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Abstract

Humans have no problem segmenting different motion stimuli despite the ambi-
guity of local motion signals. Adaptive surround modulation, i.e., the apparent
switching between integrative and antagonistic modes, is assumed to play a cru-
cial role in this process. However, so far motion processing models based on
local integration have not been able to provide a unifying explanation for this phe-
nomenon. This motivated us to investigate the problem of local stimulus disam-
biguation in an alternative and fundamentally distinct motion-processing model
which uses global motion filters for velocity computation. Local information is
reconstructed at the end of the processing stream through the constructive inter-
ference of global signals, i.e., inverse transformations. We show that in this model
local stimulus disambiguation can be achieved by means of a novel filter embed-
ded in this architecture. This gives rise to both integrative and antagonistic effects
which are in agreement with those observed in psychophysical experiments with
humans, providing a functional explanation for effects of motion repulsion.

Keywords: stimulus disambiguation, motion processing models, Fourier
analysis, global filters, aperture problem, motion repulsion, constructive
interference

1. Introduction

The classical receptive field (CRF) represents one of the most important con-
cepts in neuroscience and has received large support since the work of Hubel and
Wiesel (1968), who studied the response properties of neurons in the striate cortex
of monkey to visual stimuli. The CRF has been defined as the region of the visual
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space within which a stimulus evokes neuronal activity. Neurons in the primary
visual cortex and area MT, which are considered to belong to the main motion
processing pathway in most mammals, have been shown to have localized CRFs,
and based on these findings, it was assumed that neural integration in the CRF is
rather local than global, e.g. (Livingstone and Hubel, 1987).

However, the study of waves tells us that local information can also be repre-
sented in a distributed fashion by global signals. Fourier transformations use this
principle to change from a space-time representation of the world to the frequency
space, and vice versa. Without doubt, the principle of constructive interference1

provides an equally plausible computational explanation for locality.
While both mechanisms can be used to predict local responses, using either

one or the other necessarily results in two distinct, basic processing schemes,
which are sketched in Fig. 1A-B. The two approaches incorporate global infor-
mation differently. Hence, the study of locally ambiguous stimuli might shed
some light on the important question of which processing architecture has been
realized in the human visual system.

When characterizing the integrations used in classical models, the term local
is used in the sense of nearby, meaning that integration is performed for nearby
signals only, i.e., within a small area of the visual space. However, the term local
is also used to describe a specific location in space. The superposition of global
signals leads to the reconstruction of local image properties, despite the global
nature of the preceding computations.

The aperture problem exemplifies how local integration limits the correct de-
termination of stimulus velocity: When a moving line is seen through a small
window such that the end points of the line are not visible, the motion of the line
is ambiguous, because the observed temporal change in the window could have
been caused by many different motions. Classical models attempt to disambiguate
the stimulus using results obtained at neighboring locations (Fukushima, 1980;
Huang et al., 2008a), assuming some locality-preserving interaction between lo-
cal signals (see Fig. 1A). However, in case of multi-object stimuli, this strategy
contains the risk that signals belonging to different entities are falsely combined,
leading to a paradox: Before having disambiguated the stimuli, we cannot know

1The principle of superposition of waves states that when two or more waves are incident on the
same point, the total amplitude at that point is equal to the sum the amplitudes of the individual
waves. Constructive interference occurs when a crest of a wave meets a crest of another wave.
Constructive interference is achieved in this work through inverse transformations, and both terms
can be used synonymously here.
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which local signals we can combine, and vice versa. This might explain why clas-
sical approaches so far have not been able to predict human perceptual responses
to the stimuli shown in Fig. 4A on the basis of a single mechanism (Amano et al.,
2009; Huang et al., 2008b).

In this work, the problem of stimulus disambiguation is investigated in the
context of a framework based on constructive interference of global Fourier com-
ponents, and a genuine solution to the problem is developed, made possible by a
novel filter implemented in this architecture.

The paper is structured as follows. In Section 2, the underlying processing
architecture based on constructive interference is introduced. Then, the results are
presented, starting with a problem statement (Section 3), illustrating the problem
of stimulus ambiguity using a typical example, and a solution is proposed (Sec-
tion 4). Simulation results showing predictions of perceptual responses, includ-
ing the motion-repulsion illusion are presented in Section 5. Finally, the results
are discussed with respect to classical motion processing models (Adelson and
Bergen, 1985; Fukushima, 1980; Huang et al., 2008a) based on local integration
in Section 6.

2. Methods I: Mathematical model

We build upon a recent method and represent the visual stimulus through
global Fourier components (Dellen and Wörgötter, 2011). This algorithm fol-
lows a processing structure based on the principle of constructive interference
(see Fig. 1B), and thus provides an adequate ground for this case study.

Let I(x, y, t) be a visual stimulus, where x and y define the spatial positions
and t is the time. The spatial Fourier transform of I(x, y, t) is then represented by

F (k, t) =

+∞∫∫
−∞

exp (ikx′)I(x′, t)dx′ , (1)

where k = (kx, ky) is the spatial frequency vector, and x′ = (x′, y′). Accordingly,
the spatiotemporal Fourier transform is defined as

F (k, ω) =

+∞∫
−∞

F (k, t′) exp (iωt′)dt′ , (2)

where ω is a temporal frequency.
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Figure 1: A. Classical models assume a processing architecture using local integration
inside small patches of the stimulus I(x, t) to compute local stimulus properties. The re-
sulting signals si(x, t) depend thus on the location of the respective patch and encode rel-
evant local stimulus features, as for example motion. Global information is incorporated
by enabling a locality-preserving interaction between local signals. The final responses
s∗i (x, t) then map the input space in a trivial way. B. The principle of constructive inter-
ference defines an alternative computational strategy. Global integrations generate struc-
tured, temporal signals si(t), which, taken individually, do not provide information about
location. When superimposing the signals in an appropriate manner, spatial information
can be reconstructed fully. Specific stimulus features can be extracted through temporal
filtering of the global signals before reconstruction.
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To compute image motion, we can filter the Fourier components temporally
with

b(k, ω,vp, t) = a(k, ω,vp) exp (iωt) , (3)

where

a(k, ω,vp) = exp [−(ω − kvp)
2/(|k|2σ2)]. (4)

Here, vp = (vp cosΘ, vp sinΘ) is the preferred (or search) velocity (Dellen and
Wörgötter, 2011), defined through a preferred motion direction Θ and a preferred
speed vp. The parameter σ determines how strongly the motion constraint equa-
tion is enforced. We use σ = 0.2 pixels/frame. With a larger σ, a wider range of
values is sampled.

Applying the inverse Fourier transform to the filtered Fourier space allows us
to return in real space and reconstruct those parts of the image that move with a
velocity vp, yielding a local response

rL(x, t, vp,Θ) =

+∞∫∫∫∫
−∞

α b(k, ω,vp, t− t′)F (k, t′)dkdωdt′

(5)

=

+∞∫∫∫
−∞

α β a(k, ω,vp)F (k, ω)dkdω (6)

with the inverse transformation factors α = exp (−ikx) and β = exp (−iωt).
Using the velocity filter, a global response can be defined in an analog manner as

rG(vp,Θ) =

+∞∫∫∫
−∞

|a(k, ω,vp)F (k, ω)|dkdω. (7)

The term global requires some further clarification. In this study, we integrate
over the entire stimulus to obtain the global response. For larger images, both
local and global responses could be alternatively computed by integrating only
over a part of the stimulus, for example by using Gabor filters (Heeger, 1988).

To illustrate the properties of the filter presented in Eq. 3, we computed the
local responses for a synthetic stimulus consisting of two squares moving with
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Figure 2: A. Schematic of the stimulus consisting of two moving squares at time t0. B.
Slice through the global Fourier spectrum. Boundaries of the velocity filters with vp = va

and vp = vb are schematically represented in red. The origin of the spectrum has been
shifted to the center. C. Reconstruction rL(x, t, vp,Θ) with vp = va. D. Reconstruction
rL(x, t, vp,Θ) with vp = vb. E. Object velocity, preferred velocity and the respective
preferred angle Θ. F-G. Global and local responses as a function of Θ as polar plots,
respectively.
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different velocities va = (1, 1) pixels/frame and vb = (−1, 0) pixels/frame (see
Fig. 2A) 2. A slice through the global Fourier spectrum is shown in Fig. 2B to-
gether with the velocity filters with vp = va and vp = vb. The respective local
responses obtained with the filters rL(x, t, vp,Θ) are shown in Fig. 2C-D, respec-
tively, demonstrating that the local properties of the object moving in the preferred
direction can be reconstructed with high precision, while objects moving in the
non-preferred direction are eliminated. Local velocity can be estimated from the
local responses obtained for different preferred velocities.

In this model, a non-causal temporal filter is used. Future space-time events
could be truncated by using a causal filter. As long as the same number of frames
(total integration time) is used in the computations, this would lead to the same
results, at least for the stimuli considered in this paper (constant motions). How-
ever, when shortening the length of the motion sequences, responses will naturally
become more ambiguous, rendering the use of additional mechanisms for disam-
biguation (as described in Section 4) even more important.

3. Results I: Analyzing ambiguous stimuli

In the following, we analyze the problem of local stimulus disambiguation in
the mathematical models presented in the previous section.

Let us study the case of a square of size 20 × 20 pixels moving diagonally
downwards in more detail (see Fig. 2E). In Fourier space, the stimulus is repre-
sented by a line oriented perpendicular to the stimulus velocity va, corresponding
to the motion-constraint line of the stimulus (as shown in Fig. 2B). A velocity fil-
ter with vp = va extracts all Fourier components which are close to this line (see
Fig. 2B, red lines for filter a), allowing full reconstruction of the object.

Let us now compute the global response for different preferred motion direc-
tions Θ for a constant preferred speed vp =

√
2 pixels/frame, as illustrated in

Fig. 2E. As shown in Fig. 2F, the largest global response is obtained for Θ =
45 deg, which is the direction of motion of the square. However, the global re-
sponse curve contains two subsidiary peaks at 45 ± 90 degs. This is because the
spatial frequency components at the intersection with the kx and ky axes of the
constraint line are attenuated due to the specific structure of the object. Responses

2Computer simulations have been performed using Matlab’s built-in functions fftn and fft2
using default conditions. Image sequences representing stimuli consisted of 20 frames of size
100× 100 pixels. The parameter Θ was sampled in steps of 5 degs.
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at 45 ± 45 degs are diminished because the component speed at these angles is
smaller than the preferred speed of the used motion filter.

We sum the local responses rL(x, t, vp,Θ) inside a small area with radius r =
3 pixels around the center of the lower contour of the square at x0 = (50, 50) pix-
els and time t0 (Fig. 2E, dotted red circle) for different motion directions Θ to
get an average of the response characteristics in the center. We obtain a strong
response for the true direction of motion with Θ = 45 deg. However, as stated
before, the spatial frequency components with ky = 0 are contributing propor-
tionally more to the reconstruction of the point than others, leading to a pro-
nounced subsidiary peak at Θ = −45 deg (see Fig. 2G). Nevertheless, the peak
at Θ = 45 deg is larger than the one at Θ = −45 deg, demonstrating that the
ambiguity problem is partly solved by the use of the principle of constructive in-
terference. This is because in the model also low spatial-frequency components,
carrying valuable information about the true direction of motion of long contours,
contribute to the reconstruction of local information when computing local re-
sponses according to Eq. 6.

We could now compute the correct velocity of the contour point by selecting
the angle for which the largest response is obtained, as it was done in Dellen and
Wörgötter (2011). However, such a solution would be rather fragile because the
difference between the two peaks is small. Noise or other factors would make this
approach fail easily. Noise can enter the system through various channels, e.g.,
image noise, failure of the underlying motion assumptions, and numerical issues
(Simoncelli et al., 1991).

By looking at the global response, we observe that the local response could be
disambiguated more robustly by multiplying it with its global counterpart, yield-
ing

r(x, t, vp,Θ) = rL(x, t, vp,Θ)rG(vp,Θ). (8)

However, this operation would affect filter responses to other objects moving in a
direction close to the global direction of motion, because the respective filters are
bound to overlap in global Fourier space.

To illustrate this, we computed the product of the filters that are selective for
different directions of motion as a function of their relative angle (see Fig. 3A,
black lines). For opposing motions, the filter responses can be considered as in-
dependent, but for small angles, the overlap is severe and cannot be neglected.

The most direct way to resolve this problem would be to transform the in-
coming stimuli such that the relative angle between their motion is increased.
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Once this is achieved, the operation defined by Eq. 8 can be safely applied. This
may explain motion-repulsion effects that have been observed in psychophysical
experiments (Marshak and Sekuler, 1979; Braddick et al., 2002). The overlap
between filters in global Fourier space should thus be predictive for the strength
of the repulsion effect, and, indeed, a similar dependency on the relative angles
has been observed in psychophysical experiments by Marshak and Sekuler (1979)
(red diamonds for subject w.m. and green circles for the average) and Braddick
et al. (2002) (blue squares), as illustrated in Fig. 3A, for angles larger than 10−20
degrees. Below this threshold, stimuli are considered identical, and no disam-
biguation, hence repulsion, is required.

For highly ambiguous stimuli, e.g., bar-with-square (see Fig. 4A, middle panel),
responses are expected to be even more affected by the overlap between motion
filters because their Fourier energies are concentrated right at the intersection point
of the filters. By measuring the overlap between filtered stimulus components, we
can provide a measure of the expected ambiguity of the response. Let us consider
a stimulus consisting of a long bar moving straight downwards and an open square
moving at an angle of 45 degrees relative to the bar (as illustrated in Fig. 4A, mid-
dle panel). With decreasing bar length, this overlap becomes smaller, as shown in
Fig. 3B (black circles). Here, the normalized overlap is plotted as a function of
the normalized bar length. Huang et al. (2008b) measured the strength of repul-
sion for two different bar lengths for the same type of stimulus (red squares). The
overlap of the filtered stimuli is predictive for the strength of the repulsion effects.
Huang et al. (2008b) also measured the strength of the repulsion effect for a dots-
with-square stimulus (as illustrated in Fig. 4A, right panel). For this stimulus, we
find a small overlap between the dots and the square (dotted black line) compared
to the long bar, which also agrees with experimental measurements (red dotted
line) (Huang et al., 2008b).

The overlap of motion filters affects the responses computed in the model.
This is demonstrated for the stimuli depicted in Fig. 4A. The square, represent-
ing the surround stimulus, is moving in all three cases with a global velocity
vG = (1, 1) pixels/frame. In the bar-with-square and the dots-with-square stim-
ulus, the lower contour of the square was replaced with a bar and a dot pattern,
respectively, moving straight downwards with a velocity of (0, 1) pixels/frame,
thus making an angle of 45 deg with the global direction of motion. The responses
rL(x0, t0, vp,Θ) in the area of the center stimuli (inside the red dotted circle) are
affected by the multiplication with the global signals, as shown in Fig. 4B-C.
Multiplication with the global responses correctly disambiguates the contour of
the translating square, but r(x0, t0, vp,Θ) wrongly suggests a local motion with
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vG in case of the bar-with-square stimulus. This is caused by the overlap of the
filters positioned at 45 and 0 degs. The dots-with-square stimulus is less affected
than the bar-with-square stimulus, because the respective initial local response is
not ambiguous (see Fig. 4B, right panel).

4. Methods II: Proposed mathematical solution

As explained above, the overlap between motion stimuli can be reduced by
applying a transformation that increases the angular distances between nearby
motion stimuli. This transformation should leave the signals belonging to the
surround stimulus unaffected, while shifting the motion direction of the center
stimulus away from the global direction. This can be achieved by translating the
stimulus I(x, t) for all times t by a distance −vG(t− t0)/2 with respect to a given
time point t0. This corresponds to a phase shift in Fourier space, yielding

F ∗
s (k, ω) =

+∞∫
−∞

F (k, t) exp [ikvG(t− t0)/2] exp (iωt)dt ,

(9)

which can be understood as a straightforward extension of the temporal filter de-
fined in Eq. 3 by a factor exp [ikvG(t− t0)/2]. Here, vG is assumed to be the
global velocity of the stimulus, which can be determined by finding the preferred
velocity for which the global response has its maximum. The velocity-shift vector
vG/2 was chosen to obtain similar repulsion effects as observed in psychophysical
experiments.

The change in absolute speed caused by the transformation can be corrected
by doubling the temporal frequency according to

Fs(k, t) =

+∞∫
−∞

F ∗
s (k, ω) exp (−i2ωt)dω. (10)

Alternatively, the preferred velocity of the filter given by Eq. 3 could be bisected.
Replacing F (k, t′) by Fs(k, t

′) in Eq. 5 (and accordingly in Eqs. 6 and 7) defines
the (shifted) response

rs(x, t, vp,Θ) = rL,s(x, t, vp,Θ)rG,s(vp,Θ). (11)

for t = t0 with t0 = 10 frames.
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Figure 3: A. The normalized and scaled overlap of motion filters in Fourier space is shown
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the most effective way to resolve the problem is to transform the incoming stimuli such
that the relative angle between their motion directions is increased, predicting repulsion
effects observed in psychophysical experiments (Marshak and Sekuler, 1979; Braddick
et al., 2002). For angles smaller than 10 − 20 deg, the stimuli can be considered identi-
cal, and no disambiguation is required. Consequently, no repulsion is observed. B. The
normalized overlap between a bar and square (see Fig. 4A, middle panel) for different bar
sizes (normalized) is shown as a function of the normalized length of the bar (black cir-
cles). The overlap (reflecting the ambiguity of the stimulus) increases with increasing bar
length, thus more repulsion would be needed to disambiguate the stimulus, which agrees
with psychophysical data Huang et al. (2008b) (red squares). Note that the red square and
the black circle at 1 are plotted at the same position.
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5. Results II: Predicting perceptual responses in the computer simulation

We will show that by changing to a reference system that is moving with
−vG/2, the motion directions of the objects can be sufficiently disentangled for
the stimuli shown in Fig. 4A.

The transformation described in Eqs. 9-11 leaves the contour of the square
unaffected, and we obtain the same response in the non-shifted case as in the
shifted case (see Fig. 4C-D, respectively). For the bar-with-square stimulus we
obtain a quite distinct response for rs(x, t0, vp,Θ) compared to r(x, t0, vp,Θ).
For example, by subtracting r from rs, a distinguished peak at −45 deg can be
identified. Similar results are obtained for the dots-with-square stimulus (Fig. 4C-
D, right panel). Based on the responses in both the non-shifted and the shifted
case, we can now discriminate between the different input stimuli.

Different ways for estimating local motion directions can be devised which
allow differentiating between motion-defined objects. For example, after sub-
tracting r partially from rs, the resulting peak can be easily identified by finding
the maximum response, yielding

Θest(x, t0) = arg{max[rs(x, t0, vp,Θ)− εr(x, t0, vp,Θ)]} ,

(12)

where ε should be chosen such that the shifted responses do not get diminished
entirely. The predicted motion direction fields computed for ε = 0.3 are shown
in the left panels of Fig. 5A-C for the three different stimuli. The corresponding
predicted directions for the center stimulus are shown as blue arrows in the right
panels. The predicted direction depends on the amount of shift introduced in Eq.9.
However, to correctly disambiguate the dots-with-square stimulus, a shift smaller
than −vG/2 would have been sufficient, as can be concluded from the results
shown in Fig. 4B-C (right panel) and Fig. 3B. Repulsion has been observed for
the analyzed stimuli in psychophysical experiments (Amano et al., 2009; Huang
et al., 2007, 2008b), and similar effects have been observed in electrophysiolog-
ical experiments (Allman et al., 1985; Xiao et al., 1995; Tanaka et al., 1986). In
an advanced system, the shifting operation should be optimized in way that min-
imizes the required amount of shift while still succeeding in disambiguating the
stimulus.

The observed shift of the center stimulus away from the global motion di-
rection of the surround is known as the motion-repulsion illusion (Marshak and
Sekuler, 1979). Visual illusions provide valuable insights into the functional
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Figure 4: Stimulus disambiguation in the computer simulation. A. Schematics of the vi-
sual stimuli. B. Local responses rL(x0, t0, vp,Θ) as a function of Θ. C. Local responses
multiplied by the global response, giving r(x0, t0, vp,Θ). D. Local responses multiplied
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be downloaded from http://www.iri.upc.edu/people/bdellen/Illusions.html.
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mechanism in our brain, and their correct prediction is an important cue when
developing models of visual function (Gregory, 1966; Martineau et al., 2009).

In this study, we restricted our analysis to the most relevant case, i.e., vp = vG,
for which the ambiguity problem and its solution is demonstrated best. Due to
the multiplication by the global response, responses at preferred speeds that do
not match any of the global motions of the stimulus are small, and thus can be
neglected in the analysis. This is best exemplified for the square stimulus. For
vp = 1 pixels/frame we will obtain a peak at Θ = 0 deg in the local response for
a point on the lower contour. However, this peak will be largely diminished when
multiplying it by the global response. The same is true for the shifted case. For
the dots-with-square stimulus, the peak at vp = 1 pixels/frame will be diminished
neither for the non-shifted nor the shifted responses because a global motion with
vG = 1 pixels/frame is present, thus being in agreement with the results already
obtained for vp = vG.

6. Discussion

In this work, we presented a solution to the problem of local stimulus disam-
biguation embedded in a motion-processing structure based on the principle of
constructive interference. By applying a novel filter to the global Fourier trans-
form of the stimulus, resembling a “stretching of the Fourier space”, the overlap of
the Fourier components belonging to the different objects is decreased, and long
contours can be successfully disambiguated by multiplying the local responses of
motion filters with their global counterpart. Motion-direction estimates computed
from the motion-filtered responses correctly predict human perceptual responses
to stimuli previously used in experiment, displaying both integrative and antago-
nistic effects (adaptive modulation), which so far have been assumed to originate
from separate mechanisms.

Could an equivalent shifting mechanism as proposed in this paper be used
to resolve local ambiguities in a model based on local integration? Let us look
at the bar-with-square stimulus again. If we translate the stimulus with −vG/2,
the bar would be moving diagonally downwards and to the left. Hence, the local
response would still be affected by the aperture problem and be locally indistin-
guishable from the contour motion of the translating square. Our answer must thus
be in the negative. Perceptual measurements clearly show that our visual system
successfully disambiguates the motion of the bar, providing strong support for a
motion processing structure based on constructive interference at the expense of
local-integration models. In the proposed framework, the different stimuli can be

14



LI

CI

20 40 60 80 100

20

40

60

80

100

 

 

-60

-40

-20

0

20

40

60

Perception

A

B

C

Θ
est

x

y

Figure 5: Left panels: Estimated local motion directions for the stimuli shown in Fig. 4.
Right panels: The prediction from our model using constructive interference (CI) (based
on a constant shift of −vG/2) is shown as a blue vector. The prediction from local inte-
gration (LI) (green arrow) is shown for comparison. The perceptually observed response
range is illustrated using shaded light blue areas (Huang et al., 2007, 2008b). The strength
of repulsion varies with subjects and stimuli, and inter-subject variability would be too
detailed to be displayed here. Integrative modulation is observed for the square stimulus
(A), while for the bar-with-square and the dots-with square stimuli antagonistic effects
are observed (B-C).
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disambiguated because low spatial frequencies can enter the computations with-
out impairing the locality of the solution, which constitutes a major difference
compared to local-integration models.

The proposed framework may further explain discrepancies between mea-
sured perceptual responses and neuronal responses in area MT that have been
observed for the bar-with-square stimulus (Huang et al., 2008b). While percep-
tual responses for the bar are clearly antagonistic, the response of MT neurons
shifted on average slightly towards the motion of the surround. When comput-
ing the weighted average of the shifted responses (see Fig. 4D, middle panel),
we observe a similar effect, whose strength may vary depending on the shift em-
ployed. Neural responses in area MT could represent this intermediate stage in our
processing stream, while the final perceptual response is derived from the whole
population.

Based on our analysis of the stimulus-disambiguation problem, we further pre-
dict that the shifting mechanism explored in this paper needs only to be employed
for small angles with the global motion direction, since the overlap of the global
filters is falling with increasing angles. This decrease matches the perceptually
measured decay of the motion-repulsion effect for large angles (see Fig. 3) (Mar-
shak and Sekuler, 1979; Braddick et al., 2002). Direction repulsion has also been
observed for transparent stimuli (Braddick et al., 2002; Benton and Curran, 2003;
Treue et al., 2000), and it has been suggested that it originates from global mech-
anisms rather than local ones (Benton and Curran, 2003), which is in agreement
with our work. In global Fourier space, transparent stimuli share a lot of properties
with non-transparent stimuli, and could be treated using the proposed framework
by allowing more than one motion to be computed for each point.

Fourier transforms have been used for motion analysis before (Watson and
Ahumada, 1983; Porat and Friedlander, 1990; Huang and Chen, 1995; Dellen
and Wörgötter, 2011). The algorithm of Porat and Friedlander (1990) uses di-
rectional filtering in the frequency domain to find dim targets. Velocity filtering in
the Fourier domain and inverse transformations have also been used to compute
image velocities (Dellen and Wörgötter, 2011). Both algorithms utilize inverse
transformations to reconstruct position information, and thus follow a processing
architecture based on constructive interference. Most other algorithms operat-
ing in the space-time frequency domain, however, derive spatio-temporal posi-
tion by confining the analysis to a small area of the visual space (Adelson and
Bergen, 1985; Huang and Chen, 1995; Fleet and Jepson, 1990; Bayerl and Neu-
mann, 2004). Phase-based techniques apply Gabor filters to the image and use the
phase of the Gabor filter response to estimate local velocity, having the advantage
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that the phase of Gabor filters is more robust to noise than, e.g., image gradients
(Fleet and Jepson, 1990; Felsberg, 2004).

Hybrid models between the different processing architectures presented in
Figs. 1A and 1B are also thinkable. For example, Gabor functions could be used
instead of using Fourier transformations (Daugman, 1988). In this case, position
would have to be derived through inverse Gabor transformations. This would al-
low eliminating information from distracting objects that are far apart.

Our work indicates that the principle of constructive interference might be
of fundamental importance for understanding visual processing in the brain. By
using constructive interference, the computation of local values can be postponed
until the end of the processing stream is reached. This satisfies the holistic paradigm
(Wertheimer, 1912; Koffka, 1935) in the sense that the solution is found by con-
sidering the entire input simultaneously, and not by combining elementary solu-
tions computed on subsets of the data. Moreover, no distinction has to be made
anymore between center and surround to explain the observed phenomenon, pro-
viding a great simplification of the receptive-field concept. Filters embedded in
this architecture could be adapted through learning mechanisms without changing
the principal structure of the system.

We finally stress that the presented work exclusively investigates the implica-
tions of computational principles of visual processing, and not explicit neuronal
models implementing such principles.
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