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Abstract— We present an adaptive sliding-mode extremum
seeker that minimizes an unknown function that is subject
to an unknown static constraint. The same algorithm can be
applied when the static constraint is replaced by a dynamic one,
provided that the dynamics possess strong stability properties.
The application and feasibility study is focused on hydrogen
consumption minimization in PEM fuel cell based systems.

I. I NTRODUCTION

Increasing demands on pollution reduction is driving in-
novation on clean energy sources. Among these, fuel cells
(FCs) are regarded as one of the most promising tech-
nologies, due to their potential efficiency, compactness and
reliability [2]. FCs are electrochemical devices that generate
electrical energy from hydrogen and oxygen, with pure
water and heat as by-products. Considering that hydrogen is
widely available and can be obtained from many renewable
sources using solar and wind energy, fuel cells represent
an attractive, feasible alternative to reduce fossil fuel de-
pendence. However, the widespread use of hydrogen as
combustible -and the resulting “hydrogen economy”- despite
its interesting possibilities, has some technological issues
to be resolved. In spite of recent advances, their relatively
high costs, improvable efficiency and reduced lifetime re-
main as major limitations. For this reason, together with
the continuous improvement of materials and components,
the incorporation of advanced control strategies embodiesa
major technological issue, in order to achieve cost reduction,
performance improvement and efficiency optimization. In the
light of these considerations, it becomes clear that in order
to optimize efficiency, hydrogen minimization problem arises
as a major challenge. Therefore, the current paper addresses
the analysis and design of optimizing supervisory controllers
for fuel cell systems. In particular, robust extremum seeking
algorithms based on the so calledsliding-mode paradigm are
considered for the case of air flow reference management vs.
stack current minimization.

Extremum seeking algorithms deal with the problem
of minimizing or maximizing a plant output with a set
of decision variables. This problem represents a class of
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widespread optimization problems arising in different control
applications.

In the proposed approach, a general extremum seeking
algoritm is first devised for a static plant. This is done by
estimating the gradient of the output and then applying a
standard steepest descent algorithm. The input and output of
the plant are differentiated, and then the gradient of the plant
is extracted with a sliding-mode adaptive estimator. We claim
that the algorithm also works for dynamic plants if the plant
satisfies some stability properties. The claim is supportedby
simulating the behavior of the extremum seeker when applied
to an FC.

The system under evaluation is composed of an au-
tonomous PEM fuel cell generation system (FCGS). The
FCGS roughly comprises five main subsystems: the air flow
(breathing), hydrogen flow, gases humidity, stack electro
chemistry and stack temperature subsystems. It is assumed
that the input reactant flows are efficiently humidified and the
stack temperature is well regulated by dedicated controllers.
In addition, it is considered that sufficient compressed hy-
drogen is available, therefore the main attention is focused
on the air management. In Fig. 1 a schematic view of
the FCGS under consideration is represented. The most
relevant components related to the FC flow system are deeply
characterized in [6].
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Fig. 1. Schematic diagram of a typical PEM fuel cell based generation
system (FCGS)



II. A DAPTIVE EXTREMUM SEEKING

A. Static case

Consider the problem of minimizing a smooth real-valued
objective function

y = h(x,u) , x ∈R
n , u ∈ R , (1)

subject to the constraint 0= f (x,u) and let us state the
following assumptions.

Assumption 1: There exists a smooth functionφ :R→R
n

such that

0= f (x,u) if and only if x = φ(u) .
Assumption 2: The functionH(u) := h(φ(u),u) is twice

continuously differentiable and there is an open intervalD

of interest, such that:

1) The inequalities

ρ1 ≤
∂ 2H
∂u2 (u)≤ ρ2

hold for someρ1,ρ2 > 0 and allu ∈ D . (Hence,H is
strictly convex when restricted toD .)

2) The set

Z :=

(

∂H
∂u

)

(D) =

{

z ∈ R : z =
∂H
∂u

(u) ,u ∈ D

}

contains the origin.
If φ andh were known, then the optimal pair

(x⋆,u⋆) = argmin
0= f (x,u),u∈D

h(x,u) (2)

could be easily found by solving

0=
∂H
∂u

(u⋆) =

(

∂h
∂x

∂φ
∂u

+
∂h
∂u

)

(u⋆) (3)

(such a solution always exists under condition (2)) and
setting x⋆ = φ(u⋆). On the other hand, the optimization
problem becomes more challenging and of greater practical
interest wheny is available (e.g., from measurements) butφ
and h are not known. To solve this problem, we suggest to
estimate∂H

∂u and feed it to a continuous-time steepest descent
algorithm

u̇(t) =−1[t1,∞)(t) · kuz(t)+ d(t) , (4)

where z(t) ∈ R is an estimate of∂H
∂u at time t, ku ∈ R is

the algorithm gain and1[t1,∞) : R → {0,1} is the indicator
function of the interval[t1,∞), i.e., we ‘turn’ kuz(t) ‘on’
only whent ≥ t1. The switching time is to be defined later
(see (12)). The termd(t) is a differentiable signal included
to ensure a persistent excitation for the estimator. It is chosen
in such a way that it satisfies the bounds

|d(t)| ≤ d̄0 and |ḋ(t)| ≤ d̄1 ,

whered̄0 andd̄1 are positive constants to be determined later.
We propose an adaptive sliding-mode estimator of the

form
ż(t) = kz sign((ẏ− zu̇)u̇)(t) , z(0) = 0 . (5)

wherekz ∈ R is the estimator gain and ˙y is obtained using
the uniform exact differentiator described in Section II-C.

Lemma 1: Suppose that ˙u(t) 6= 0 almost everywhere (a.e.)
(this is our persistence of excitation condition), letkz be such
that

kz ≥ ρ2(ku|z|+ d̄)+ δ0 , z ∈ Z (6)

for someδ0 > 0 and suppose that∂H
∂u (t)∈Z for t ≥ 0. Then,

the solutionsz(t) of the estimator (5) converge to∂H
∂u (t) in

finite time.

Proof: Notice that

ẏ(t) =
∂h
∂x

ẋ(t)+
∂h
∂u

u̇(t)

and ẋ(t) = ∂φ
∂u u̇(t), so we have

ẏ(t) =

(

∂h
∂x

∂φ
∂u

+
∂h
∂u

)

u̇(t) =
∂H
∂u

u̇(t) . (7)

Using (7) we can rewrite (5) as ˙z(t) =

kz sign
((

∂H
∂u − z

)

u̇2
)

(t). Since ˙u(t) 6= 0 almost everywhere,
we have

ż(t) = kz sign

(

∂H
∂u

− z

)

(t) a.e. (8)

Let s := ∂H
∂u − z be the sliding variable. Its time derivative

is given by

ṡ(t) =
d
dt

∂H
∂u

(t)− ż(t) =−kz sign(s(t))+
d
dt

∂H
∂u

(t) a.e. (9)

Now we can take the standard approach to prove thats(t)→0
in finite time: Define a Lyapunov functionVs(s) = s2/2 and
compute its time derivative along the trajectories of (9), i.e.,

V̇s(t) = s · ṡ(t) ≤ −|s|

(

kz −

∣

∣

∣

∣

d
dt

∂H
∂u

∣

∣

∣

∣

)

(t)≤

≤ −|s|(kz −ρ2|u̇|)(t) a.e. (10)

(with a slight abuse of notation, we have setVs(t) = Vs(s)◦
s(t)). From |u̇| ≤ ku|z|+ d̄ (cf. (4)), (6) and (10), we have

V̇s(t)≤−δ0|s(t)| a.e. (11)

Thus, the time derivative is negative. This proves that the
point s = 0 is an asymptotically stable equilibrium of (9).
To show convergence in finite time, notice that (10) can be
rewritten as

V̇s(t)≤−δ0

√

Vs(t) a.e.,

which implies that [9]

Vs(t)≤

(

√

Vs(0)−
δ0

2
t

)2

.

It follows that at the time

t1 = 2

√

Vs(s(0))
δ0

(12)

we haveVs(t1) = 0 (hences(t1) = 0).
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Fig. 2. Proof of Theorem 1

Remark 1: Instead of (12) (which requires knowledge of
s(0)), the switching timet1 can be determined online by
monitoring the errore := ẏ− zu̇ and marking the time where
e = 0 with u̇ 6= 0.

Because of the presence ofd(t), z = ∂H
∂u cannot be made

exactly equal to zero, but it can be driven to a small value
proportional tod̄.

Theorem 1: Let B := [−d̄/ku, d̄/ku] and suppose that:
1) B ⊂ Z .
2) u̇(t) 6= 0 a.e. andkz(z) satisfies (6).
3) z(t1) ∈ Z .

Then, it follows from equations (5) and (4) thatB and Z

are positive invariant sets and thatz(t)→ B as t → ∞.

Proof: Define a candidate Lyapunov functionVz(z) =
z2/2. From Lemma 1 we know that, during the sliding
motion (i.e., fort ≥ t1), z(t) = ∂H

∂u (t) so1

ż(t) =
d
dt

∂H
∂u

(t) =
∂ 2H
∂u2 u̇(t) =−

∂ 2H
∂u2 (kuz(t)− d(t)) ,

and

V̇z(t) =−
∂ 2H
∂u2 ·

(

kuz2− z ·d
)

(t)≤−
∂ 2H
∂u2 |z| ·

(

ku|z|− d̄
)

(t) .

The terms∂ 2H
∂u2 andku|z|− d̄ are positive wheneverz∈Z and

z 6∈B, respectively. Thus,̇Vz is negative wheneverz∈Z −B

and |z| decreases monotonically wheneverz ∈ Z −B. This
implies thatB and Z are positive invariant sets and that
z(t)→ B as t → ∞ wheneverz(t1) ∈ Z (see Fig. 2).

Theorem 1 suggests the following practical considerations
for designing the extremum seeker (4), (5):

1) Choose a gainku for the steepest-descent algorithm,
a constantδ0 > 0 and a strict subintervalI of D of
initial conditions foru.

2) For d(t), use a periodic signal with zero average and
amplituded̄. Choosed̄ small enough so that (a)

a) B ⊂ Z

b) u(0) ∈ I implies u(t) ∈ D for all t ∈ [0, t1] (this
ensures thatz(t1) ∈ Z ).

3) Set the estimator gain askz(z) = ku|z|+ d̄+ δ0.

B. Dynamic case

To alleviate the notation, we will now dropt from the
functions’ arguments whenever the dependence is obvious.

Consider now the problem of minimizing the output (1)
that results from the dynamic relation

ẋ = f (x,u) (13)

1This equation could also be obtained by applying the equivalent control
method [8] to (8).

Suppose we are interested in driving the statex to the optimal
equilibrium pair (2). If ∂H

∂u was known and the equilibrium
(φ(u⋆),u⋆) is at least asymptotically stable, then the optimal
value could be reached by setting

u̇ = g(u) :=−ku
∂H
∂u

(u) ,

so extremum seeking problem reduces again to the problem
of estimating∂H

∂u online.
If the solutionsx of (13) converge toφ(u) fast enough and

ẋ quickly comes close to∂φ
∂u u̇ as well, then it makes sense

to apply again the algorithm (4), (5), which we now know
works for the casex = φ(u).

To motivate our next assumption, consider a linear system

ẋ = Ax+Bu

with A Hurwitz. For each constantu, the equilibrium is given
by x = φ(u) =−A−1Bu. Let us define the error

e = x−φ(u) (14)

an let us compute its dynamics:

ė = A(e+φ(u))+Bu−
d
dt

φ(u) = Ae+A−1Bu̇ .

We know from linear system theory that the error satisfies
the bound (see, e.g., [10, Sec. 4.9])

‖e(t)‖ ≤ α exp(−λ t)‖e(0)‖+
α
λ
‖B‖ sup

0≤τ≤t
|u̇(τ)|

for some positive constantsα and λ . A similar bound can
be found for ˙e if we compute the second derivative of the
error. We have

ë = Aė−A−1Bü

and

‖ė(t)‖ ≤ α exp(−λ t)‖ė(0)‖+
α
λ
‖B‖ sup

0≤τ≤t
|ü(τ)| .

This estimate shows that the zero-input (taking ¨u as input)
response decays to zero exponentially fast, while the zero-
state response remains bounded for every bounded input. In
other words, the dynamics for the error is input–state stable.

In the general nonlinear case, the error equation is

ė = f (e+φ(u),u)−
∂φ
∂u

u̇ . (15)

Notice that, for ˙u ≡ 0 the origin e = 0 is an equilibrium
of (15), uniformly in u.

Assumption 3: There are exists positive constantsα and
λ and a classK function γ such that

‖ė(t)‖ ≤ α exp(−λ t)‖ė(0)‖+ γ( sup
0≤τ≤t

|ü(τ)|)

for all t ≥ 0, uniformly in u and u̇.
Remark 2: It follows form (4) and (5) that

|ü| ≤ kukz + d̄1 .

so the time derivative of the error will decay, exponentially
fast, to a small neighborhood of zero ifku and d̄1 are small.



Let us write the output’s time derivative as

ẏ =
∂h
∂x

(

ė+
∂φ
∂u

u̇

)

+
∂h
∂u

u̇ =
∂H
∂u

u̇+
∂h
∂x

ė

(cf. equation (7)). The estimator (5) can thus be written as

ż = kz sign

((

∂H
∂u

− z

)

u̇2+
∂h
∂x

ėu̇

)

.

Under the persistence of excitation condition we can write

ż = kz sign

(

∂H
∂u

− z+
∂h
∂x

ė
u̇

)

a.e.

or, more compactly,

ż = kz sign(s) , s = f1−z+ f2 , f1 :=
∂H
∂u

, f2 :=
∂h
∂x

ė
u̇
.

At the sliding surface,z is equal to ∂H
∂u plus an error

f2, proportional tokukz + d̄1 (cf. Remark 2) and inversely
proportional to ˙u. Since f2 can grow without bound as ˙u gets
close to zero, it is clear that it is not possible (nor desirable)
to maintain the sliding motion all times. Thus, we proceed
with a ‘heuristic’ analysis of what happens when the sliding
motion occurs and when the sliding motion is lost.

By repeating the Lyapunov analysis of Section II-A, we
can see that the estimator drivesz to the sliding surface
whenever

kz > | ḟ1|+ | ḟ2| . (16)

The time derivative off1 is not problematic and has been
address in (6). Let us write

f2 =
f3
u̇

, f3 :=
∂h
∂x

ė ,

so that we can writėf2 as

ḟ2 =
ḟ3u̇− ü f3

u̇2 .

From the sliding condition (16) and the expressions forf2
and ḟ2 we arrive at the following two possibilities:

1) u̇ is large enough. Then the sliding condition holds and
z tracks ∂H

∂u + f2 with f2 small.
2) u̇ is too small. Then the sliding condition does not hold

and z does not track∂H
∂u + f2 with f2 large.

In the numerical experiments performed so far, by setting
kz high enough, the tracking errorz − ∂H

∂u can be made
reasonably small.

C. Uniform Exact Differentiator

The time functions ˙u and ẏ can be computed with a
uniform exact differentiator [1], a differentiator based on the
generalized super twisting algorithm [7].

Let η(t) be a Lebesgue-measurable function defined on
[0,∞) and take it as the input signal. Suppose thatη(t) can
e decomposed as

η(t) = η0(t)+ v(t)

where η0(t) is the unknown base signal that we wish to
differentiate andv(t) corresponds to a uniformly bounded

noise signal. We assume thatη0(t) is twice continuously
differentiable and that the first derivative is Lipschitz with
known Lipschitz constantL > 0.

Define the error signalσ = z0 − η and construct the
dynamical system

ż0 = −k1φ1(σ)+ z1

ż1 = −k2φ2(σ) ,

where

φ1(σ) = |σ |
1
2 sign(σ)+ |σ |

3
2 sign(σ)

φ2(σ) =
1
2

sign(σ)+2σ +
3
2

µ2|σ |2sign(σ)

and k1 and k2 are constant positive gains dependent onL.
The variablez0 and z1 are the estimations ofη0 and η̇0,
respectively. Indeed,z1(t) converges exactly tȯη0 in finite-
time, with the convergence time independent of the initial
differentiation error (see [1] for details).

III. E XTREMUM SEEKING PROBLEM STATEMENT IN

PEM FCGS

A. PEM Fuel Cell Generation System

As stated in the introduction, fuel cells represent a rad-
ically different approach to energy conversion, one that
could replace conventional power generation technologies
in a wide variety of applications, from automotive and
stationary power systems to portable appliances. In par-
ticular, a proton exchange membrane (PEM) fuel cell is
an electrochemical device that converts hydrogen chemical
energy into electric power energy, without the intermediate
production of mechanical work and with water and heat
as only by-products [4], [5]. Nevertheless, improvements in
this field of technology require interdisciplinary research and
the development of new technologies. From the automation
control point of view, the natural step is to face the challenge
of designing and implementing reliable control strategies
in order to improve the efficiency of the actual fuel cell
generation systems, improving its operations ranges and
ensuring optimal performance.

With regard to models for FCGS, there are several dif-
ferent approaches that describe the dynamic behaviour of
autonomous PEM fuel cell generation systems, but only a
few are suitable for control design purposes. Among them,
one of the most complete and accurate models available in
the open literature was developed by J. Pukrushpan et al.
in the Mechanical Department of the Michigan University.
This model provides a detailed description of the dynamics
of a 75-kW-high pressure FC stack fed by a 14-kW air
turbo compressor. The system is sized to represent the high
pressure FC stack used in the Ford P2000 fuel cell electric
vehicle.

B. Nonlinear System Model

Considering that in the model presented in [6] the anode
subsystem is decoupled from the cathode subsystem and
does not enter in the air control loop, its dynamics can be
neglected and the system order is reduced by one [5].



As a result of the reduction and rebuilding work performed
on Pukrushpanet al. model, the following sixth order control
design model can be proposed [5]:

ẋ = F(x,u, t) = f (t,x)+ g(t,x,u) (17)

x ∈ R
6 ; u ∈ R ; f : R6 →R

6 ; g : R6 → R
6

with f and g piece-wise continuous ont and sufficiently
smooth onx:

x = [ωcp Psm msm mO2,ca mN2,ca Prm]
T (18)

• x1 = ωcp: angular speed of the compressor motor that
feeds the stack cathode through the supply manifold.

• x2 = Psm: total pressure inside the supply manifold,
consisting of the sum of the partial pressures of the
gases that constitute the air (oxygen, nitrogen and water
vapour).

• x3 = msm: total mass of air in the supply manifold,
consisting of the sum of the instantaneous masses of
oxygen, nitrogen and water vapour.

• x4 = mO2,ca: instantaneous oxygen mass in the stack’s
cathode channels. This state is affected by the oxygen
consumed in the reaction, the amount of oxygen coming
from the supply manifold and the oxygen mass outgoing
through the return manifold.

• x5 = mN2,ca: instantaneous mass of nitrogen inside the
stack’s cathode channels. It only relies on the incoming
nitrogen from the supply manifold and the outgoing ni-
trogen that leaves the stack through the return manifold.

• x6 = Prm: total pressure inside the return manifold,
consisting of the sum of the partial pressures of the
gases that constitute the air.

The control inputu(t) is the voltage of the compressor
DC motorVcp.

Suppose now that the control problem ofWcp regulation
is solved, for instance by the stabilizing Super Twisting
controller proposed in [3]. Then, the continuous-time steepest
descent algorithm (4) presented in section II, can be tuned to
determine the flow reference and find the optimum operating
value for each power loadPload.

C. Minimization Problem

The objective of the case study is to optimize the hydrogen
consumption of the FCGS in every operating condition,
minimizing the stack current demand under different load
conditions. Note that the consumed hydrogen in the reaction
(WH2,react ) is directly related to the stack current (Ist)

WH2,react = GH2

nIst

2F
,

whereGH2 stands for the molar mass of hydrogen,n is the to-
tal number of cells of the stack andF the Faraday’s constant
[6]. Therefore, the optimization procedure can be stated asa
the problem of minimizing the real-valued objective function

y = h(x,u) = Ist =
Pload

Vst
,

subject to the constraint ˙x = 0, wherePload is the power
required by an external load andVst is the fuel cell stack

voltage. Further details of the model, assumptions and oper-
ating conditions can be found in [6].

The system efficiency optimization can be achieved by
regulating the air mass flow entering the stack cathode. Sup-
pose that a proper low level controller ensures the reference
comburent flow, then the load demand will be satisfied with
minimum fuel consumption if an efficient flow reference
manager is designed. In addition, oxygen starvation could
be averted in order to extend the stack lifetime. To this end,
the following air flow reference is proposed based on (4):

Ẇcp,re f (t) =−1[t1,∞)(t) · kuz(t)+ d(t) , (19)

where z(t) ∈ R is an estimate of∂H
∂u at time t and ku =

4× 10−7 is the algorithm gain for the current system. A
sinusoidal ditter signald(t) was applied in order to ensure
persistent excitation for the estimator (5).

D. PEM FCGS Operation Ranges and Minimums of Hydro-
gen Consumption

The steady state map of the analysed system (static
relationship betweenWcp and Ist at different power loads)
is depicted in the following figure:
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Fig. 3. Steady-state analysis of the system performance in different load
conditions

Notice that low air mass flows implies low stack voltage
and, hence, higher stack current in order to keepPload

constant. At the same time, a higher air mass flow would
require a higher compressor current, increasingIst . Thus, if
continuity holds, there must be a minimizing value of air
mass between the two extrema of air mass flow.

IV. SIMULATION RESULTS

A. Algorithm Performance

In this section, the FCGS performance is evaluated under
the action of the extremum seeking supervisor control (19).
Then, the features of the designed algorithm are examined
through simulation tests, which aim to demonstrate its nom-
inal tracking performance. To this end, a series of power
loads (ranging from 15 kW to 40 kW) were chosen in order
to illustrate the air regulation performance in a wide range
of operation (Fig. 4).

Note that abrupt and significant changes in the amplitude
of the load demand (Pnet) were considered to test the profi-
ciency of the algorithm under exacting operating conditions.
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In Fig. 4, four different variables can be simultaneously
appreciated, the power load (Pnet), the stack current (Ist),
the compressor air flow (Wcp) and the fuel cell oxygen
stoichiometry (λO2), defined as:

λO2 =
WO2,ca,in

WO2,react

with WO2,ca,in the oxygen partial flow entering the cathode
andWO2,react the oxygen flow consumed in the reaction.

In Fig. 5 it is shown that the current optimization (and
then the oxygen minimization) is successfully achieved for
all the tested operating conditions, obtaining efficiency im-
provements up to 20 %. Moreover an adequate comburent
flow is always ensured through the stack while the load
demand is satisfied with minimum fuel consumption.
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Fig. 5. Extremum seeking algorithm test: system trajectoryon the static
map

V. CONCLUSIONS

A general extremum seeking algorithm was presented. A
feasibility study of its implementation in PEM fuel cells
hydrogen minimization was carried to assess its perfor-
mance. The algorithm evaluation has been conducted using
a benchmark model of a fuel cell system for an electric
vehicle. The analysis has established the viability of the
presented technique in fuel cells, aiming to improve its
energy efficiency.

Taking into account several features, such as the natural
time constants of the controlled system, robustness and
implementation simplicity, the extremum seeking algorithm
is shown to be a highly efficient solution for this challenging

problem, proving to be capable of robustly tracking the
optimal hydrogen consumption.

Now that the suitability of the approach has been con-
firmed, the following stage will be the development and
implementation of these algorithms in actual fuel cell plants.
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