5 Discussion

The proposed model leads to a reduction in error for all of
the hierarchical labeling problems we considered in Section
4. The fact that we achieve the largest benefits in the small-
est hierarchies is possibly explained by the findings of Deng
et al. (2009), who show that in large hierarchies, confusion
tends to occur between semantically similar classes, even
when optimizing a 0/1 loss. Alternately, for small hierar-
chies the classes are more semantically distinct, so that opti-
mizing the hierarchical loss changes the predictions signifi-
cantly. The fact that we achieve the largest benefits when we
have additional groundtruth labels simply reflects the fact
that the loss we are optimizing is structured and takes into
account label dependencies through the hierarchy.

It is interesting to discover that the smallest benefit is
obtained when we have a large label vocabulary and only
a single groundtruth label, as is the case for the ImageNet
Challenge. This may be an indication that the hierarchical
information is not informative in such cases, so that the 0/1
loss becomes a good proxy for the hierarchical loss in ques-
tion. The fact that the best performing methods from the Im-
ageNet Challenge competition in terms of the 0/1 loss were
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also the best performing in terms of the hierarchical loss pro-
vides weak evidence for this assertion. Alternately, it may
simply reflect the fact that this is the version of the problem
that has received the most attention, so that the state-of-the-
art binary classifiers are sufficiently accurate as to be able to
overcome the weakness of using the incorrect loss.

Image tags derived from image hosting websites like
Flickr are a natural source of weakly-labeled data from large
vocabularies, where hierarchical losses are sensible since
many tags corresponding to semantically similar concepts
can be used interchangeably. Indeed we discovered that most
of the commonly used tags in Flickr correspond to readily
indentifiable concepts from WordNet, obviating the need to
learn a hierarchy directly from the data. However, an obvi-
ous danger of using a hierarchial loss is that certain types
of tags, while semantically similar, are not interchangable.
For instance, while ‘San Francisco’ and ‘New York City’
are visually and semantically close (in terms of the Word-
Net hierarchy), a tag recommendation system that suggests
one in place of the other would not be useful. Optimizing
for error measures that are sensitive to this fact remains an
avenue for future work.

One key limitation of our formulation is that we apply
the same re-weighting for the parameter vectors of all cate-
gories. This assumption makes optimization more tractable
and leads to an efficient solution. However this is suboptimal
in the sense that we would like to have re-weightings that are
to some extent dedicated to different categories, while at the
same time avoiding the need to have multiple independent
re-weighing vectors for each category. This would possibly
suggest a strategy that shares parameters across different cat-
egories, in the spirit of Lampert et al. (2009). Obtaining a
scalable algorithm in this setting however would be a chal-
lenge, and is left as future work.

6 Conclusion

Large-scale, collaboratively labeled image datasets embed-
ded in a taxonomy naturally invite the use of robust, struc-
tured losses, in the sense that they should account for both
the hierarchical nature of the taxonomy and for the incon-
sistencies in the labeling process. However, on datasets such
as ImageNet, the state-of-the-art methods still use one-vs-all
classifiers, which do not account for the structured nature of
such losses, nor for the imperfect nature of the annotation.
We have outlined the computational challenges involved in
using structured methods, shedding some light on why they
have not been used before in this task. By exploiting a num-
ber of computational tricks, and by using recent advances on
structured learning with latent variables, we have been able
to formulate learning in this task as the optimization of a
loss that is both structured and robust to weak labeling. Bet-
ter yet, our method leverages existing one-vs-all classifiers,

essentially by re-weighting, or ‘boosting’ their dimensions
to directly account for the structured nature of the loss. In
practice this leads to improvements in the hierarchical loss
of already good one-vs-all classifiers.
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Léon Bottou and Olivier Bousquet. The tradeoffs of large
scale learning. In Advances in Neural Information Pro-
cessing Systems, 2008. 9

Serhat S. Bucak, Rong Jin, and Anil K. Jain. Multi-label
learning with incomplete class assignments. In IEEE
Conference on Computer Vision and Pattern Recognition,
2011. 4

Lijuan Cai and Thomas Hofmann. Hierarchical document
categorization with support vector machines. In Confer-
ence on Information and Knowledge Management, 2004.
3, 17

Gabriela Csurka, Christopher R. Dance, Lixin Fan, Jutta
Willamowski, and Cédric Bray. Visual categorization
with bags of keypoints. In ECCV Workshop on Statistical
Learning in Computer Vision, 2004. 9

http://www.image-net.org/challenges/LSVRC/2010/index
http://www.image-net.org/challenges/LSVRC/2010/index


Optimization of Robust Loss Functions for Weakly-Labeled Image Taxonomies 19

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and
Li Fei-Fei. ImageNet: A Large-Scale Hierarchical Image
Database. In IEEE Conference on Computer Vision and
Pattern Recognition, 2009. 1, 2, 17

Jia Deng, Alexander C. Berg, Kai Li, and Li Fei-Fei. What
does classifying more than 10,000 image categories tell
us? In European Conference on Computer Vision, 2010.
2

Jia Deng, Alexander C. Berg, and Li Fei-Fei. Hierarchical
semantic indexing for large scale image retrieval. In IEEE
Conference on Computer Vision and Pattern Recognition,
2011. 3

Thomas Deselaers and Vittorio Ferrari. Visual and semantic
similarity in imagenet. In IEEE Conference on Computer
Vision and Pattern Recognition, 2011. 3

Ivica Dimitrovski, Dragi Kocev, Suzana Loskovska, and
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