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Abstract

We present an Online Random Ferns (ORFs) classi-
fier that progressively learns and builds enhanced mod-
els of object appearances. During the learning process,
we allow the human intervention to assist the classi-
fier and discard false positive training samples. The
amount of human intervention is minimized and inte-
grated within the online learning, such that in a few
seconds, complex object appearances can be learned.

After the assisted learning stage, the classifier is able
to detect the object under severe changing conditions.
The system runs at a few frames per second, and has
been validated for face and object detection tasks on a
mobile robot platform. We show that with minimal hu-
man assistance we are able to build a detector robust to
viewpoint changes, partial occlusions, varying lighting
and cluttered backgrounds.

1. Introduction

The standard approach in object recognition is to
build a classifier offline using large amounts of train-
ing data, and then use this classifier at run-time. This
approach has shown impressive results in an wide va-
riety of challenging scenarios corrupted by noisy back-
grounds, occlusions, viewpoint and scale changes and
variations of object appearances [3, 9, 11, 12].

However, there are situations in which offline learn-
ing is not feasible, either because the training data is
obtained continuously, or because the size of the train-
ing set is very cumbersome, and a batch processing be-
comes impractical. In these cases, novel online learn-
ing methods that use their own predictions to train and
update a classifier have been proposed [6, 7, 10]. Yet,
although these approaches have shown great adaptation
capabilities, they are prone to suffer from drifting when
updating the classifier with wrong predictions. This has
been recently addressed by combining offline and on-
line strategies [4, 8].

In this paper, we advocate for a completely online
approach, in which the human assistance will be inte-

Figure 1. The TIBI robot interacting with people
during the learning process.

grated within the learning loop in an active and efficient
manner. For this purpose, we will take advantage of re-
cent human-computer/robot interaction strategies, that
have been shown effective for tasks such as people guid-
ance [5] or robot teaching [1].

At the core of our approach there is an Online Ran-
dom Fern classifier [8], which can be progressively
learned using its own hypotheses as new training sam-
ples. Yet, to avoid feeding the classifier with false posi-
tive samples, the robot will ask for the human assistance
when dealing with uncertain hypotheses (Fig. 1). The
main issue to resolve will be to minimize the amount of
human intervention in order the make the whole learn-
ing process as efficient as possible. This will be han-
dled by appropriately defining a the range of confidence
scores for which the human is required. As we will
show in the results section, the resulting online human
assisted classier significantly improves a completely
offine Random Ferns [11], both in terms of recognition
rate and number of false positives. Fig 2 shows a few
sample frames of the detection results, once the classi-
fier learning is saturated (i.e., when no further human
intervention is required). We are able to handle large
occlusions, scalings and rotations, at about 5 fps.

2. Building the Human-Assisted Classifier

We next describe the main ingredients of our ap-
proach: (1) the set of decision rules that guide the
human-robot interaction; (2) the classifier; and (3) the
criterion to demand for the human intervention.
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Figure 2. Detection examples showing the output of the human-assisted classifier for face and object recognition.
Green rectangles indicate correct detections and red ones are false positives.

2.1 Human-Robot Interaction

We consider an scenario in which the classifier is
learned using a computer onboard a mobile robot,
equipped with devices such as a keyboard and a screen
that enable the interaction with the human. In order to
efficiently perform the interaction with the person, the
robot will formulate a set of concise questions, that ex-
pect for a ‘yes’ or ‘not’ answer. Table 1 shows a few
examples of such questions.

This human-robot interaction can be performed in
a very dynamic and efficient manner. In addition, the
robot has been programmed with behaviours that avoid
having large latency times, specially when the human
does not know exactly how to proceed. Strategies for
approaching the persons in a safe and social manner, or
attracting people’s attention have been designed for this
purpose [2, 14].

2.2 The Online Classifier

The main difference between our ORFs classifier and
the Random Ferns (RFs) detector of Ozuysal et al. [11],
is that we learn and update the classifier on the fly. Our
classifier is, therefore, continuously refined and adapted
to the changing conditions of both the target and back-
ground. We next briefly describe the RFs, and the ex-
tension we do to train them online.

Random Ferns. RFs are a semi-naive classifier which
has demonstrated successful recognition rates and high
efficiency for keypoint matching. Recently, they have
also been applied to object tracking and categorization
tasks [8, 12, 13].

Random Ferns consist of random and simple binary
features computed from pixel intensities [11]. More
formally, each Fern F; is a set of m binary features
{fE L ..., ft.}, whose outputs are Boolean values
comparing two pixel intensities over an image I. Each
feature can be expressed as:

Fa) = {1 I6ca) > 10x) 0

0 I(xa) <I(xp)
where x, and xy, are the pixel coordinates. These coor-
dinates are defined at random during the learning stage.

Type of utter
Assistance

Example

Is your face inside the rectangle?
I’'m not sure if I see you, am I?

I can’t see you, move a little bit.
Can you stand in front of me?

No detection

Table 1. Sample phrases uttered by the robot.

Fig. 3(Left) shows two Ferns, each one having three bi-
nary features —red, green and blue pairs of points—. The
Fern output is represented by the combination of their
Boolean feature outputs. For instance, the output z; of a
Fern f~; made of m = 3 features, with outputs {0, 1, 0},
is (010)2 = 2.

Online Random Ferns. ORFs are Random Ferns
which are continuously updated and refined using their
own detection hypotheses. Initially, the parameters of
the classifier are set using the first frame in which a
bounding box around the target has been manually se-
lected by the human, using the keyboard, mouse or
touchscreen. Several random affine deformations are
applied to this training sample in order to enlarge the
initial training set, and initialize the RFs. In addition,
we increase efficiency (both for the training and detec-
tion stages) by sharing RFs, as proposed in [13].

As shown in Fig. 3(Center), during the online train-
ing, the number of positive p, and negative n, samples
falling within each output of each Fern is accumulated.
Then, given a sample bounding box centered at x and a
Fern f;, we approximate the probability that  belongs
to the positive class by P(F; = z|z) = p./(p. + n.),
where z is the Fern output [8]. The average of all Fern
probabilities determines the response of the online clas-
sifier:

k
1
H(r) =2 P(Fi), 2)
t=1

where % is a normalization factor. If the classifier confi-
dence H(x) is above 0.5, the sample = will be assigned
to the positive class. Otherwise, it will be assigned to
the negative class.

In order to continuously update the classifier, upon
the arrival of a new image we perform a bootstrapping
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Figure 3. Left: Randon Ferns (RFs). Center: Ferns probabilities. Right: Human-assistance criterion.

step. That is, we run the classifier within the image
and retain the bounding box x; with maximal confi-
dence (only if H(z;) > 0.5). This bounding box, and
other nearby hypotheses are considered as new positive
samples, while hypotheses which are far away are con-
sidered as new false positive samples. These positive
and false positive samples are then evaluated for all the
Ferns to update the aforementioned p, and n, parame-
ters.

In terms of the specific parameters that define our
classifier, we would like to point that in all the experi-
ments described in the following section, the ORFs have
been initialized using 100 positive and negative (back-
ground) samples. Each classifier uses 10 Random Ferns
computed at £k = 200 random image locations. The
number of binary features has been set to m = 9 and
the fern size is set to 12 x 12 pixels. By default, RFs are
computed on gray-level images.

2.3 Human Assistance

ORFs are continuously updated using their own de-
tection hypotheses. However, in difficult situations in
which the classifier is not confident about its response,
the human assistance will be required. The degree of
confidence is determined by the response H(x). Ide-
ally, if H(z) > 0.5 the sample should be classified as
a positive. Yet, as shown in Fig. 3(Right), we define a
range of values 6 (centered on H(z) = 0.5) for which
we are not truly confident about the classifier response.
Note that the width of € represents a trade off between
the frequency of required human interventions, and the
recognition rates. A concise evaluation of this parame-
ter will be performed in the experimental section.

3. Experimental Validation

We have evaluated our classifier on face and object
datasets acquired using a mobile robot platform. The
face dataset has 12 sequences of 6 different persons (2
sequences per person). Each face classifier is trained
using one image sequence and tested in the second one.
Similarly, the object dataset has 8 image sequences of
4 objects: a yellow toy car, an elvis mug, a beer bot-

Method 0 PR-EER Assistance
RFs - 55.81 -

ORFs - 74.79 -
A-ORFs | 0.05 76.31 4.66% + 0.46
A-ORFs 0.1 76.51 9.54% + 0.87
A-ORFs 0.2 79.44 16.25% £ 1.09
A-ORFs | 0.3 82.06 25.72% £ 1.65

Table 2. Face recognition rates.

tle and a purple vase. Each sequence has approximately
200 images. Note (from Fig. 2), that these datasets are
quite challenging as faces and objects appear under par-
tial occlusions, 3D rotations and at different scales. In
addition, fast motions and similar objects disturb the
recognition method.

Face Recognition. In order to validate our approach we
have used three different strategies for building the clas-
sifier. First, we considered an offline Random Ferns ap-
proach (RFs) which is learned using just the first frame
of the training sequence and is not updated. The sec-
ond approach considers an ORFs methodology without
human intervention. An finally, our assisted approach
which we denote by A-ORFs. Remind that the human
assistance is only required during the training stage.
During the test, all classifiers remain constant, with no
further updating or assistance.

Fig. 4(Left) shows the Precision-Recall curves of the
three methodologies, and Table 2 depicts the Equal Er-
ror Rates (EER). Both graphs show that the A-ORFs
consistently outperform the other two approaches. This
was in fact expected, as the A-ORFs significantly re-
duce the risk of drifting, for which both the RFs and
OREFs are very sensitive, especially when dealing with
large variations of the training sequence.

What is remarkable about our approach is that its
higher performance can be achieved with very little hu-
man effort. This is shown both in the last 4 rows of
Table 2 and in Fig. 4(Center), where we illustrate how
the amount of human assistance influences the detec-
tion rates. Observe that with just assisting in a 4% of
the training frames, the detection rate with respect to
ORFs increases a 2%. This improvement grows to an
8% when the human assists on a 25% of the frames.
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Figure 4. Face and object recognition results. Left: Precision-Recall curves for different detection approaches.
Center: Recognition rates in terms of human assistance. Right: Equal Error Rates using different color spaces.

Object Recognition. The previous strategies have also
been used to learn the appearance of specific objects.
The recognition rates are plotted in Fig. 4(Right), and
show similar patterns as those obtained for the face de-
tection, in which the A-ORFs clearly outperformed RFs
and ORFs. Surprisingly, the ORFs perform worse than
the RFs. This is because the ORFs suffered from large
drifting errors which corrupted the classifier.

In addition, since the Random Ferns can be extended
to learn input images with multiple channels, we have
evaluated the impact of using gray scale or RGB im-
ages. As shown in Fig. 4(Right), using the full color in-
formation consistently improves the detection rates, and
allows discriminating between similar objects which
appear in the scene.

Finally, a few frames of the detection results are
shown in Fig. 2.  Although these sample frames
already illustrate the complexity of the situations we
consider, we would like to point the reader to check
the videos of the detection results on following link
http://www.iri.upc.edu/people/mvillami/icprl2.html.
These results were obtained at 5 fps. Yet, we could
easily speed up our algorithm by applying simple
temporal consistency criteria limiting the region of the
image in which to search for object candidates.

4. Conclusions

We have presented an approach in which an online
learning algorithm is assisted by a human to build a ro-
bust classifier. The whole process is performed very ef-
ficiently and with minimal human effort. We have used
our approach to teach a mobile robot platform to detect
faces and specific objects. The results show that our
classifier is very discriminative under challenging sce-
narios, such us when the objects appear under partial
occlusions or large changes of appearance. In the fu-
ture, we will explore additional applications of our sys-
tem. These include training with very large databases,
as those obtained from the internet, and efficiently an-
notating complex databases.
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