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Abstract— In this paper we present a novel robot navigation
approach based on the so-called Social Force Model (SFM).
First, we construct a graph map with a set of destinations
that completely describe the navigation environment. Second,
we propose a robot navigation algorithm, called social-aware
navigation, which is mainly driven by the social-forces centered
at the robot. Third, we use a MCMC Metropolis-Hastings
algorithm in order to learn the parameters values of the method.
Finally, the validation of the model is accomplished throughout
an extensive set of simulations and real-life experiments.

I. INTRODUCTION

Nowadays, robots are expected to interact naturally in tyg
ically human environments. Therefore, urban robots requirt

some basic tools in order to safely being deployed in social

environments and accepted by people. Ec?l.)c:)LtI Ligaal Robot Navigation: Dabo robot navigating in the Barcelona
In this paper, we propose a novel robot social navigation

for both indoor and outdoor environments. In order to modq}ina”y

the social interactions, we use the Social Force Model (SFM) 4 dynamic obstacles [13], [14]. While all of these algo-
introduced by Helbing [1]. Specifically, this work preseats jhms may be used to generate varying degrees of safe and
powerful scheme for robot's human-aware navigation basgge tive obstacle avoidance, none of them explicitly acto

on the social-forces concept. Moreover, we introduce a ney; he pre-established social conventions that people use
metric, inspired in the classical definition of mechanlca{,\,h(:)n moving around each other.

work: the social work This metric serves to evaluate the A number of methods have been developed to allow

havigation pgrfo_rmapce ina sougl manner. ] . robots to navigate around people in specific, typically non-
Robot navigation is a mature field of robotics; there exis eneralizable tasks. Some of these tasks include standing
many works that demonstrate that robots are able to navig €line [15]; tending toward the right side of a hallway.

?nt cha{!enging envir:onments [2]'. l—éowgver, mck)rg socia![- articularly when passing people [16]; and approaching peo
glera(\jc ve ;ptprot_aﬁ E.S lgre rtehqli;re 3 jr Worth IS Erea le to join conversational groups [17]. Museum tour guide
ased on Fotential Field methods [3]. [4] as they €€P Bhots are often given the capability to detect and attempt t
great synergy with the social force model, but focusing Ol ndle people who are blocking their paths [2], [18], [19].

Mome researchers have begun researching how a robot might
adapt its speed when traveling besides a person, but the
human motion modeling problem. P P J P y

. . . . have obtained mixed results, even in controlled laborator
More recent publications, like [7] deal with urban environ-, y

! . settings [20].
ments and complex environments, but they consider persons

. L Safety and reliability are key factors to the successful
as obstacles while [8] plans a robot navigation in h|gh|¥ . . )

. ntroduction of robots into human environments. In most
crowded environments.

Because a mobile robot must be able to avoid obstaclggumes.’ safety is assured bY preventing humans from. ap-
. . L . . proaching the robots. But said methods are rendered inef-
in the environment where it is working, many different

) : fective whenever the robot is designated to directly assist
algorithms for obstacle avoidance have been developed. S . . o
. : Uuman individual. In [21], the notion of safety is studied in

Often, dynamic obstacles are handled only in a locall

. . . etail with respect to all relevant aspects of Human-Robot
reactive manner, as static (non-moving). Some works that do

account for vehicle kinetics include the Curvature Velpcit mlira'::r?eon'resent aper. a novel robot social naviaation
Method [9] or the Dynamic Window Approach [10]. Other P paper, 9

. . . . approach based on the so-called social-forces model is in-
algorithms consider obstacles moving over time [11], [lz]t'r[c))zuced [1]. A model capable of navigating in crowded

Work supported by the Spanish Ministry of Science and Intiomaunder ~ €Nvironments in an acceptable social way is presented.
project RobTaskCoop (DPI12010-17112). " In the remainder of the paper we start by introducing the
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several approaches consider both vehicle dynamic

from the learning point of view [5], [6], shed light into the



presents robot’s social-aware navigation, the learningsof Dest.2
parameter and a novel metric to evaluate #oeial work
Results and conclusions are presented in sections V and VI
respectively.

Il. SoCIAL-FORCEMODEL

In order to achieve a model capable of represent the
interactions between a pedestrian and a robot, we were
inspired by works of Helbing [1] and Zanlungo [22]. Their
main contribution is the idea that changes in behavior can
be explained in terms of social fields or forces.

Formally, this approach treats each pedestpianith mass Fig. 2. Diagram of the social forces corresponding to the persom;.

m; as a particle abiding the laws of Newtonian mechanicsThe blue arrow represents the force aiming to a destinationttzer orange
arrows represent each of the different kinds of interacfmmes: person-

person, object-person and robot-person. The summation dieaflorces is

T 1 0 At 0 T %ﬁ 0 represented as the black arréwy.
2
Y _ (00 Atll y + 0 ATt [ A ] peoplep;, by static obstacles in the environmentor the
Uy 00 1 0} v At 0 |l oy robotr. A diagram of the social forces corresponding to the
Uy Jp 100 0 Loy ], [0 At M personp; is plotted in Fig. 2.
where(x,y) is person’s position(v,, v, ) is his/her velocity Fint _ Z fint 4 Z fint | g int )
7 1, 7,0 7,7

and (a.,y.) is the acceleration.

Formally, the social forces model assumes that a pedestrian , . )
p; With massm; tries to move at a certaitesired speed? in where, P is the set. of people moving n the environment
a desired directiore;, i.e., with desired velocity? = v? e,. where the human interacts ar@ is the set of obstacles.
The desired velocity’s direction is given by a vector paigti These forces are modeled as:
from the present position of the persgrto the next subgoal

g,, where the speed is the one at which the human feels more
comfortable to walk.

Hence, the basic equation of motion for a pedestrian f§€réq € P U O U{r} is either a person, an object of the
given by a social force term: environment or the robo#d, and B, denote respectively the

strength and range of interaction foreg, is the sum of the
d v;(t) radii of a pedestrian and an entity andt ; = r; — rg. In
dt order to calculate the Euclidean distance betwegeand the
and describes the movements of the pedesrjaover time.  €ntity ¢, humans and objects are assumed to be of circular
For the sake of simplicity, we will valuer; as the unity for Shape with radiir; andr,. The parametersl,, B,, d, are
all the persons considered. defined depending on the nature of the object (person, robot

A person wants to keep his/her desired velocity througfr obstacle). . . _
the steering force,f,%°*, but is also influenced by others Given the limited field of view of humans, influences

pedestriang;, f"!, by obstacles,f,:"* and, in the present might not be isotropic. This is formally expressed by sa@alin

(VA 0 © . . . . . .
study we model the robot interactio,”™. The resulting the interaction forces with an anisotropic factor depegdin
’ on ¢, , betweenv; andd; ,

force F; governs the trajectory described by the target

JjEP 0€0

) d;
f;?;t — Aqe(drdi‘q)/Bq .4 (6)

di g

m; = Fi(t) )

1+ cos(pi q)
L

Below, the description of each component & is pre- where ) defines the strength of the anisotropic factor,
sented. Assuming that pedestrian tries to adapt his or her

velocity within arelaxation timek;*, f,7°* is given by: c0s(@iq) = —Nigq- € (8)

Fo gl p @ wipig) = (A4 1=

§ goal _ k(P — ) (4) The termn.m is the _normalizeq veptor pointing from g to
‘ e personp; which describes the direction of the force.
The relaxation time is the interval of time needed to reach All these forces are used to define robot's motion, and
the desired velocity and the desired direction. furthermore, we combine the people tracker with the pedes-
Furthermore, repulsive effects from the influences of othdrian dynamics model to obtain more realistic human motion
people, obstacles and robot in the environment are describgredictions.
by an interaction force/"t. This force prevents humans We consider three kinds of interaction forces: person-
from walking along their intended direction, moreover, itperson, person-obstacle and person-robot. The first and the
is modeled as a summation of forces either introduced tsecond interactions has been studied in previous papers



to a destination and reacting to obstacles and people. Fur-
thermore, we believe that a more humanized navigation,
in the sense that the robot responds to the SFM, will
highly increase the acceptance over pedestrians, due to the
similarities between the robot behavior and the expected
e e—————9 behavior of another pedestrians.

To this end, we propose a novel approach to the robot
navigation issue, called social-aware navigation, uriddeds
as an instantaneous reaction to sensory information, rdrive
by the social-forces centered at the robot. More precisely,
we aim to obtain a short-term goal-driven robot navigation
ruled by the SFM.

Thereby, it is mandatory to clearly formulate all the
social-forces (Sec. Il) intervening in the social-awareiga:
tion approach. The following equations are straightfodvar
derivations of the egs. 3-7. The robot destination is coeqgbut
in the global planning and the force that drives the robot
towards it:

fooul — (V0 — v,) (9)

r,dest

Fig. 3. Map of the Barcelona Robot Lab. Red dots are the set of Once the robot reaches the destination subgoal, the next
destinations that describe the navigation environment. . . .
destination calculated in the global planner becomes the ne

like [1], [22], [23]. The person-robot interaction parawet destination subgoal. The interaction forces due to the pede
(A, ]_éT )\; d,,} were obtained in [24], specifically for trians are the repulsive forces that each person generates t
our robotic plfé\tfoz;m. ’ the robot, and they are defined as follows:

I1l. GLOBAL MAP Frer=>" fo (10)
JjEP
In this section we propose how to structure the environ-

ment in order to build a useful map for a social robotigvhere the forcesf,”;" represent the interaction between the

navigation. To this end, and using the Barcelona Robot Idpedestriary and the robot:

(although it is generalizable to any other environment), we _

have obtained manually a set of destinations that completel fint = Appeldro=drna)[Brogy(p, 5 A,p) (11)
describe the navigation environment. We consider theviallo
ing hypothesis: a set of destinations, similar to those ggo

erplal_ned_ n Sbec. I, may be ?ufﬂment to describe a glob orrespond to the person-to-robot interaction, and in iggne
planning in urban environments. are dependent of the robotic platform used.

C_)th_er clas_sica_l naviggtion works Iike_ [3] and [4] proposed Correspondingly, the interaction between robot and obsta-
a similar navigation environment described by attractOns:. cldes is modeled as:

approach is not novel in this aspect, however, once obtaine
a set of these destinations in a urban environment, we will E obs _ Z § int (12)
be ready to make use of the social forces to make the " 70

hich is the formulation of the spherical force (Eq. 6)
ﬁsing the parametefsd,,,, Bpr, A\pr, dpr }. These parameters

robot navigate in a social way, which is one of the main _ oc0
contributions of the present paper. where f,">* is obtained following
The implementation of the global planning is a straight- )
forward approach using a search algorithm (in our work we £, = Aypeldromdno)/Bro (o, 5, Aro) (13)

one Do o e S o noer (ap depcred . i, 1,1 SHEGI paAMBISeh. B b ) e
" “Sponding to the interaction person-obstacle.

Similarly as presented in section Il, repulsive effects

from the influences of other people and obstacles in the

Previously, we described a general social interaction thodenvironment are described by an interaction force which is

based on social-forces (Sec. Il). In this section, we wila sum of forces either introduced by people or by static
provide the formulation to build an unified navigation frame obstacles in the environment.

work using the following idea: the robot is considered as The combination of the forces described above, which

a social agent moving naturally in human environmenticlude goal and interacting forces, describes the resulta

accordingly to the Social-Force Model, and thus, aimindorce governing the robot movement:

IV. SOCIAL-AWARE NAVIGATION



: Algorithm 1 MCMC-MH Learning
— \\ B ‘ 1: Initialize 6
‘/\ @ 2. for i=0to N—1do
\R_o_b—oL xk 3:  Sampleu ~ U y
’ goal .
E ’ 4. Sampled* ~ q(6*|6™)
T 50 if u< A0, 0%) :min{l,%} then
o Y o - 6 o+ = g*
# 7. else
Person Pers: 8 gli+1) — g(i)
) P 9: endif
10: end for
Fig. 4. ‘Robot’s Social Forces: Forces applied to the robot while
accompanies a person. In this case, we will propose a cost function that takes
vl . into account the social-forces intervening during the tobo
Fr=affl, +7FF +dF" (14)  navigation. As stated before, we aim to obtain a social robot

Once calculated the resultant social-force, the robot b0del capable of dealing with navigation issues in a more
haves consequently to these external stimuli and propagafman-oriented manner. Consequently, we make use of a
its state according to this force value. variation of the classical definition of work applied to sdei

Additional constraints are taken into account. All thosd0rces, similarly to thesocial work proposed in [25]. The
robot propagations which result in a collision with an obsta@Mount ofsocial work corresponding to a time stefit at
cle, are forbidden. Current robot maximum velocity is also 4M€ *:
constraint and it depends on the robot navigation statestwhi
is a function of the proximity of persons: W(t,0) = W,(t,0) + Z Wi (t,0) (16)

i€P
sajJ ety if d’r’p < sa J ety H H H
Usa fety = wlerp) “df ty 15 which represent theocial workgenerated. It consists of the
Veruise If /‘safe.ty 71”(@”") < Msocial (%) total work done by the roboW,.(¢,0) = F,As,. and the
Vfree  Otherwise summation of the work done by each pergon the scene,

Thewsq ety is the maximum velocity the robot can achieveenforced by the robolV; (,0) = £\ As;.
when at least one person is inside its inner safety zone.Although the initial conditions can be identically copied
We have proposed aocial distanceto define this region throughout all simulations, given the interactive natufe o
asd, ,w(y,,), similarly as described in Sec. II, as a metricthe approach, the parametérsalter the outcoméV () =
of the relative distance between the robot and a pedestrian; W (¢, 0) of each experiment (random variable). That is
and an asymmetric factor deforming the distance measuifée main reason for considering as an appropriate method for
w(py,). This condition also corresponds to timmer robot estimating the navigation parameters stochastic optiiniza
navigation state. On the other hand,,.;s. is the cruise Monte Carlo methods are especially useful for simulating
velocity when someone is inside its social safety zone arfghenomena with significant uncertainty in inputs and system
Vjree IS the maximum robot velocity when there are nogwvith a large number of coupled degrees of freedom. More
people inside its safety zone. The navigation states asteaci concretely, we have implemented a Markov Chain Monte
to this configurations are theocial robot navigationand Carlo Metropolis-Hastings (MCMC-MH) algorithm to find
the free robot navigationcorrespondingly. These velocities the best set of, implementing the Alg. 1.
guarantee that the robotic platform is able to stop accgrdin The termq(6*|0(")), appearing in the algorithm descrip-
to the resulting forces, before collision occurs. tion, represents a Gaussian sampling for each parameter,

The most interesting part of the system so far, resides irentered a¥#) and a determined variance for each of the
the fact that the approach proposed is able to navigate neariables, which are independent. For stability reaseisa
moving persons (dynamic environments) and succesfullsmall value that guarantees no singularities in the algorit
reach its goal. The following section discusses the prageduspecially when thesocial workcalculated may be zero.
to obtain the value of the parametds,~,d}. Then, we obtain the bestparameters as follows:

v =

A. Parameter Learning

The computation of the weights of the system parameters, 0 — arg min EP(@){Z W(t,0)} (17)
defined a¥) = {«,~,0}, is a mandatory step, prior to the 6

deployment in real environments in a successful and safe
way. To this end, we require an initial estimation to learn Note that the outcome of the simulations is averaged using
the magnitude of thé parameters. the expectationZp 4 {}.



Fig. 6. Real experiments. Top some pictures of the social-aware
navigating in the BRLBottom: their corresponding sensor information and
relevant information in the robot GUI.

Fig. 5. Simulation experiment: Simulation environment to obtain the 0.35

parameters. A reduced urban environment and a set of virtuzndical

persons are used. The outcome of each simulations depends omét I Social-Aware

parameters, and thus we required a great number of them. osr [ Teleoperated - 1
V. EXPERIMENTS 0.25F i

A. Robot and environment description £ oal |

In order to conduct all the experiments and to test thi
approach presented, we have used two twin mobile Servie@ oish 1
robots developed for the URUS project [7], called Tibi and
Dabo, designed to work in urban pedestrian areas and imtere o1- 1 8

with people.
They are based on a two-wheeled Segway RMP200 diffe 0951 N ]
ential platform equipped with two Hokuyo UTM-30LX 2D i+
laser range sensors used to detect obstacles and people. ° Total Work Persons Work Robot Work
The experimental area where the experiments are con-

ducted is the BRL (Barcelona Robot Lab), an outdoor urbafg- 7- Experiments results. Average and standard deviation of the

. . . social workwhile performing real experiments. Green bars correspond to
envllr\onrjnents located at the North Campus of the pmyersn social-aware approach and yellow bars correspond ttetéeoperated
Politecnica de Catalunya (UPC). The BRL (map in Fig. 3ppproach, as a comparison to the proposed method.
is a large section of the campus that was outfitted as alg ted in th . . d duri I . ¢
experimental area, covering over 10.000rSome pictures stated In the previous section, and during afl experiments,

of the BRL can be seen in Fig. Bp as well as pedestrians th?:’e _so?al-awar_e patrametgrf (rjernamed unch??ﬁedd ired
during the robot navigation. single experiment consisted in a query of the desire

goal to the social-aware navigation and the outcome of the
B. Parameter Learning using simulation robot navigation corresponds to the path executed in a urban

] ] ] ] ) environment with multiple pedestrians and static obstacle
The synthetic scenario used during the simulation step e set of experiments were carried out during a lapse

depicted in Fig. 5, as a simplification of a urban environmengs time equal to two hours, sum in total 20 queries to
The studied environment consists of static obstacles ard MYeach destinations within the BRL (see map in Fig. 3). Al-

tiple people modeled as dynamical obstacles following thg,ost all navigations commands resulted in goal succegsfull
SFM, quite similar to a real urban dynamical environment.achieved, except for some problems experimented in narrow
The results of the MCMC-MH optimization, explained hassages, were oscillatory problems were detected. Ir6Fig.
above in Sec. IV-A, are obtained after more than a thousangle gepicted some shots of the robot navigating in the BRL,
simulations. The outcome of each experiment was dependg the top row, and their corresponding sensor information

on the parameters, since the system reacts to the behaviognq relevant information in the robot GUI, appearing in the
of the robot navigation and vice versa. After following theygitom row of the figure.

optimization method proposed, we have obtained the values|n order to validate the model in real experiments, we

of 0 equal to{o = 1.0,y = 3.18,6 = 0.20}, which haye compared our approach with respect to a tele-operated
will be the system parameters that we will use in realopot by an expert controller. This experiment was perfatme
experimentation. under the same conditions as the social-aware navigation: a
goal is provided, but instead of an autonomous solution to
the navigation, we sought an expert controller to solve the
Real experimentation was carried out in a urban enviromavigation problem, while reaching its goal and dealindwit
ment, the Barcelona Robot Lab, which was described abovany pedestrian or obstacle on the robot’s path.
The parameters were obtained using simulation learning, asWe have evaluated the performance of both approaches

C. Real experiments



using thesocial work metric proposed in Eq. 16 for the [6]
parameter learning. As can be seen in Fig. 7, we have drawn
the average and the variance values of the robsdsial
work, the personssocial work enforced by the robot and
the totalsocial workof the overall approach. However, the
results of thesocial workwere only taken into account if the
robot navigation state wasocial robot navigatiornor inner
robot navigation that is, if there was at least one person
within the social-navigation region, which represent thasm
interesting cases of study for human interaction purposes.

The social-aware generated less amounsadial work [10]
both in the robot and the persons surrounding the robot. The
comparison of the persorsocial workfor both approaches [11]
is similar, both approaches generate a reduced and maybe
unavoidable amount afocial work The trivial solution of
"escaping” is not an option: this behavior would not solve th[12]
interaction with other persons. Accordingly, we evaludte t
social workcarried out by the robot. In this case, the com-
parison between our approach and the tele-operated is quitg]
significant, the social-aware approach outperforms the tel
operated approach and its variance is also greatly smaller,
which represents more ability to cope more consistentli wit[14]
different situations requiring lessocial work

For further information, check the videos of the
experimental results and all code in the project wefi5]
http://wwv.iri.upc.edu/ groups/I|robots/social _aware_
navi gati on/ ecnr 2013. php

(7]

(8]
(9]

[16]

VI. CONCLUSIONS ANDFUTURE WORK
o [17]
We have presented a novel robot navigation approach

based on the so called Social-Forces Model.

The validation of the model has been demonstrateds
throughout an extensive set of simulations and real-life
experiments in a urban area. In contrast to other existing
approaches, our method can handle realistic situatiom$, syq;
as dealing with large environments with obstacles and highl
crowded scenes. For that reason, this work can be applied to
certain specific real robot applications, for instancedimng
tourists or accompanying professional visitors. [20]

In future work, we aim to obtain more sophisticated
robot behavior, for instance, solving the oscillatory peois
observed and in general making the robot-aware navigatigzi]
much more robust.
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