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Abstract In this paper we present a novel method of designing multi-fingered
robotic hands using tasks composed of both finite and infinitesimal motion. The
method is based on representing the robotic hands as a kinematic chain with a tree
topology. We represent finite motion using Clifford algebraand infinitesimal motion
using Lie algebra to perform finite dimensional kinematic synthesis of the multi-
fingered mechanism. This allows tasks to be defined not only bydisplacements, but
also by the velocity and acceleration at different positions for the design of robotic
hands. The additional information enables an increased local approximation of the
task at critical positions, as well as contact and curvaturespecifications. An example
task is provided using an experimental motion capture system and we present the
design of a robotic hand for the task using a hybrid Genetic Algorithm/Levenberg-
Marquadt solver.
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1 Introduction

The design of end-effector robotic tools has traditionallytaken place in an application-
oriented fashion within the framework of the mechanical design theory [7]. Among
the rich variety of robotic end-effectors, those generallydefined as robotic hands are
considered suited not only for grasping, but also for dexterous manipulation. We can
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define a multi-fingered robotic hand as an end-effector in which the base, or palm,
spans several serial chains in a tree-like structure.

There are a great variety of designs for robotic hands. Some designs mimic the
human hand and exhibit a high number of degrees of freedom, [1] and [15]; others
are designed for specific applications [4] and may or not be anthropomorphic [5].

Most of the designs have been oriented either towards maximum anthropomor-
phism or towards optimizing grasping, manipulability or workspace size. A good
review on the efforts toward kinematic hand design can be found in [6]. As robotic
hands become more common in industrial applications and human environments, it
makes sense to think that their design will become more task-oriented. Soto Martell
and Gini [14] expose the need for a task-based design processfor robotic hands.

The use of kinematic synthesis for the design of the multi-fingered robotic hand
has been applied to individual fingers, see [2]. We believe that the reason why di-
mensional synthesis has been scarcely applied to robotic hand design is because
of the lack of a method that takes a multi-fingered task as the input and outputs a
multi-fingered design.

In this paper, we extend the work presented in [13] by combining it with the
results on kinematic synthesis for infinitesimal positions[8, 9] and expressing the
kinematics using the Clifford algebra of dual quaternions [10]. Note that mechanical
linkages are traditionally synthesized by specifying a task, consisting of a number
of positions that the end-effector has to move through, withthe goal of determining
the design parameters, i.e. fixed and moving pivot locations, as well as the size of
the linkage. The difference between the traditional designof mechanical linkages
and the current design with contact direction, used in this research, is basically in
the task, which consists not only of positions, but velocities and accelerations com-
patible with contact and curvature specifications between the end-effector/fingers
and the object to be grasped. In comparison to the traditional synthesis techniques,
these velocities and accelerations yield to a more complicated system of position,
velocity and acceleration design equations, as well as morecomplicated trajectory
planning techniques.

As an example, we apply this methodology to the design of a multi-fingered
hand for operating a door knob. The motivation for this design arose from an indi-
vidual, who is confined to a wheel chair after an accident. He has limited movement
and weakness in his hands, making it difficult for him to graspdoorknobs at his
workspace. The synthesis presented here is the first step towards developing assis-
tive manipulation devices.

2 Infinitesimal Kinematics

The generic screwS for a twist can be represented as an element of the Lie algebra
se(3) [12],

S= λ (s; r × s+ hs) = λ (s;s0+ hs) = (ω ;v) ∈ se(3) (1)
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wheres, r ,ω ,v ∈ R
3 with s·s= 1, s0 = r × sandλ ,h ∈R.

The relative velocities between a pair of rigid bodies form one-dimensional sub-
algebras of the Lie algebrase(3) [11]. The most generic subalgebra is generated by
the screw or helical jointS which becomes a revolute jointSR = (s;s0) with h = 0
or a prismatic jointSP = (0;s) with the screw axis at infinity. The binary operation
of the Lie algebra is the Lie bracket, which can be expanded for screws as,

[S1,S2] = [(ω1;v1),(ω2;v2)] = (ω1×ω2;ω1× v2+ v1×ω2) (2)

The velocity of the end-effector for a serial articulated chain with n joints in a
given configuration can be written as [12],

dP
dt

= Ṗ=
n

∑
i=1

θ̇iSi (3)

whereṖ = (ω ;v) with ω being the angular velocities andv being the Cartesian
velocities. The screwsSi represent the infinitesimal screws of each joint.

The infinitesimal screws can be transformed to an instantaneous position from a
reference position using the Clifford algebra conjugationaction,
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where∆θ̂ k
i = θ̂ k

i − θ̂ r
i with θ̂ r

i is the joint parameter in the reference configuration
andSk

i is thei-th screw in a serial chain at positionk.
The velocity of a jointj in a chain is written as the derivative of a finite screw

[3],
dS j

dt
= Ṡ j =

j−1

∑
i=1

θ̇i[Si,S j] (5)

Cross terms and the non-commutation of the derivation operator must be taken
into account as seen by differentiating each velocity component of (3) using the
chain rule. This can be expanded to obtain the acceleration of the end-effector,

d2P

dt2 = P̈=
d
dt
Ṗ=
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n
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θ̇ j[Si,S j] (6)

whereP̈ = (α;a) with α being the angular accelerations anda being the Cartesian
accelerations.

The approach is general in the sense that the chain rule can besuccessively ap-
plied to obtain higher derivatives if necessary.
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3 Design Equations for Tree Topologies

Tree topologies can be seen as many different serial chains that share a number of
common joints. The equations can be written as for serial chains, but the task defini-
tion will vary with the topology. The finite motion of a joint can be expressed using
the exponential map of a screwS. This can be expressed using the unit element of
the Clifford even subalgebra of the projective spaceCl+(0,3,1) or dual quaternion,

e
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θ
2
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2

ε)S= cos
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whereε is the dual unit such thatε2 = 0.
For a serial chain withn joints, the forward kinematics of a serial chain can be

written relative to a reference configuration of the serial chain,

Q̂(∆∆∆θ̂θθ ) =
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where∆θ̂i = θ̂i − θ̂0 with θ̂0 being the joint parameters of the reference configura-
tion.

For a task composed of finite positions, the relative forwardkinematics can be
compared to the relative motion from the reference configuration to each position
P̂1k = P̂kP̂−1

1 [10],

P̂1k =
n

∏
i=1

e
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i
2 Si

, k = 2, . . . ,mp (9)

wheremp is the number of positions considered and∆θ̂ k
i = θ̂ k

i − θ 1
i , with k = 1

being the reference configuration.
For a task with velocities, we can use (3) to write,

Ṗk =
n

∑
i=1

θ̇ k
i S

k
i , k = 1, . . . ,mv (10)

whereṖk is the absolute velocity information for a given positionk in the form
(ω ;v). The instantaneous joint screw axisSk

i can be calculated from (4).
The same procedure can be applied to acceleration to obtain from (6),
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whereP̈k is the absolute acceleration for a given positionk in the form(α;a).
The velocity and acceleration equations can be seen as additional pose informa-

tion that reduce the number of poses needed. Counting the number of independent
unknownsnx and independent equationsn f we obtain,
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nx = ns + n j(mp +mv +ma −1) (12)

n f = nc + nd(mp +mv +ma −1) (13)

wherens is the number of independent structural parameters,n j the number of joint
degrees of freedom,nc the number of independent constraints andnd the degrees of
freedom of the end-effector motion. The number of positions, velocities and accel-
erations are given bymp, mv andma respectively. If we considerm = mp +mv +ma

we obtain the familiar formula [10],

m =
ns − nc

nd − n j
+1 (14)

4 Experimental Set up and Task Specification

Since the first step in our synthesis technique is related to choosing a specific task,
the kinematic task selected for the design is the operation of a standard door knob.
In order to define this kinematic task, the door knob graspingand turning movement
was performed, from a start to end spatial locations. Duringthe movement, the sub-
ject emulates the opening of the door motion with an apparatus shown in Fig. 1a.
The upper limb kinematics at specific points of interest are captured by a 3D Mo-
tion Capture System (Vicon, OMG Plc., UK), available in our Human Interactive
Robotics Lab at Texas A&M University.

Three infrared cameras track the position of each marker relative to a predefined
global coordinate frame, with a sampling rate of 100Hz. Five moving frames are
defined at the: elbow, wrist, and tip of thumb, tip of index andtip of middle fingers,
respectively. Fig. 1b shows the marker attachment. To only synthesize the motion
of the forearm, the positions chosen were transformed from absolute positionŝPi to
positions local to the elboŵPi j = P̂−1

j P̂i with P̂J is the position of the elbow. For

velocities this can be written aṡPi j = Ṗi − Ṗ j.
The obtained positions and velocities were then used as a task for the kinematic

synthesis of the multi-fingered robotic hand. The kinematicspecification consists

Fig. 1 1a The experimental
apparatus for emulating the
door knob task and 1b the
kinematic model configured
in the 3D Motion Capture
System.

(a) (b)



6 E. Simo-Serra, A. Perez-Gracia, H. Moon and N. Robson

of set of three spatial displacements defined byP̂k = (ψψψk,dk),k = 1,2,3, and the
associated angular and linear velocitiesṖk =(ωk;vk),k = 1,2 in two of the positions
for each fingertip.

5 Solving Numerically

The solver used is an updated version of the kinematic synthesis solver for tree
structures [13] updated to support the design equations (10) and (11). The solver is
composed of a Genetic Algorithm (GA) paired with a Levenberg-Marquadt (LM)
local optimizer. For more details on the solving approach see [13].

The full equation system for a multi-fingered robot withb fingers formed byn
revolute joints can be defined directly by manipulation of the design equations,
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(15)
whereb is the number of branches or fingers,nc is the number of joints for a branch
c, n is the total number of joints in the structure andSk

i,c are the instantaneous axis
of the jointi in the branchc for the framek calculated by (4). A valid mechanism is
said to be found whenF(S,∆∆∆θ̂θθ , θ̇θθ , θ̈θθ ) = 000.

6 Results

The kinematic structure of the hand consists of a three degree of freedom palm+wrist
complex (RRR), and three fingers, each of which is modeled as atwo degree of
freedom RR kinematic chain as seen in Fig. 2a. This structurewas chosen for the
kinematic synthesis of the task as it has fewer degrees of freedom than the human
hand while having an non-fractional number of required samples. As this paper does
not deal with structural synthesis, a pre-determined topology is used. No additional
constraints were placed on the structure. For this kinematic structure with 9 revolute
joints, a total ofm = 5 samples are needed as obtained from (14).

The experimental task consists of many hundreds of frames ofwhich mp = 3
were selected. For two of them velocity information was alsoused providingmv =
2. Due to the nature of the door-knob opening task, the accelerations, related to
curvature constraints (i.e. sliding motion of the fingers along the door-knob) are
fairly small in comparison to the other task specifications and were not taken into
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(a) Topology (b) Full System (c) Index Finger (d) Middle Finger (e) Thumb

Fig. 2: The topology used and overview of a solution mechanism found.

account. Therefore, our task consists of positions, prescribed at the point where the
fingers need to grasp the door knob, and velocities, describing the contact of the
fingers with the door knob. The resulting equation system has90 unknowns and
102 equations of which only 72 are independent. A set of 50 solutions was obtained
taking an average of 18.06 minutes per solution and needing an average of 13.76
generations per solution with a population of 100 entities.

A selected solution mechanism of the doorknob task can be seen in Fig. 2. The
thick joint axes are connected by thinner lines at the intersections of the common
normals of the joints and the joint axes. The origin is represented by using a square
and the end-effectors are represented by using spheres. This solution shown is more
compact than the human hand as all the joints except one are grouped together and
is able to perform the same task as the human hand. It was observed that generally
the solutions have a similarity between the index and middlefinger, while the thumb
has a different shape, which is similar to how the human hand is designed.

7 Conclusions

This paper presents a novel dimensional synthesis methodology for articulated sys-
tems with a tree structure using additional constraints such as velocity and accelera-
tion. It also presents a new design for numerically solving kinematic systems using
these new constraints, adding upon the previous work of numerically solving tree
structures with kinematic synthesis. The addition of velocity, acceleration and other
derivatives at the positions allows a better local approximation of the task motion,
as well tasks with contact and curvature specifications.

For the selected knob-operating task, a tree-like robot with three two-jointed fin-
gers has been designed. Kinematic synthesis is just one stepin the design process,
one that allows you to create innovative candidates fitted for the kinematic tasks
under consideration. Enough solutions have been found to suggest that a method to
analyze and rank those needs to be a part of the design process. These results show
that the dimensional synthesis of robotic multi-fingered hands is possible. In addi-
tion, multi-fingered hands appear not to be redundant when a task involving several
fingers is to be performed.
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