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Abstract— A control-oriented hybrid linear model for water
transport in sewer networks is proposed as a suitable frame-
work for the computation of real-time controllers for the mini-
mization of flooding in presence of heavy-rain events. The model
is based on individual network elements (sewers, gates, weirs
and tanks) and does not rely on topological simplifications, thus
providing a better description of the hydrological and hydraulic
phenomena than in similar works. Using a generic form of
a hybrid linear model, a simple matrix-based procedure for
the formulation and solution of an optimal control problem is
also presented. This procedure is applied to the sewer network
model for the case study of a part of the Barcelona sewer
network in a receding horizon control strategy, showing the
effectiveness of the proposed control approach.

I. INTRODUCTION

Combined sewer networks carry both wastewater and
storm-water together. During low to moderate rain events,
this water is carried to wastewater treatment plants, where it
is treated before being released to the receiving environment.
However, during heavy-rain events the network capacity can
be easily overloaded, causing urban surface flooding as well
as untreated water discharges to the environment, known as
combined sewer overflows (CSO), to happen.

Cities with combined sewer networks are usually equipped
with detention tanks at some strategic points to store storm-
water at the peak rain intensity periods and later release
it at lower flow rates. The management of these detention
tanks as well as other water distribution elements such as
redirection gates plays a central role in avoiding flooding
and maximizing water treatment.

Due to the uncertain distribution of the rain inflows
to the network, global real-time control through network
monitoring and rain intensity forecasts is regarded as the
best control option, c.f. [1]. Physical models describing the
transport of water in open channels involve the solution of
partial differential equations, which makes them unsuitable
for real-time control purposes due to high computational
burden. Therefore, simple mathematical models are needed
to simulate the network behavior to compute the best control
actions at each time step.

The main contribution of this work, consists in a sewer
network model that improves the hydraulic and hydrologic
description of the network of previous works [2], [3], [4],
[5], [6], [7], while still being computationally fast enough
to be used in an optimization-based real-time control ap-
proach. The model describes the flows and volumes in each
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network element, making it closer to the physical model
than conceptual approaches based on modeling network
areas as virtual tanks [2], [4], [5]. Other specific novelties
with respect to similar models include overflow, weir flow
and flooding volume descriptions. This improved modeling
allows for better accuracy in the predictions as well as precise
quantification of the management objectives, thus becoming
a better option for any model-based control strategy than the
previously mentioned ones.

From the particular network model, a general expression
for a hybrid linear delayed model has been obtained and a
simple procedure for the formulation of an optimal control
problem (OCP) has been developed. The OCP has been
formulated and solved for the model in the case study of
a part of the Barcelona sewer network in a receding horizon
control strategy.

The paper is organized as follows: in Section II a general
expression for a hybrid linear delayed model and some
considerations on the model evaluation procedure are pro-
vided. Section III is devoted to the sewer network model-
ing approach, together with some details about its hybrid
linear delayed formulation. In Section IV the procedure to
formulate the optimal control problem from a general hybrid
linear delayed model is developed. Section V describes the
particular case study on which the model has been applied
together with some validation results. The improvement of
the presented receding horizon control approach against pas-
sive control is presented in Section VI. Finally, conclusions
of the study are given in Section VII together with some
future research lines.

II. HYBRID LINEAR DELAYED SYSTEMS

Hybrid systems allow modeling systems involving both
continuous and binary variables. These systems are defined
not only by a set of dynamic equations, but also by a
set of inequalities. If the system is properly defined, these
inequalities define uniquely the values of the binary variables
that are also involved in the dynamic equations [8].

In a delayed system setting both dynamic equations and
inequalities involve the system variables at different time
steps. In the discrete-time linear case the system reads

T∑
i=0

Mi X(t− i) = m(t),

T∑
i=0

Ni X(t− i) ≤ n(t),

(1)



where t ∈ Z is the discrete time variable and

X(t− i) = (x1(t− i), . . . , xn(t− i))>, i = 0, . . . , T,

with xj(t − i) ∈ R for a subset of indices j ∈ C ⊂
{1, . . . , n} and xj(t − i) ∈ {0, 1} for a subset of indices
j ∈ B ⊂ {1, . . . , n}. Index sets C and B are such that
C ∩ B = ∅ and C ∪ B = {1, . . . , n}. Mi, i = 0, . . . , T , and
Ni, i = 0, . . . , T , where T is the maximum system delay,
are matrices of appropiate dimensions. Discrete variables can
have a direct physical meaning but more commonly arise in
the formulation of piecewise equations of the model.

Vectors X(t − i), i = 0, . . . , T, include all system
variables, making no distinction whether they are either
state variables or controlled variables. The influence of any
disturbance variable at any time step is included in vectors
m(t) and n(t).

Given X(t− i), i ≥ 1, system (1) is to be solved for
X(t) by means of a constraint satisfaction problem (CSP,
[9]) when controlled variables are assigned a fixed value (to
use the model for simulation purposes) or by means of an
optimization problem if controlled variables are set free to
minimize a performance criterion. As will be explained in
Section IV, system (1) can be extended to solve, not only
for X(t), but also for X(t + 1), . . . , X(t + H), for a given
future horizon H .

III. SEWER NETWORK MODEL

A. Model Overview

A hybrid linear delayed model has been chosen as the
modeling framework for the sewer network description since
it efficiently deals with three main aspects of the problem.
Firstly, the presence of delays in the model is a common
element in any water transportation model. Secondly, the
hybrid approach allows to model the presence of overflows in
the network, which only occur when a given flow is above a
threshold value, thus according to a logical condition. Finally,
the linear framework is specially suited since sewer networks
usually have a high number of variables, making the systems
belong to the large-scale class.

The model describes the flows through sewers, gates and
weirs and volumes stored in tanks in a discrete time setting.
The main equations account for delay and wave attenuation
in sewers and mass balance in junctions.

The overflows causing urban flooding and the flows over
weirs are described by means of minimum and maximum
functions, which can be easily formulated in the hybrid
framework of the model.

A novel feature of the model consists in keeping track of
the overflow volume by means of a virtual tank. This volume
is stored in the tank until the overflow has finished and then
is returned to the network as an inflow to the junction where
the overflow has occurred. Variables involved in the model
are collected in Table I.

B. Mixed Logical Dynamical Systems Approach

The Mixed Logical Dynamical (MLD) systems is a frame-
work for modeling and control of systems governed by linear

TABLE I
SYSTEM VARIABLE NOTATION

Description Symbol Units Indexing

Flow entering sewers qini (t) m3/s i = 1 . . . nq

Flow leaving sewers qouti (t) m3/s i = 1 . . . nq

Volume in tanks vi(t) m3 i = 1 . . . nv

Flow under gates gi(t) m3/s i = 1 . . . ng

Flow over weirs wi(t) m3/s i = 1 . . . nw

Overflows fi(t) m3/s i = 1 . . . nf

Flood runoff flow qti (t) m3/s i = 1 . . . nf

Overflow volume vti (t) m3/s i = 1 . . . nf

Rain inflow ci(t) m3/s i = 1 . . . nc

dynamics together with switching behaviors arising from
logical statements involving the variables of the system [8].

To this end, binary variables describing the truth value of
the fulfillment of linear inequalities are defined. Using these
variables, any statement constructed using the usual logical
operators (‘and’, ‘or’, negation and implication) concerning
the truth value of linear inequalities can be reformulated as
further equalities and inequalities.

Thus, the MLD framework allows to model any system
behavior consisting in switching between different linear
dynamics depending on the different combinations of the
truth value of a set of linear inequalities. MLD systems
have been shown to be equivalent to other system modeling
formats including linear complementarity systems, extended
linear complementarity systems, piecewise affine systems,
and max-min-plus-scaling systems [10].

Further details on the particular procedure to reformulate
the model equations in the MLD from and to obtain the final
system expression (1) can be found in [11].

The values of all the parameters involved in the model
equations are obtained from simulation data as the ones that
minimize the model error, as detailed in Section V.

C. Model equations

1) Mass balance equations: For each sewer i = 1 . . . nq ,
the flow upstream is computed as the sum of the inflows at
the junction where sewer is connected

qini (t) =

nq∑
j=1

aqijq
out
j (t) +

nw∑
j=1

awijwj(t) +

nf∑
j=1

afijfj(t)+

nc∑
j=1

aqtij qtj (t) +

ng∑
j=1

agijgj(t) +

nc∑
j=1

acijcj(t).

If qi is the only outflowing sewer connected to the junction,
the nonzero a∗ij take the value 1. Otherwise they take values
in (0, 1) such that the sum of the coefficients of all the
outgoing sewers add to 1.

2) Flow equations: The flow downstream of each sewer is
a convex combination of the upstream flows at two previous
time steps. Hence, for each sewer i = 1 . . . nq

qouti (t) = ai q
in
i (t− ti) + (1− ai) q

in
i (t− ti − 1),

with ai ∈ (0, 1]. This model has been chosen because the
delay in sewers is not a multiple of the sampling time
unless it is chosen very small, which would lead to a high



number of variables in the problem to cover a reasonable
prediction horizon. By means of a convex combination of
two consecutive time steps, delays of any magnitude can be
suitably approximated.

3) Weir model: Weirs are passive flow-regulation ele-
ments that redirect part of the inflow to a sewer to a
secondary one, called a spillway, when a certain water level
is reached [12]. Since the proposed model does not include
water levels, an approximation in terms of flow is used. The
flow over a weir attached to a junction with total inflow zw(t)
is computed as

w(t) = max{0, aw (zw(t)− qmax
w )},

where qmax
w is the inflow value at which water starts flowing

through the spillway. As mentioned before, the flow over a
weir does not actually depend on flow values but on water
level, thus it is observed in data obtained from a complete
physical model simulator that flow values at the main sewer
can reach values greater than qmax

w . This fact is suitably
approximated by the introduction of parameter aw ∈ (0, 1).

4) Overflow model: Overflows are defined in junctions in
a way completely analogous to the weir flow:

f(t) = max{0, af (zf (t)− qmax
f )},

where zf (t) is the total inflow to the junction and qmax
w is

the inflow value at which overflow starts. Again, af ∈ (0, 1)
is introduced to better approximate the fact that the outflow
can be higher than qmax

f .
Although overflows could be defined in every network

junction, it is better to define them only at those prone to
suffer from overflow events. This junctions can be easily
determined from simulation data. Avoiding the definition of
overflow variables at those junctions where overflows are
very unlikely to occur improves the model computational
speed since it is strongly dependent on the amount of binary
variables, specially in the optimal control case.

5) Flood runoff model: A novel feature of the proposed
model consists in keeping track of the volume that goes
out of the network through overflows to let it return to the
network when the overflow event has finished. To this end,
the overflow in a junction f(t) is stored in a virtual tank
with volume vt(t) using

vt(t) = vt(t− 1) + ∆t
(
f(t− 1)− qt(t− 1)

)
,

with qt(t), the emptying flow defined as follows:

qt(t) = min

{
max

{
0, bf (qmax

f − zf (t))
}
,
vt(t)

∆t

}
.

The tank can never provide more flow than that which
would empty it in a single time step (i.e. vt(t)/∆t), thus
the minimum is applied. If there is enough volume available,
the tank empties at a rate bf proportional to the difference
between the overflow threshold qmax

f and the inflow zf (t),
provided this difference is a positive number. If bf = 1 the
tank empties as fast as possible making the outgoing sewer at
the junction have a flow value qmax

f . Other values 0 < bf < 1
let the tank empty at slower rates to better fit simulation data.

IV. THE OPTIMAL CONTROL PROBLEM
The Optimal Control Problem (OCP) associated with

system (1) consists in determining which values for the
controlled variables minimize an objective function that
quantifies performance of the system according to its dynam-
ics. It is assumed that reliable predictions for the disturbance
variables of the system are available at times t, . . . , t + H .

For future time steps, system (1) reads
T∑

i=0

Mi X(t− i + k) = m(t + k),

T∑
i=0

Ni X(t− i + k) ≤ n(t + k).

Thus, the dynamics of the system for X(t), . . . , X(t + H),
are described by coupling the above system for k = 0 . . . H .
The resulting system can be written in compact form as

M1X (t) =M2X0(t) +M3(t),

N1X (t) ≤ N2X0(t) +N3(t),

with

X (t) = (X(t + H)>, . . . , X(t)>)>,

X0(t) = (X(t− 1)>, . . . , X(t− T )>)>,

and

M1 =


M0 M1 ... ... MT

. . .
. . .

M0 M1 ... ... MT

M0 ... ... MT−1

. . .
...

M0 M1

M0


H + 1 blocks,

M2 = −


MT

MT−1 MT

...
...

. . .
M2 M3 ... MT

M1 M2 ... MT−1 MT




H + 1 blocks,

M3(t) = (m(t + H)>, . . . ,m(t)>)>,

and analogous expressions for N1, N2 and N3. For the
particular shape of these matrices it has been assumed that
H > T , that is, the prediction horizon is bigger than
the largest delay in the system. Although this condition is
not necessary to formulate the OCP, it is a common and
reasonable assumption since it allows to take into account
the complete system dynamics in the predictions implicitly
made by the optimizer.

Finally, the OCP at time step t is formulated by adding all
dynamics and MLD inequalities of the system as constraints
of an optimization problem of the form:

min
X (t)

J(X (t)) = c>X (t),

s.t. M1 X (t) =M2 X0(t) +M3(t),

N1 X (t) ≤ N2 X0(t) +N3(t),

Aeq X (t) = beq(t),

Aineq X (t) ≤ bineq(t).

(2)



In this case, a linear function has been used and the cor-
responding optimization problem becomes a Mixed Integer
Linear Program (MILP). More generally, a quadratic func-
tion could be considered and the corresponding optimization
problem would become a Mixed Integer Quadratic Program
(MIQP). Both the MILP and the MIQP versions of the OCP
can be solved by using specialized optimization software.
Notice that the number of discrete variables depends on
the number of overflow points and weirs in the network
and these are only present in small quantities. Therefore,
the resulting optimization problems can be solved in short
computing times.

Notice, also, the addition of further equalities, Aeq X (t) =
beq(t), and inequalities, Aineq X (t) ≤ bineq(t). These are
any other additional constraints to be added to the system
to improve its behavior. Typical ones include bounds on the
controlled variables due to physical limits and bounds on its
variation rates, to ensure smooth control actions.

V. CASE STUDY AND MODEL VALIDATION

To validate the model and test the formulation approach
for the OCP presented in the previous sections a part
of the Barcelona sewer network has been studied. This
network, spanning an area of approximately 26 km2, has
proven especially representative of the overflow and CSO
phenomena. Full information of the network is available
thanks to the data provided by the company responsible of
its management CLABSA (Clavegueram de Barcelona S.A.).
The company has also provided a full implementation of
the network in a physical model-based simulator of sewer
networks (MOUSE, [13]). This implementation has been
used to carry simulations to get the data necessary for model
calibration and validation.
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Fig. 1. Diagram of Riera Blanca sewer network after simplification.

After a mild network simplification consisting in con-
sidering junctions where more than two sewers meet (thus
considering all the linear trams as single sewers) or junctions

where rain inflow is defined, the network consists in 147
sewers regulated by the presence of 2 detention tanks, 3
weirs and 10 gates. After simulation using several rain events
of different intensities, overflow has been considered in 26
junctions. A sample time of ∆t = 1 min was chosen and a
maximum delay of T = 9 min was obtained from simulation
data.

The network converges at its downstream end to a sin-
gle big sewer with an in-line detention capacity of about
32000 m3, which has been modeled as a tank for optimal
control purposes, controlled by a gate at its downstream
end. The outflow of this sewer is directed to a Wastewater
Treatment Plant (WWTP) with an inflow capacity of 2 m3/s
and all the flow above this value is released to the sea as
CSO.

A. Rain Events

Ten rain events of different durations and intensities have
been used for parameter calibration: five real-rain events
and five designed ones. After some tests and trial-and-error
experiments, a final set of parameters has been determined
as the one providing the best fits. The five real-rain scenarios
have been used for validation.

Rain data is provided to the simulator as pluviometer data
and is transformed to flow entering the network at some of
the junctions by means of a dynamic model (Kinematic Wave
Model B, [14]) that makes use of the physical characteristics
of the runoff catchment associated to the junction.

B. Model Validation

To validate the model, the following expressions for the
error have been used. For each sewer define ēi, i = 1 . . . nq,
as the mean value of the accumulated absolute error over the
simulation horizon H

ēi =
1

H

H∑
t=1

|qini (t)− q̂ini (t)|,

where q̂ini (t) are the flow values computed by the simulator.
To obtain a description of the overall network behavior, the
mean and the maximum of these errors are used as indicators:

E1 =
1

nq

nq∑
i=1

ēi, E2 = max
i

ēi.

Table II shows the results obtained for the five real-rain
events together with its duration H in time steps.

TABLE II
MODEL ERROR

Episode E1 E2 H

26-08-2002 0.082 1.115 383
17-09-2002 0.073 0.828 633
09-10-2002 0.112 1.023 864
29-01-2006 0.063 0.766 658
15-08-2006 0.090 1.073 539

As expected, the model accuracy deteriorates as the sim-
ulation time increases due to the cumulative effect of the



error. This fact is shown in Table III for the two most intense
episode, which will be later used to test the OCP approach.

TABLE III
MODEL ERROR FOR INCREASING SIMULATION TIMES

H
09-10-02 15-08-06

E1 E2 E1 E2

30 0.017 0.080 0.013 0.082
60 0.042 0.531 0.035 0.216
90 0.043 0.415 0.092 1.046

120 0.105 1.317 0.104 1.193

It can also be seen that the error increases in the sewers
of the downstream part of the network. This is mainly
due to two reasons: first, the error from all the upstream
sewers accumulates. Secondly, the sewers in this part are
bigger and of lower slope and the nonlinear effects of open
channel flow become more dominant, making the linear
approximation less accurate. Figure 2 shows an example
of this phenomenon, with flows as computed by MOUSE
simulator and the proposed model.
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Fig. 2. Flow in sewers as computed by MOUSE simulator and the presented
model for an upstream sewer (qin56) and a downstream one (qin141).

VI. RECEDING HORIZON CONTROL RESULTS

The three main objectives of the network management
consist in:

1) Avoid overflow in urban areas.
2) Avoid CSO discharges to the sea.
3) Maximize WWTP usage.

Each individual objective has been translated into its corre-
sponding objective function for problem (2) as

JOF (X (t)) = c>OF X (t),

JCSO(X (t)) = c>CSO X (t),

JWWTP (X (t)) = −c>WWTP X (t),

by summing up the corresponding system variables. Notice
that the WWTP volume is to be maximized, thus the neg-
ative sign. Besides this three single objective functions, the

following two multi-objective ones have been considered:

J1 = JOF + JCSO,

J2 = JOF + JCSO + 10−1 JWWTP .

This multi-objective functions have been chosen to study
whether the different management objectives compete among
each other or, otherwise, cooperate to finally obtain a better
overall network performance. The weights for each objective
have been chosen by a trial-and-error procedure taking into
account that, as a management decision, overflows and CSO
discharges are regarded as more important than WWTP
usage. Further tuning techniques regarding these weights are
out of the scope of this paper.

The receding horizon control simulation of the network
has been carried as follows: at time t = 1 the optimal control
problem is solved for a prediction horizon of H = 30 min
(the estimated time for water to travel along the whole
network). Since the optimal control problem solves for both
the control actions and the network dynamics, the variables
corresponding to the first five minutes of the event are kept,
and the initial conditions X0 are updated to solve the problem
again at time step t = 5. The whole procedure is repeated
solving the optimal control problem for a prediction horizon
of H = 30 every five minutes and keeping only the part
of the solution corresponding to the first five minutes of the
optimal result to build the overall solution.

The optimization problems corresponding to a prediction
horizon of H = 30 are composed of 5460 continuous vari-
ables and 690 binary variables together with 4830 equality
constraints and 17160 inequality constraints. All problems
have been solved using CPLEX

TM
v12.4 [15] MILP solver

with standard settings, available thanks to IBM Academic
Initiative [16].

The results of the receding horizon procedure applied to
the two most intense real-rain episodes available together
with the results obtained with the passive/no-control ap-
proach implemented in the simulator, consisting in keeping
all gates at fixed positions, are presented in Table IV. Since
the real control of the network is performed by expert
operators on the basis of historical and simulation data, no
results from other global control strategies are available for
comparison.

TABLE IV
RECEDING HORIZON RESULTS

Episode Objective
Overflow

[ × 103m3]
CSO

[ × 103m3]
WWTP

[ × 103m3]

09-10-02

Overflow 0.44 (-97.4%) 401.41 (-19.6%) 0.00 (-100.0%)
CSO 0.44 (-97.4%) 285.97 (-42.7%) 169.03 (+110.2%)

WWTP 0.44 (-97.4%) 400.83 (-19.7%) 144.40 (+79.6%)
J1 0.44 (-97.4%) 286.06 (-42.7%) 139.18 (+73.1%)
J2 0.44 (-97.4%) 283.02 (-43.3%) 190.88 (+137.4%)

No Control 16.76 499.15 80.41

15-08-06

Overflow 0.29 (-94.2%) 72.90 (-18.8%) 0.00 (-100.0%)
CSO 0.29 (-94.2%) 6.11 (-93.2%) 105.44 (+195.3%)

WWTP 0.29 (-94.2%) 61.50 (-31.5%) 55.22 (+54.7%)
J1 0.29 (-94.2%) 6.02 (-93.3%) 46.82 (+31.2%)
J2 0.29 (-94.2%) 4.39 (-95.1%) 112.34 (+214.7%)

No Control 5.06 89.82 35.70



Several interesting features of the receding horizon strat-
egy can be stated from these results. First, it is worth noticing
that the proposed receding horizon strategy, although based
in solving optimal control problems, does not provide an
optimal performance along the entire simulation horizon.
Since the decisions are made at each time step based on rain
inflow information of a limited time window, it can happen
that minimization of a single objective provides worse results
than the minimization of another objective function and,
in fact, this is the case for WWTP maximization. This is
because, the optimal WWTP usage for the short horizon OCP
is achieved by means of high flow rates at the downstream
end of the network. Due to the limitation of 2m3/s at the
WWTP, most of this flow is directed to the sea as CSO, thus
leaving the network and not being available for treatment
at future time steps. On the other hand, single or com-
bined minimization of the CSO objective takes advantage
of WWTP usage while retaining the water in the network
for future treatment, providing better results for both CSO
minimization and WWTP maximization.

Secondly, notice that overflows are always minimized, no
matter which objective function is used. Overflows occur
in the middle part of the network, where flows from up-
stream parts converge, but sewers are not as big as in the
downstream end. The proper management of the redirection
gates and detention tanks helps achieving lower flow values
at this part of the network, reducing or avoiding overflows.
As a consequence, flow values at the downstream end are
also lower, which contributes avoiding CSO discharges and
maximize WWTP usage. Thus, overflow minimization is
always beneficial for the minimization of the other objec-
tives. This fact explains why combining the minimization of
overflow and CSO objectives in the multi-objective function
J1 provides almost the same results as minimizing each one
individually: the two objectives are not in conflict.

Finally, it can be seen that objective function J2 provides
the best overall results. Thus, it can be stated that the
three objectives, when used together, contribute to an overall
performance improvement. According to the previous discus-
sions, objective function J2 takes advantage of the benefits of
the combination of the CSO and WWTP objectives while still
obtaining minimal overflow values. Moreover, the presence
of the WWTP term in the objective function forces the tanks
to empty after the rain has ceased so that the volume stored
in them can be treated, which is not the case for multi-
objective function J1. This is a very important feature since
it helps finishing the rain event with empty tanks, which is
very desirable in case rain starts again.

VII. CONCLUSIONS AND FUTURE WORK

This paper has proposed a control-oriented modeling
framework suitable for the design and implementation
of optimization-based real-time controllers. The presented
model, optimal control problem and receding horizon ap-
proach conform the preliminary steps towards a model
predictive control problem formulation. The model provides
a proper description of the network dynamics, since flows

at any sewer are computed, and can be applied to any
network for which detailed physical data is available. It has
proven to provide a good trade-off between precision and
computation speed, thus becoming a suitable model for a
predictive control approach. The optimal control problem can
be easily implemented using the matrices of the system and
the resulting OCP can be solved in real time.

Future work includes a closed-loop real-time implementa-
tion against a physical model-based simulator using on-line
calibration techniques, model adaptation to the intensity of
the rain scenarios to better approximate the sewer delays and
tuning of the objective functions. Another important research
line is to develop more accurate models for big sewers with
low slope controlled by a gate at its downstream end, since
this kind of sewers show strong nonlinear features, which
are not properly approximated by linear models.
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