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Abstract: In this paper, a methodology for limnimeter and rain-gauge fault detection and isolation (FDI) 13 

in sewer networks is presented. The proposed model based FDI approach uses interval parity equations 14 

for fault detection in order to enhance robustness against modelling errors and noise. They both are 15 

assumed unknown but bounded, following the so-called interval (or set-membership) approach. On the 16 

other hand, fault isolation relies on an algorithm that reasons using several fault signature matrices that 17 

store additional information to the typical binary one used in standard FDI approaches. More precisely, 18 

the considered fault signature matrices contain information about residual fault sign/sensitivity and 19 

time/order of activation. The paper also proposes an identification procedure to obtain the interval models 20 

used in fault detection that delivers the nominal model plus parameter uncertainty is proposed.  To 21 

exemplify the proposed FDI methodology, a case study based on the Barcelona sewer network is used.  22 

Keywords: Fault detection, fault isolation, sewer networks, robust methods. 23 

 24 

1. INTRODUCTION 25 

 26 

Sewer networks are complex large-scale systems which require highly sophisticated supervisory-control systems to ensure 27 

that high performance can be achieved and maintained under adverse operating conditions. Most cities around the world have 28 

sewage systems that combine sanitary and storm water flows within the same network. This is why these networks are known 29 

as Combined Sewage Systems (CSS). During rain storms, wastewater flows can easily overload these CSS, thereby causing 30 

operators to dump the excess of water into the nearest receiver environment (rivers, streams or sea). This discharge to the 31 

environment, known as Combined Sewage Overflow (CSO), contains biological and chemical contaminants creating a major 32 

environmental and public health hazard. Environmental protection agencies have started forcing municipalities to find 33 

solutions in order to avoid those CSO events. A possible solution to the CSO problem would be to enhance existing sewer 34 

infrastructure by increasing the capacity of the wastewater treatment plants (WWTP) and by building new underground 35 
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detention tanks. But, in order to take profit of these expensive infrastructures, a highly sophisticated real-time control (RTC) 36 

scheme is also necessary which ensures that high performance can be achieved and maintained under adverse meteorological 37 

conditions (Schütze, 2004) (Marinaki, 2005). The advantage of RTC applied to sewer networks has been demonstrated by an 38 

important number of researchers during the last decades. Comprehensive reviews that include a discussion of some existing 39 

implementations are given by (Schilling, 1996) (Schütze, 2004) and cited references therein, while practical issues are 40 

discussed by (Schütze, 2002), among other.  The RTC scheme in sewage systems might be local or global. When local control 41 

is applied, flow regulation devices use only measurements taken at their specific locations. While this control structure is 42 

applicable in many simple cases, in a big city, with a strongly interconnected sewer network and a complex infrastructure of 43 

sensors and actuators, it may not be the most efficient alternative. Conversely, a global control strategy, which computes 44 

control actions taking into account real-time measurements all through the network, is likely the best way to use the 45 

infrastructure capacity and all the available sensor information. The multivariable and large-scale nature of sewer networks has 46 

lead to the use of some variants of Model Predictive Control (MPC), as global control strategy (Gelormino, 1994)(Cembrano, 47 

2004)(Pleau, 2005) (Marinaki 2005) (Ocampo-Martínez, 2008).  48 

 49 

The global RTC need to operate in adverse meteorological conditions involves, with a high probability, sensor and actuator 50 

malfunctions (faults). This problem calls for the use of an on-line fault detection and isolation (FDI) system  able to detect 51 

such faults and correct them (if possible) by activating fault tolerance mechanisms, as the use of soft sensors or using the 52 

embedded tolerance of the MPC controller, that avoids that the global RTC  should be stopped every time that a fault appears. 53 

According to (Schütze, 2004), this is one of the main reasons why today there is a small number of global RTC operating in the 54 

world. This difficulty has also been assessed by the author when implementing the global RTC in the Barcelona sewer network 55 

(Cembrano, 2004). This has motivated the research presented in this paper. 56 

  57 

In the literature, FDI in sewer networks has already been addressed using Takagi-Sugeno multi-models in the case of rain-58 

gauges (Giuliani, 1997) and in the case of limnimeters (Boukhris 1997; 2001). Fault detection is based on checking the residual 59 

against a threshold that has been derived either from statistical or empirical approaches. The use of Kalman filters and Wald 60 

sequential test has been proposed by (Piatyszek et al., 2000) as means of detecting limnimeter faults in sewer networks. In all 61 

these approaches, a simplified deterministic model of rainfall-runoff transformation is considered.  62 

 63 

In the present paper, a simplified model based on the virtual tank modelling approach proposed in (Cembrano, 2004) is used  to 64 

model the rainfall-runoff transformation. This conceptual modelling approach based on establishing mass balances in the sewer 65 
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network catchments avoids the complexity of the physical oriented models based on Saint-Venant equations that are not 66 

adequate to be used on-line.  To consider the uncertainty in the sewer modelling due to the use of this conceptual approach, a 67 

FDI approach based on interval models and methods is proposed (Puig, 2008). Interval methods are very appropriate when the 68 

modelling uncertainty is included in the model by means of interval parameters. Moreover, noise can easily handled using the 69 

interval methods since only a noise bound is required without any assumption about the statistical distribution. For both 70 

reasons, interval methods can be considered as an alternative to stochastic models and methods (Bassevile and Nikiforov, 71 

2003)(Nikiforov, 1998).  In Meseguer (2010), interval observers for fault detection have been already proposed for limnimeter 72 

fault detection. In this paper, alternatively interval parity equations expressed in regressor form are proposed.  The advantage 73 

of interval parity equations with respect to observers is that the algorithm proposed in (Blesa, 2011) for estimating interval 74 

parameters and generating detection thresholds can be used. Interval parity approaches are less computational demanding than 75 

observers because the parameters enter linearly in the equations. This fact has already noticed by Ploix and Adrot (2006) .   76 

 77 

In this paper, the problem of FDI is mainly focused on rain gauges and limnimeters used for the RTC of a sewer network, but 78 

could easily being extended to actuator faults or faults in other elements in the network. The proposed fault detection and 79 

isolation strategy is based on building an interval model for every instrument. Then, each instrument reading is compared with 80 

the prediction provided by its interval model. While, the real measurement is inside the interval of predicted behaviour (or 81 

envelope) generated using its interval model, no fault can be indicated. However, when the measurement is outside its 82 

envelope, a fault can be indicated (Puig, 2008). Once the fault has been detected, a fault isolation procedure is initiated in order 83 

to isolate the faulty instrument. The proposed FDI approach introduces also an improved interface between fault detection and 84 

isolation that reasons not only using binary information about fault signal activation but also considers residual fault 85 

sensitivities and time/order of activation. The need of such improved interface has been motivated because the application of 86 

the standard binary interface between fault detection and isolation could lead to wrong diagnosis when the residuals present 87 

different sensitivities and order/time of activation after the fault appearance (Combastel, 2003). The proposed diagnosis 88 

approach in this paper comes from an evolution of the algorithm presented in (Puig, 2005). In the literature, there have also 89 

appeared other proposals following the same spirit as the one proposed by (Van den Daele et al., 1997) where the activation of 90 

a residual generates an event with a belief and time stamp, among other attributes. Then, a reasoning using a causal graph 91 

produces a set of candidate faults ranked from the most to the least probable. In the same line, (Ragot, 2006) proposed an 92 

improved fault diagnosis approach based on the fuzzy evaluation of the residuals that considers not only binary information but 93 

also signs/sensitivities as well as the persistence of residual activation.  This approach has also been applied to a water 94 

network. 95 
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 96 

To exemplify the FDI problem in sewer networks and the proposed FDI methodology, the Barcelona network is used as the 97 

case study. Such network has a telemetry system containing 22 rain gauges and more than 100 limnimeters used for the RTC 98 

system.  In this paper, a representative part of this network is considered. 99 

 100 

The organisation of the paper is the following: Section 2 presents how models for FDI in rain-gauges and liminimeters are built 101 

and intervals for parameters are estimated. Section 3 overviews the proposed FDI scheme.  Section 4 and 5 discuss the 102 

implementation of the fault detection and isolation modules. Section 6 presents a description of the Barcelona sewer network 103 

used as a case study and shows the results obtained using the proposed FDI scheme. Finally, Section 7 closes the paper with 104 

the conclusions. 105 

 106 

2. INTERVAL MODELS FOR FDI IN SEWER NETWORKS 107 

 108 

Rain gauges and limnimeters are the two type of sensors used in the RTC of sewer networks: the first type measures rain 109 

intensity while the second one measures the sewer water level. In general, when detecting faults in sensors two strategies are 110 

possible: hardware redundancy based on the use of redundant (extra) sensors and analytical redundancy based on the use of a 111 

mathematical model that combines measurements from other correlated sensors or from the same sensor in past instants 112 

(Patton, 2000). In critical systems (space aircrafts, aeroplanes, ...) hardware redundancy is preferred. But, in large scale 113 

systems (as the case of sewer networks), the use of hardware redundancy is very expensive and increases the number of 114 

maintenance and calibration operations. That is the reason why analytical redundancy has been proved to be a good and 115 

cheaper alternative. This is the approach followed in this paper.  116 

 117 

2.1   Modelling limnimeters 118 

 119 

Typically, in sewer networks, sewage level is measured instead of flow. There are two reasons that can explain this fact. First 120 

since the level is measured using ultrasonic waves, limnimeters do not have contact with the sewage flow (Fig. 1), and 121 

consequently, the required maintenance is cheaper. Second, limnimeters are cheaper than flowmeters.   Ultrasonic limnimeters 122 

generates an acoustic pulse that is transmitted from the transducer and then it is reflected back from the surface of the liquid. 123 

The transit time is then converted into the current output, which is directly proportional to the fluid level.  From level 124 

measurements, the flow in a sewer can be estimated assuming steady-uniform flow and using the Manning formula calibrated 125 
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using experimental data  (Duchesne, 2001). However, as also discussed in (Duchesne, 2001), where there is not enough slope 126 

in the sewer, the backwater effect could appear leading to a complex relation between flow and level that can not be explained 127 

by a static relation as the Manning formula. In the sewer network locations where the backwater effect is important, the use of 128 

a flow meter instead of a limnimeter is advisable.  129 

 130 

Limnimeters can be monitored in rain scenarios1 using an on-line rainfall-runoff model of the sewer network that characterizes 131 

the net rainfall entering as flow in the sewers. The water flow in sewers due to runoff is open-channel. The Saint-Venant 132 

equations, based on physical principles of mass conservation and energy, allow describing accurately the open-channel flow in 133 

a sewer (Marinaki, 2005).  Such complex non-linear rainfall-runoff models are very useful for off-line operations (calibration 134 

and simulation) of the sewer network. But for on-line purposes, as the global optimal control and FDI, a simpler conceptual 135 

model must be used (Duchesne, 2001).  One possible modelling methodology to derive a rainfall-runoff real-time model of a 136 

sewer network is based on using a simplified graph relating the main sewers and catchments as a set of virtual reservoirs 137 

(Cembrano, 2004).  138 

 139 

 140 

 141 

Fig. 1. Limnimeter inside a sewer 142 

 143 

A virtual reservoir is an aggregation of a sewer capacity in a catchment of the sewer network which approximates the 144 

hydraulics of rain infiltration, runoff and sewage water retention thereof (Fig. 2).  145 

 146 

                                                 
1 In dry scenarios, to monitor limnimeters a different modelling approach (based on time series) could be used to exploit the temporal redundancy existing in 
the sensor measurements. These measurements follow the patterns of consumer drinking water demands with daily and weekly cycles as the flow meters in a 
drinking water network. In Quevedo et. al (2010), an approach to detect faults in flow meters in a drinking water network. 
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Fig. 2. Virtual reservoir model of a catchment 149 

 150 

The hydraulics of a virtual reservoir that models a catchment is given by 151 

( )
( ) ( ) ( )up down

dV t
Q t Q t P t S

dt
                                                                  (1) 152 

where: V is the volume of water accumulated in the catchment, Qup and Qdown are flows entering and exiting the catchment, P is 153 

the rain intensity falling in the catchment, S its surface and  the ground absorption coefficient. Upstream and downstream 154 

sewage levels ( upL , downL ) are measured using limnimeters and they can be related with upstream/downstream flows 155 

( upQ , downQ ) using a linearised Manning relation: 156 

 157 

( ) ( )up up upQ t M L t                                                                    (2) 158 

( ) ( )down down downQ t M L t                                                                    (3) 159 

where upM , downM  are the limnimeter Manning coefficients estimated experimentally. 160 

It is additionally assumed that the catchment behave as a linear virtual tank, i.e., that a linear relation between the volume of 161 

the water stored in the virtual tank is linearly related with the flow downstream the catchment 162 

( ) ( )down vQ t K V t                                                                    (4) 163 

where vK is the volume/flow conversion coefficient estimated experimentally as well. 164 

Then, substituting (4) in (1) and discretising using the Euler method with a sampling time t , the following discrete-time 165 

relation (k is the discrete time) between upstream and downstream flows can be derived: 166 

 167 

( 1) (1 ) ( ) ( ) ( ))down v down v up vQ k K t Q k K tQ k K t SP k                                             (5)        168 
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Finally, replacing (2) and (3) in (5), leads to the following relation between upstream and downstream limnimeter 169 

measurements 170 

( 1) ( ) ( ) ( ))down down upL k aL k bL k cP k                                                                  (6)        171 

 172 

where:  173 

 (1 )va K t   , up v

down

M K t
b

M


  and v

down

K t S
c

M

 
                                                 174 

 175 

2.2   Modelling rain-gauges 176 

 177 

Typical rain-gauges used in sewer networks are of tipping bucket type (see Figure 3(a)). This gauge technology uses two small 178 

buckets mounted on a fulcrum (balanced like a see-saw) (see Figure 3(b)). The tiny buckets are manufactured with tight 179 

tolerances to ensure that they hold an exact amount of precipitation. The tipping bucket assembly is located above the rain 180 

sewer, which funnels the precipitation to the buckets. As rainfall fills the tiny bucket, it becomes overbalanced and tips down, 181 

emptying itself as the other bucket pivots into place for the next reading. The action of each tipping event triggers a small 182 

switch that activates the electronic circuitry to transmit the count to the indoor console, recording the event as a given number 183 

of mm/h of rainfall. The number of tipping events in a pre-established sampling time is accumulated and multiplied by a factor 184 

in order to obtain the rain intensity in m/s at each sampling time, after the appropriate unit conversion. 185 

 186 

          187 

(a)                                                                                     (b) 188 

Fig. 3. (a) A rain-gauge manufactured by Casella Measurement and (b) Principle of operation of a tipping bucket rain-gauge 189 

 190 
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In order to detect faults in a given rain-gauge Pi, a model that exploits spatial redundancy existing in the rain-gauge network is 191 

used. The model relates the measurements of rain-gauge Pi with the m most-correlated rain-gauges ( 1,..., mP P )  at time instant k 192 

as follows 193 

1 1 2 2( ) ( ) ( ) ... ( )i m mP k P k P k P k                                                                 (7) 194 

The most correlated rain-gauges correspond to the ones that are the closest in distance as discussed in (Figueras et al., 2005). 195 

 196 
2.3   Estimation of interval models  197 

 198 

One of the key points in using the interval model based fault detection is how intervals of model parameters are estimated from 199 

scenarios free of faults. The estimation process should deliver a nominal model plus its modelling error in the form of interval 200 

parameters that will provide an interval of confidence for the predicted behaviour. Several authors ((Ploix, 1999) (Calafiore, 201 

2002)(Campi, 2009)) have suggested an adaptation of standard system identifications methods to provide the nominal model 202 

plus the uncertainty intervals for parameters that guarantee that all recorded data from the system in non-faulty scenarios will 203 

be included in the interval model. These algorithms are based on using standard identification methods (for example, least-204 

squares) to provide the nominal estimate for system parameters. Then, the intervals of uncertainty for parameters are adjusted 205 

until all the measured data is covered by the model prediction interval.  206 

 207 

The algorithm proposed in this paper considers that the interval model to be identified can be expressed in regressor form as 208 

follows   209 

( ) ( ) ( ) ( )y k k k e k φ θ                                                                             (8)  210 

where:φ( k )  is the regressor vector of dimensions 1 n  which can contain any function of inputs ( ( )u k , ( )u k 1 , ( )u k 2 , ...) 211 

and outputs ( ( ), ( ), ( ), )y k y k 1 y k 2   , ( )e k is additive noise bounded by a constant ( )e k  , ( )k    is the parameter 212 

vector of dimensions 1n   and Θ  is an interval box centred in  the nominal  parameter values 1[ ] [ ] [ ]i n
      Θ    213 

where 0 0[ ] [ ]i i i i i,      , i=1,…, n , with 0
i  being the nominal parameter values and i 0   the parameter 214 

uncertainties. The uncertain interval parameter set Θ  can be parameterised as a particular case of a zonotope (Blesa et al, 215 

2011) as follows: 216 

 0 : n  zΘ θ H z B                                                                             (9) 217 

with centre 0   and matrix uncertainty shape H equal to a n n  diagonal matrix:  218 

 0
1 2 n, , ,      219 
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 1 2, ,..., ndiag


   H  220 

and 1n nB   is a unitary box composed by n unitary (  1,1 B ) interval vectors  where n n .   221 
 222 

Then, proceeding as in Blesa et al (2011), the maximum and minimum values of the prediction provided by model (8) with 223 

uncertain parameter set (9) are given by 224 

0
1

ˆ ˆ( ) ( ) ( )y k y k k  Hφ                                                                         (10) 225 

      0
1

ˆ ˆ( ) ( ) ( )y k y k k  Hφ                                                                         (11) 226 

where 0ˆ ( )y k  is the model output prediction with nominal parameters: 0 0ˆ ( ) ( )y k k φ θ . In the particular case of interval 227 

parameters:  
1

1

( ) φ ( )
n

i i
i

k k


 Hφ  .                            228 

Then, given a sequence of data in a fault free scenario (measurements of regressor vector ( )kφ  and output ( )y k  for 229 

1,...,k N ) and rich enough from the identifiability point of view, the estimation problem boils down in determining the 230 

nominal parameter vector ( 0θ ) and the parameter uncertainty (defined by matrix H ) in such a way that all the measurements 231 

are inside the prediction interval (given by bounds (10) and (11)) and, the size of intervals for parameters is minimised. 232 

The identification of 0θ  and H  can be carried out in two steps: In the first step, nominal vector parameter can be identified 233 

(by conventional methods, i.e least squares). Then, in the second the parameter uncertainties defined by H  can be computed. 234 

From equations (10) and (11), the smallest intervals for parameters that satisfy ˆ ˆ( ) ( ), ( )y k y k y k     for 1,...,k N  can be 235 

computed solving the following optimization problem 236 

                                                                   min ( ( ))vol
H

Θ H  237 

subject to:            0
1

ˆ ( ) ( ) ( )y k k y k  Hφ               1,...,k N                              (12) 238 

                             0
1

ˆ ( ) ( ) ( )y k k y k  Hφ   239 

                              240 

In order to reduce the complexity of the optimization problem (12), the uncertain parameter set Θ can be parameterised such 241 

that a pre-determined shape 0H , as proposed in Blesa et al (2011),  is used. The shape 0H  can be estimated, for example, 242 

from the parameter variance of estimated nominal model: 0 H H . Other heuristics could also be used (for more details see 243 

Blesa et al (2011)).                                                                     244 

In the case of considering 0 H H , the optimal solution of (12) is provided by: 245 
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 246 

 

0

1,..., 0 1

ˆ( ) ( )
sup

( )k N

y k y k

k

  
  
 
 

φ H
                                                         (13) 247 

 248 

3. OVERVIEW OF THE PROPOSED FDI SCHEME 249 

 250 

3.1  Introduction 251 

The standard FDI scheme is based on generating a set of numerical fault indicators, known as residuals which are computed 252 

using analytical redundancy relations (obtained from model equations) and the measured inputs and outputs of the monitored 253 

system.  Then, the fault detection task consists in deciding if there is a fault affecting the monitored system by checking each 254 

residual against a threshold that takes into account model uncertainty, noise and the unknown disturbances. The result of this 255 

test applied to every residual produces an observed fault signature.  The observed fault signature is  supplied to the fault 256 

isolation module that will try to isolate the fault by looking at theoretical binary fault signature matrix where a  binary relation 257 

between the considered fault hypothesis set. However, when applying this standard FDI scheme to limnimeters and rain-258 

gauges in sewers networks, the following drawbacks were noticed: 259 

(a) The detection threshold should be determined and adapted on-line according to the system inputs and outputs taking into 260 

account the model uncertainty. 261 

(b) The presence of the noise produces chattering if a binary evaluation of the residual is used. 262 

(c) All residuals affected by a certain fault should be activated at the same time instant and they should be persistently 263 

keeping activated during the whole fault isolation process. Otherwise, a wrong fault diagnosis result could be given.  264 

(d) Restricting the relation between faults and fault signals to a binary one causes a loss of useful information that can add 265 

fault distinguishability and accurateness to the fault isolation algorithm preventing possible wrong fault diagnosis results.  266 

 267 

3.2  Proposed FDI scheme 268 

 269 

To deal with the previous issues, the FDI scheme, presented in Figure 4, is proposed. This scheme is composed of different 270 

modules that play the following role (Fig. 4): 271 

 272 
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- Fault detection module is based on evaluating the residual against an adaptive threshold generated evaluating the 273 

interval parity equations that evolves along time taking into account model uncertainty and noise (Puig, 2008) (see 274 

Section 4 for more details). 275 

- Fault detection/isolation interface module evaluates fault signals generated by the fault detection module in order to 276 

isolate the fault among the considered fault hypotheses using several indicators which take into account not only the 277 

activation value of the fault signal but also its fault sensitivity/sign and its activation time/order. This improved 278 

interface module try to handle the problems associated with the fault signal persistency, the residual sensitivity to a 279 

fault, the fault signal occurrence order and the fault signal occurrence time instant (see Section 4 and Appendix 1 for 280 

more details). 281 

- Fault isolation module reasons with the information provided by all the indicators/fault signature matrices to achieve 282 

the fault isolation (see Section 5 for more details). 283 

The underlying assumptions considered in the proposed FDI approach are that no multiple faults  (“single fault hypothesis”) 284 

and faults can be modelled in an additive way as in the standard FDI approaches (Gerlter, 1998). 285 

 286 

Fig. 4. FDI proposed scheme 287 

 288 

4. FAULT DETECTION MODULE AND INTERFACE WITH FAULT ISOLATION MODULE  289 

 290 

4.1  Fault detection module 291 

The fault detection module is based on the evaluation of the nominal residual obtained from difference between measurements 292 

and model prediction using model in regressor form (8) 293 
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ˆ( ) ( ) ( ) ( ) ( )o o or k y k y k y k k   φ θ                                                            (14) 294 

where oθ  are the nominal parameters. 295 

Taking into account parametric modelling errors, the detection test consists in evaluating the following condition  296 

( ) ( ), ( )
ooo
ii ir k r k r k    

                                                                               (15) 297 

where: ˆ ˆ( ) ( ) ( )o o
ii i

r k y k y k   and ˆ ˆ( ) ( ) ( )o o
i i ir k y k y k   while ˆ ( )

i
y k  and ˆ ( )iy k  are the bounds of the ith-system output 298 

prediction calculated using (10) and (11). 299 
 300 

Test condition (15), equivalently, can be expressed as follows: 301 

 302 

ˆ ˆ( ) ( ), ( )i ii
y k y k y k                                                                             (16) 303 

4.2  Mininum detectable 304 

The effect of faults in the residual can be expressed in terms of the residual fault sensitivity that leads to the residual internal 305 

form (Gertler, 1998). In case of considering additive input ( uf ) and output ( yf ) sensor faults, the computational form of the 306 

residual (14) can be expressed as follows: 307 

1 1( ) ( ) ( ) ( ) ( )
y u

o
f y f ur k S q f k S q f k                                                      (17) 308 

where 1( )
yfS q and 1( )

uf
S q  are the residual fault output and input sensitivity transfer functions. Considering residual (14), 309 

the sensitivities are given by:  1 0( )
( ) 1

yf
y

k
S q

f
 

 

φ

θ  and 1 0( )
( )

uf
u

k
S q

f
 

 

φ

θ . 310 

According to Gertler (1998), the minimum detectable fault min ( )if k  corresponds to a size of fault  that brings a residual (15) to 311 

its threshold (“triggering limit”), assuming that no other faults and nuisance inputs are present.  312 

When using the fault detection (16) (or (15), a fault ( )f k  will always be detected when its fault effect ( ( )f k ) is bigger than 313 

the interval prediction thickness ( ( )r k ). In the case of using model (8) with parameters (9), they can be computed according 314 

to (Blesa et al., 2011) as follows: 1( ) ( ) ( )f fk S q f k   and 
1

δ ( ) 2 ( ) 2r k k  φ H  where 1( )fS q  is the residual fault 315 

sensitivity transfer function that characterizes the effect of fault in the residual. Then the minimum detectable fault can be 316 

computed as 317 

min 1
1

2 ( ) 2
( )

( )
f

f

k
f k

S q




φ H
                                                          (18) 318 

Notice that minimum detectable fault defined by Eq. (17) is not a constant value, but a value that evolves dynamically and 319 
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depends on the operation point (defined by ( )kφ ). Then, the minimum steady state detectable fault can be obtained considering 320 

1
1( ) |f qS q
  in Eq (18). Analogously, the minimum initial detectable fault can be obtained considering 1( ) |f qS q

  in (18).  321 

 322 

4.2  Interface between fault detection and isolation 323 

 324 

The fault detection test (16) relies on the comparison of the nominal residual ( )o
ir k , which may be affected by noise, with its 325 

associated adaptive threshold (interval [ ( ), ( )]
oo
iir k r k ). This binary procedure may lead to undesirable decision instability 326 

(chattering) because of the effect of noise on the sensor measurements. Such as indicated by the DMP-approach (Petti et al., 327 

1990), a gradual reasoning based on the use of fuzzy evaluation is an appealing alternative to bypass this chattering 328 

phenomenon. Then, the fault diagnostic signal (or fault signal) for each residual is calculated in the approach presented in this 329 

paper using the Kramer function (Petti et al., 1990): 330 
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                                       (19) 331 

The appealing performance of this function is due to the grading that introduces when evaluating the residual in order to 332 

conclude about the fault existence. When using Eq. (19), the residuals are normalized to a metric between -1 and 1, 333 

 ( ) 1,1i k   , which indicates the degree of satisfaction of Eq. (16) for every nominal residual ( )o
ir k : 0 for perfectly 334 

satisfied, 1 for severely violated high and -1 for severely violated low.  335 

 336 

5. FAULT ISOLATION MODULE 337 

 338 

The fault isolation module used in this paper derives from the one used proposed in (Puig et al., 2005) (see Figure 5). The first 339 

component is a memory that stores information about the fault signal occurrence history and the fault detection module updates 340 

it cyclically. The pattern comparison component compares the memory contents with the stored fault patterns. The standard 341 

Boolean fault signature matrix concept (Gertler, 1998) is generalized taking into account more fault signal properties. The last 342 

component represents the decision logic part of the method which aim is to propose the most probable fault candidate. 343 
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Fig. 5.  Fault isolation module components 345 

 346 

5.1 Memory component 347 

 348 

The memory component consists of a table in which events in the residual history are stored. For each row, the first column 349 

stores the event occurrence time ti, the second one stores the maximum activation value ,maxi  computed according to  350 

 
 ,max

,

( )max
o o w

i i
k k k T

k 
 

                                                     (20) 351 

for every fault signal, and the last one stores the sign of the residual. Fault signals with ,max 0.5i  are filtered out. Using this 352 

strategy the effect of noise and non-persistent fault indicators are filtered because just the peaks of activation are stored. If the 353 

fault detection component detects a new residual event (that is, ( ) 0.5i k  )), the memory component table is updated by 354 

adding a new row that contains all previous event information. The problem of different time instant appearance of fault 355 

signals ( )i k  is solved not indicating the isolation decision until a prefixed waiting time Tw has elapsed from the first fault 356 

signal appearance. This Tw is calculated from the larger transient time response Tlt  from non-faulty situation to any faulty 357 

situation. After this time has elapsed, a diagnosis is proposed and the memory component is reset being ready to start the 358 

diagnosis of a new fault. Inside this diagnosis window, the maximum activation value of the memory-table ,maxi  359 
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corresponding to residual i changes only if the current activation value 0( )i k  is superior to the previous ones according to 360 

(20).  361 

 362 

5.2 Pattern comparison component 363 

 364 

The pattern comparison component compares the memory contents with the stored fault patterns. Given a set of residuals, 0
ir , 365 

and the considered set of faults  mj ffffF ,...,...,, 21 , each 0
ir is affected by a subset of these faults. The fault patterns are 366 

organized according to a theoretical fault signature matrix, named FSM. An element FSMij of the matrix contains the pattern if 367 

fj is expected to affect 0
ir , otherwise, it is equal to 0. This interpretation assumes that the occurrence of fj is observable in 0

ir , 368 

hypothesis known as fault exoneration or no compensation, and that fj  is the only fault affecting the monitored system. Five 369 

different fault signature matrices are considered in the evaluation task: Boolean fault signal activation (FSM01), fault signal 370 

signs (FSMsign), fault residual sensitivity (FSMsensit), and, finally, fault signal occurrence order (FSMorder) and time   371 

(FSMtime). Theses matrices can be obtained from the analysis of residual fault sensitivity (17). Details on how the general 372 

rules to obtain those matrices from (19) are derived can be found in (Meseguer, 2007;2009). In the Appendix 2, the detailed 373 

definition and usage of these matrices is presented.  374 

  375 

5.3 Decision logic component 376 

 377 

The decision logic algorithm starts when the first residual is activated (that is, ( ) 0.5i k  ) and lasts Tw time instants or till all 378 

fault hypotheses except one are rejected because they do not fulfil the observed residual activation order/time or because an 379 

unexpected activation signal has been observed according to those fault hypotheses.  Rejection is based on using the results of 380 

factor01j, factorsignj and  factororderj. That is the case, if any of these factors is ’zero’ for a given fault hypotheses, it will be 381 

rejected. Every factor represents some kind of filter, which only lets slip through the possible fault hypotheses. At the end of 382 

the time window Tw, for each non-rejected fault hypothesis, a fault isolation indicator is calculated using the factors 383 

factorsensitj and factortimej. Thus, the biggest fault isolation indicator will determine the diagnosed fault. The fault isolation 384 

indicator associated to the fault hypothesis fj is determined as it follows: 385 

 386 

 max( , )j j jd sensit time factor factor                                               (21) 387 

           388 
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So, the final diagnosis result can be expressed as a set of fault candidates with their associated fault isolation indicator. 389 

 390 

5.4 Comparison with existing approaches 391 

The fault isolation approach presented in this paper has been compared in (Puig, 2005) with other approaches commonly used 392 

in the literature, namely:  393 

 the standard FDI binary approach (Gertler, 1998) based on looking for a column of the fault signature matrix  that 394 

matches the observed fault signature (called column reasoning in Cordier et al. (2004))  395 

 the DX approach based of reasoning only with the activated fault signals and the corresponding rows of the fault 396 

signature matrix (called row reasoning in Cordier et al, (2004),  397 

 the DMP approach proposed by Petti et al. (1990) that only reasons with the fault residual sensitivity (FSMsensit) and  398 

 the DTS approach proposed by Kóscielny (1995) that uses the knowledge about the times in which fault signal should 399 

be activated after the fault is detected. This approach looks at a row of the fault signature matrix only after its fault 400 

signal detection time has elapsed (similar to row reasoning approach). But, in this way it is looking step-by-step at all 401 

rows, counting ones and zeros (similar to column reasoning approach). 402 

The comparison in Puig et al. (2005)  has been done using the well known two tank system described in Blanke et al. (2006), 403 

considering six different faults in scenarios with different fault sizes. Two performance criteria have been used for comparison:  404 

 The diagnostic resolution defined as the average number of valid fault hypotheses per diagnosis, and the best possible 405 

value is 1. 406 

 The diagnostic error rate defined as the average percentage of wrong diagnoses. An error rate of 0 is desirable.  407 

Thus, the optimal point in the error rate/diagnostic resolution-plane is (0/1). Figure 6 shows how the different methods are 408 

positioned in this plane. It can be noticed that the proposed method is the one that approaches the most to the optimal point.  409 
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 410 

Fig. 6.  Comparison of the proposed approach with commonly used 411 

 approaches in the error rate/diagnostic resolution-plane 412 

 413 

5.5 Extension to address multiple faults 414 

In section, some ideas on how the proposed method could be extended to deal with the multiple faults case. As discussed in 415 

Koscielny (2003), when dealing with multiple faults two types of situations are considered depending if the faults appear in 416 

simultaneous or sequential way. In order to use the proposed fault isolation approach in case of simultaneous faults (i.e., faults 417 

that appear in a time smaller than the waiting time Tw) two cases can be considered: 418 

- in case the fault signals do not present different time of appearance, the fault signature matrices should be extended 419 

adding extract columns to consider the case of multiple faults as in the standard FDI approach (see Gertler, 1998). 420 

More precisely, a new column for each combination of possible multiple fault to be considered should be added.  421 

- on the other hand, if the fault signals present different time of appearance, the diagnostic inference may fail if two or 422 

more faults occur at a time interval that is shorter than the time window Tw needed for diagnosis. So this situation is 423 

not supported by the algorithm. 424 

Finally, in case of sequential faults (i.e., faults that appear in a time bigger than the waiting time Tw), the approach can be used 425 

under the assumption of single faults, but reconfiguring the fault signature matrices by removing the faulty sensors and the 426 

residual expressions where they appear should be derived again.  For more details see Figureras et al, (2005). 427 

 428 
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 429 

 430 

6.  APPLICATION TO THE BARCELONA SEWER NETWORK 431 

 432 

6.1   Description 433 

The city of Barcelona, with a population of around 1.593.000 inhabitants living on a surface of 98 Km2 approximately, has a 434 

combined sewage system of approximately 1697 Km length with a storage capacity of 3.038.622 m3. It is a unitary system that 435 

combines waste and rainwater into the same sewers. The yearly rainfall is not very high (600 mm/year), but it includes heavy 436 

storms (arriving to 90 mm/h) typical of the Mediterranean climate that can cause a lot of flooding problems and combined 437 

sewer overflow (CSO) to the receiving environment. Clavegueram de Barcelona, S.A. (CLABSA) is the company in charge of 438 

the sewage system management. Nowadays, for control purposes, the urban drainage system contains 21 pumping stations, 36 439 

gates, 10 valves and 10 detention tanks which are regulated in order to prevent flooding and to CSO the environment. The 440 

remote control system is equipped with 56 remote stations including 22 rain-gauges and 136 water-level sensors which provide 441 

real-time information (every 5 minutes) about rainfall and water levels into the sewer system. All this information is 442 

centralized at the CLABSA Control Centre through a Supervisory Control and Data Acquisition (SCADA) system. The 443 

regulated elements (pumps, gates and detention tanks) are currently controlled locally, i.e., they are handled from the remote 444 

control centre according to the measurements of sensors connected only to the local station. 445 

 446 

6.2   FDI in  limnimeters 447 

 448 

6.2.1 Introduction 449 

In order to show the proposed FDI methodology in liminimeters, a representative portion of the Barcelona sewer network is 450 

studied. The considered portion has a surface of 22,6 Km2 and is constituted by 11 catchments. The considered part of the 451 

network can be analysed separately from the rest of the network.  In this part of the network there are 15 level gauges 452 

(limnimeters) and 4 rain-gauges. Using the virtual tank modelling methodology presented in Section 2.1, a model for this part 453 

of the network is presented in Figure 7 where every catchment is represented by a virtual tank. The structure of the model 454 

comes from the network physical topology.   The models of each liminimeter (L3, L7, L8, L9, L16, L19, L27, L39, L41, L45, L54, L56 455 

and L80) come from the application of Eq. (5) to the virtual tanks appearing in Figure 72.  Figure 8 shows the Boolean fault 456 

                                                 
2 The weirs appearing in Figure 7 in the considered fault scenarios are not overflowing. This is the reason why in the limnimeter models, the overflowing 

paths have not been considered. If overflowing paths are considered, the structure of the limnimeter models would change. This means that the behaviour of 
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signature matrix (FSM01) corresponding to set of residuals that are obtained from the liminimeter models.  The other fault 457 

signature matrices (FSMsign, FSMsensit, FSMorder and FSMtime) are obtained from the analysis of residual fault sensitivity 458 

(19), as discussed in Section 5.3, as described in (Meseguer, 2007;2009). In Appendix 2, the content of these matrices is 459 

presented for this application.  460 

 

 

 

 

 

 

 

 461 

Fig. 7. Virtual reservoir model of the portion of Barcelona network considered 462 

463 

                                                                                                                                                                            
the network change according to its state, that is, it is a hybrid system. This would imply extending the proposed approach to hybrid systems. This is currently 

an on-going work which preliminary results can be found in Vento et al. (2010). 
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 464 

 fL3 fL7 fL8 fL9 fL16 fL19 fL27 fL39 fL41 fL45 fL47 fL53 fL54 fL56 fL80 fP4 fP6 fP13 fP16 fP20

rL3 X X X 
rL7 X X X 
rL8 X X X
rL9 X X 
rL16 X X X X 
rL19 X X 
rL27 X X
rL39 X X 
rL41 X X X 
rL45 X X X
rL54 X X X
rL56 X X 
rL80 X X  465 

 466 

Fig. 8. Boolean fault signature matrix of  limnimeter: residuals  are in rows and faults in columns 467 

  (“X” represents “1” and a blank a “0”) 468 

 469 

6.2.2 Liminmeter interval model identification 470 

 471 

After the structure of the model for each limnimeter has been obtained, the nominal values and intervals for the parameters are 472 

determined using the interval identification method presented in Section 2.3. In order to illustrate how such procedure works, 473 

the interval model identification of liminimeter L03 is presented. According to Figure 7, the model of this limnimeter has the 474 

following structure 03 03 27 06( 1) ( ) ( ) ( )L k aL k bL k cP k     according to Eq. (6). Thus, to use the interval identification 475 

algorithm, this model should be expressed in regressor form (8). In this case, the regressor is given by 476 

 03 27 06( ) ( ) ( ) ( )k L k L k P kφ  while the vector of parameters is given by  ( )
T

k a b cθ . A set of 50 selected real  477 

scenarios between 1999 and 2003, free of faults, have been selected for estimating the model parameters and their intervals. 478 

The resulting nominal values are  0.9014 0.06717 0.1861
To θ  while the intervals are given by 479 

(0.0451,0.0034,0.0093)diagH  according to Eq. (9). Figure 9 shows the interval model prediction using the nominal 480 

parameter values and intervals for limnimeter L03 for a subset of data used for estimation, while Figure 10 shows the interval 481 

model prediction for a subset of data used for validation. 482 
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 483 

Fig. 9. Estimation of interval model corresponding to limnimeter L03 484 

 485 

Fig. 10.  Validation of interval model corresponding to limnimeter L03 486 

 487 

 488 

6.2.3 Liminimeter fault scenario 489 

 490 

To show how the fault isolation procedure proposed in this paper works in case of liminimeters, a real fault scenario recorded 491 

at 14/09/1999 affecting L27 is studied. A fault in this sensor appeared at time instant 4000s. Figure 11 presents residuals r03
0 492 
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and r27
0, that is, the residuals where L27 is involved according to fault signature matrix (see Figure 8). Those residuals are 493 

evaluated using the adaptive threshold provided by their interval model. The fault is detected when the limnimeter 494 

measurement (in continous line) goes out to the prediction interval (in dash line). Notice that the fault in both residuals is 495 

detected at different time instants. Moreover, notice that residual r27
0 is activated only for a short period of time, although the 496 

fault is still present. The reason is because detection is based on using parity equations that use model (8) in regressor form. 497 

Since the model prediction (8) uses the faulty measurements, after some samples this prediction is contaminated by the fault 498 

and the residual come back inside the prediction interval. This phenomenon is known as the fault following effect (see Puig, 499 

2008 for more details). 500 

Figure 12 shows the time evolution of fault isolation factors (factor01, factorsign, factorsensit, factororder  and factortime). 501 

The fault isolation process starts after the first residual r27
0 is activated  at time instant 4000 s (see Figure 11). Using only 502 

binary information (factor01), the fault candidates would be first L27  but later L03, as it can be seen from Figure 12. This is due 503 

to the fact that the first the residual r27
0 activates, but later it is deactivated (lack of persistence in the fault signal indication). In 504 

particular, when  r03
0,  that appears later (at time 7900s), is activated, r27

0 is deactivated. So, residuals r03
0 and r27

0 are never 505 

activated at the same time.  However, using the information of factororder, a fault in L03 would imply that the first residual 506 

activated should be r03
0 instead of r27

0. So, L03  can be already excluded as a fault candidate because is not consistent with the 507 

expected order of activation.  Later, at time 7900s, the second residual r03
0 is activated confirming that the fault is in L27. 508 

Moreover, from the factortime, the FDI module knows that the fault isolation process is ended and it has not to wait until the 509 

end of the time window.  510 

 511 
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Fig. 11. Time evolution of the residuals r03
0  and r27

0 with their adaptive thresholds 513 
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Fig. 12. Time evolution of factor indicators 515 
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 516 

6.2.4 Evaluation of the FDI performance 517 

 518 

Fault detection performance has been assessed by the evaluation of the minimum detectable fault defined in Section 4.1. The 519 

initial and steady state values of the minimum detectable fault for the different residuals are presented in Appendix 3. Since the 520 

proposed method stores and works with the maximum value of activated fault signals according to (20), the minimum 521 

detectable fault size is given by the maximum value of the residual fault sensitivity (see Eq. (18)). 522 

On the other hand, regarding fault isolation performance, the minimum isolable fault corresponding to each fault can be 523 

obtained by finding the maximum of the minimum detectable faults associated to all the residuals that are sensitive to this fault.  524 

This fact implies that the minimum isolable fault in case of the proposed approach will be smaller than in the case of the 525 

standard FDI approach. The reason is related to the fact that in the proposed approach the minimum detectable fault size is 526 

given by the maximum value of the residual fault sensitivity as discussed above. This can be easily seen by looking at the 527 

results presented in Appendix 3. Looking for example at output faults (diagonal of the tables in Appendix 3),  the smaller size 528 

of minimum detectable fault corresponds to the one obtained with the initial fault sensitivity value computed using (18) 529 

considering 1
1( ) |f qS q
 . On the other hand, using the classic FDI approach (see Gertler, 1998) which reasons continuously 530 

with residuals using a column-based reason scheme, since all the residuals sensitive to a fault should be activated to isolate the 531 

fault,  the minimum isolable fault corresponding to each fault can be obtained by finding the maximum of the minimum steady 532 

state detectable faults computed using (18) considering 1( ) |f qS q
 . As it can be noticed from the tables  in Appendix 3, the 533 

values of the initial minimum detectable faults for outputs faults are smaller than the corresponding ones in steady state.  534 

 535 

6.3   FDI in  rain-gauges 536 

 537 

6.3.1 Introduction 538 

 539 

The telemetry system of Barcelona sewer network contains 22 rain gauges that are connected to the CLABSA control centre 540 

and provide the rain intensity every 5 minutes.  Figure 13 presents the location of those rain-gauges on the Barcelona map. 541 

Each rain gauge is represented by a small square and a name (black squares correspond to the rain-gauges used in the test 542 

catchment presented in Fig. 7, while red squares are the rest of rain-gauges of the sewer network). Spatial models for rain-543 

gauges are derived from the correlation analysis (based on the computation of the correlation matrix) between all the existent 544 

rain-gauges in the telemetry system. This allows deriving which are the most correlated rain-gauges with a given rain-gauge 545 
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under test. These correlation analyses have been applied not only to a particular rain scenario but to a 48 rain scenarios in a 5 546 

year rain-data records. The result of the correlation analysis for the whole set of rain-gauges of the Barcelona sewer network is 547 

presented in the table presented in Figure 14. In this table, for each rain-gauge in rows appear the three most correlated 548 

(derived from the correlation matrix) rain-gauges with the associated explained variance. 549 

 550 

Fig. 13. Barcelona’s rain-gauge network (rain-gauges are represented with squares) 551 

 552 

1 % 2 % 3 %
P01 18 15.60 21 12.76 8 12.76
P02 15 17.02 12 15.60 13 14.18
P03 19 26.08 16 16.66 17 7.97
P04 21 22.22 20 17.77 19 9.62
P05 20 17.24 14 14.94 13 14.94
P06 11 26.66 14 20.74 10 17.77
P07 3 14.39 10 11.36 19 11.36
P08 1 21.01 15 13.04 22 12.31
P09 17 20.13 19 15.97 18 15.97
P10 11 25.18 6 22.22 14 12.59
P11 6 28.88 10 18.51 14 14.07
P12 2 23.07 13 22.22 15 11.96
P13 2 14.89 12 13.47 5 11.34
P14 6 21.01 16 13.76 11 12.31
P15 2 18.75 22 18.05 21 12.50
P16 3 15.21 6 13.04 19 10.86
P17 9 22.91 19 19.44 3 11.80
P18 1 15.27 21 14.58 9 13.19
P19 3 23.91 17 15.21 4 11.59
P20 4 18.84 5 12.31 13 10.86
P21 4 19.14 15 13.47 18 11.34
P22 15 24.82 2 16.31 21 8.51  553 

Fig. 14. Correlation table of the rain-gauges of Barcelona sewer network 554 

 555 

Once the most correlated rain-gauges have been derived the following question to answer is how many rain-gauge should be 556 

considered in order to build a fault detection model for a given rain-gauge. To answer this question, there is a compromise 557 

between fault detection and fault isolation model properties. An increase in the number of rain-gauges used to model the rain-558 
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gauge under test improves the model prediction quality, but decreases the capacity to isolate the faulty rain-gauge due to a 559 

model is affected by the faults of more rain-gauges. In Figueras et al. (2005), it has been shown that three rain-gauges, 560 

providing the 70% of data variance, was a good number in this application since provide the best trade-off between model 561 

quality and fault isolation capabilities in case of multiple sequential faults. Figure 15 presents the fault signature matrix in case 562 

that the three most correlated rain-gauges are used to build the models. 563 

 564 

fP1 fP2 fP3 fP4 fP5 fP6 fP7 fP8 fP9 fP10 fP11 fP12 fP13 fP14 fP15 fP16 fP17 fP18 fP19 fP20 fP21 fP22

rP1 X X X X

rP2 X X X X

rP3 X X X X

rP4 X X X X

rP5 X X X X

rP6 X X X X

rP7 X X X X

rP8 X X X X

rP9 X X X X

rP10 X X X X

rP11 X X X X

rP12 X X X X

rP13 X X X X

rP14 X X X X

rP15 X X X X

rP16 X X X X

rP17 X X X X

rP18 X X X X

rP19 X X X X

rP20 X X X X

rP21 X X X X

rP22 X X X  565 

Fig. 15. Boolean signature of the rain-gauge residuals (in rows) of Barcelona’s network 566 

 and faults (in columns) (“X” represents “1” and a blank a “0”) 567 

 568 

6.3.2 Rain-gauge interval model identification  569 

As in the case of liminimeters, once the structure of the model for each rain-gauge has been derived, the nominal values and 570 

intervals for the parameters are determined using the interval identification method presented in Section 2.3. In order to 571 

illustrate how such procedure works in this case, the interval model identification of rain-gauge P04 is presented. According to 572 

Figure 15, the model of this rain-gauge considering the three most correlated ones has the following 573 

structure: 04 1 19 2 20 3 21( ) ( ) ( ) ( )P k P k P k P k      (see Eq. (7)). . Thus, to use the interval identification algorithm, this model 574 

should be expressed in regressor form (8) with the regressor given by  19 20 21( ) ( ) ( ) ( )k P k P k P kφ  while the vector of 575 



27 
 

parameters is given by  1 2 3( )
T

k    θ . As in the case of liminimeters, a set of 50 scenarios between 1999 and 2003, 576 

free of faults, have been selected for calibrating the model parameters and their intervals. The resulting nominal values are 577 

 0.1939 0.3582 0.4479
To θ  while the intervals are given by (0.0097,0.0179,0.0224)diagH according to Eq. (9). 578 

Figure 16 shows the interval model prediction for rain-gauge P04 for a subset of data used for estimation, while Figure 17 579 

shows the interval model prediction for a subset of data used for validation. 580 

 581 

 582 

Fig. 16. Estimation of interval model corresponding to limnimeter P04 583 

 584 
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 585 

Fig. 17. Validation of interval model corresponding to limnimeter P04 586 

 587 

6.3.3 Rain-gauge faulty scenario  588 

 589 

To show the effectiveness of the proposed FDI approach in case of rain-gauges, a real fault scenario recorded at 15/11/2001 is 590 

considered. In this case, a fault in rain-gauge P9  was present. This fault was noticed by sewer network operators just by visual 591 

inspection comparing this rain gauges with the closest  (most correlated) ones. Results from checking real measurements taken 592 

from rain-gauge P9  are compared with their corresponding prediction interval generated using an interval model built from the 593 

three most correlated rain-gauges (P17, P18 and P19) (see Figure 18). Figure 19 and 20 presents the residuals corresponding to 594 

rain-gauges P17 and P18  where rain-gauge P9  is also used according to the fault signature matrix in Figure 15. Figure 21 595 

presents the time evolution of factorsensit for the rain-gauges P9, P17 and P18 . It can be noticed that P9 will be proposed as the 596 

candidate faulty rain-gauge according to (21).   Since rain-gauge models are static, factortime and factororder are not used in 597 

the rain-gauge fault isolation.  598 
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 599 

Fig. 18 Fault in rain-gauge P09 in the 15/11/2001 rain-scenario 600 

 601 

     602 

Fig. 19. Fault in rain-gauge P09 in the 15/11/2001 rain-scenario 603 

 604 
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 605 

Fig. 20.  Fault in rain-gauge P09 in the 15/11/2001 rain-scenario 606 

 607 

Fig. 21. Time evolution of factorsensit indicators 608 

 609 

 610 

 611 

 612 
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7. CONCLUSIONS 613 

 614 

In this paper, fault detection and isolation in rain gauges and limnimeters of Barcelona’s urban sewer system is presented. The 615 

proposed FDI strategy is based on building a linear interval model for every instrument. Then, each instrument is tested 616 

according the prediction provided by its interval model obtained from real data using the parity equation approach. While, the 617 

real measurement is inside the interval of predicted behaviour no fault can be indicated. However, when the measurement is 618 

outside its envelope a fault can be indicated. Once the fault has been detected, a fault isolation procedure is initiated in order to 619 

isolate the faulty instrument. Fault isolation is based on matching of the fault signature with a set of theoretical fault signatures. 620 

Finally, the proposed FDI system is applied to several real scenarios providing promising results in order to be applied in real-621 

time operation.  As a further work the proposed method will be applied to faults in actuators. Currently, the proposed FDI 622 

method is being integrated with MPC control system of the sewer network in order to validate rain-gauges and limnimeters 623 

readings. In case that some instrument is in faulty situation, some fault tolerance mechanism should be activated to allow the 624 

control system to continue in operation. The design of these fault tolerance mechanisms are also currently under development. 625 

 626 
APPENDIX 1 627 

This appendix describes the different fault signatures matrices used for the fault isolation module presented in Section 5 as well 628 

as their usage:  629 

 630 
FSM01: Evaluation of fault signal appearance. The FSM01-table contains the theoretical binary patterns that faults produce in 631 

the residual equations. Those patterns can be codified using the values 0 for no influence, 1 otherwise.  factor01j is calculated 632 

for the jth fault hypothesis in the following way: 633 
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i ij
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j jn
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i
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factor zvf

FSM

                                       (22) 634 

with 635 
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1,     if 0      
i

i
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boolean






  

 636 

and the zero-violation-factor as 637 

 638 
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 
,max

0,      if   1,...,   with  01 0    

and  0

1,      otherwise                                                                         

ij

j i

i n



   


 



FSM

zvf  639 

This leads to the following behaviour: expected fault signals support a fault hypothesis, unexpected fault signals are eliminated 640 

through the zero-violation-factor. Missing fault signals influence the supportability of a hypothesis indirectly via the 641 

denominator of Eq. (22). 642 

 643 

FSMsign: Evaluation of fault signal signs. The FSMsign-table contains the theoretical sign patterns that faults produce in the 644 

residual equations. Those patterns can be codified using the values 0 for no influence, +1/-1 for positive/negative deviation for 645 

every FSMsignij. 646 

 647 

The factorsignj is calculated comparing theoretical signs to the signs stored in the memory: 648 

 649 

1

j
j jn

ij
i

sign sign







numsign
factor zvf

FSMsign

                                              (23) 650 

where  the number of signs in the fault signal vector that coincides with each jth fault hypothesis, considering either the case 651 

that all residuals have been violated in the positive or negative patterns in FSMsignij is given by 652 
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 654 

with 655 
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FSM
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FSM

 656 

 657 

where the factor jsignzvf is defined in a similar way as in the case of 01factor , excluding those fault hypothesis that has a 658 

zero in a position where the fault signal presents a sign. The sign function is defined as in MATLAB, i.e., ( ) 1sign x   if 0x  , 659 

( ) 1sign x    if 0x   and ( ) 0sign x   if 0x  . 660 

 661 
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FSMsensit: Evaluation of fault sensitivities. This evaluation component uses the fault signal activation values  ,maxi  from the 662 

memory table and computes factorsensit using the sensitivity-based FSMsensit table for weighting the activation values. That 663 

approach can be found as well in the DMP-method (Petti, et al., 1990). The following equations describe how to calculate the 664 

entries FSMsensitji 665 

 666 

( ) 0
( ))

( ) 0
( ( )
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io

i

ij
ij o
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S
if r k

r k
sensit

S
if r k

r k
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 
 


FSM                                                          (24) 667 

with the sensitivity defined as 
o

i
ij

j

r
S

f





. Although, the sensitivity depends on time in case of a dynamic system, here the 668 

steady-state value after a fault occurrence is considered as it was also suggested in (Gertler, 1998). The value of FSMsensitij 669 

describes, how easily a fault will cause a violation of the threshold of the ith  residual since the larger its partial derivative with 670 

respect to the fault, the more sensitive that equation is to deviations of the assumption. Similarly, residuals with large detection 671 

thresholds are less sensitive as they are more difficult to violate. Therefore FSMsensitij can be used to weight the activation 672 

value of different fault signals: 673 

 674 
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                                            (25) 675 

 676 

where the factor jsensitzvf is defined in a similar way as in the case of factor01, excluding those fault hypothesis that has a 677 

zero theoretical sensitivity while fault signal presents an non-zero value. 678 

 679 

FSMorder: Evaluation of fault signal appearance order. In dynamic systems a fault fj  does not affect at same time all 680 

residuals.  FSMorder table contains the order of the fault signal apparition for each fault hypothesis; this order is codified 681 

using ordinal numbers, starting with ‘1’. If two fault signals appear at the same time, then they should share the same ordinal 682 

number. Fault signals that are not associated to an fault hypothesis get the code ‘0’ (Meseguer, 2007;2009). The factororder is 683 

calculated comparing the apparition order of the fault signal to the theoretical order stored in the memory. This comparison 684 
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requires to count the number of apparition order coincidences between the fault signal vector and each jth fault hypothesis 685 

according to: 686 
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where 688 
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 689 

 690 

and ,max( )iorder   is the order of apparition in which the ith fault signal has activated with respect to the first activated. Such 691 

order is recorded in the memory component. The factor jorderzvf is defined in a similar way as in the case of 01factor , 692 

excluding those fault hypothesis that do not coincides in the order . 693 

 694 

FSMtime: Evaluation of fault signal appearance time. The element FSMtimeij of matrix FSMtime contains the time interval 695 

[
ij , ij ] in which the fault signal i  caused by fault fj is expected to appear.  This time interval is referred to the occurrence 696 

time instant of the first fault signal according to the fault hypothesis fj as in most of the cases, the fault occurrence time instant 697 

t0 is unknown. (Meseguer et al., 2007) shows that the interval [
ij , ij ] basically depends on the sensitivity of the residual 698 

( )o
ir k  to fault fj (

ijfS ), on the adaptive threshold [ ( ), ( )]
oo
iir k r k  associated to this residual and on t0. Thus, the elements of 699 

matrix FSMtime are given by 700 

[ , ]   0

[ 1, 1]  0
ij

ij

ij fij
ij

f

if S
time
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   
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FSM                                                                               (27) 701 

 702 

From FSMtime matrix, the time window Tw which determines the maximum period of time required once the first fault signal 703 

is observed so that all fault signals can appear can be determined as follows 704 

,
max( )ijw

i j
T


                                                                                       (28) 705 

On the other hand, in order to compare the occurrence time instant of the observed fault signal sequence with the stored one in 706 

matrix FSMtime, the factor factortimej is calculated for every fault hypothesis as it follows: 707 

 708 
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where kfi is the apparition time instant of the fault signal i(k), kref is the apparition time instant of the first observed fault 710 

signal,   711 
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and where zvfj is the zero-violation-factor whose expression is  715 
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ij

j i

i n

k

  


 



FSM
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 717 

 718 

APPENDIX 2 719 

This appendix presents the contents of the different fault signatures matrices used for the fault isolation module of limnimeters 720 

in the Barcelona sewer network case study. 721 

 722 
FSM01 Matrix 723 

 fL3 fL7 fL8 fL9 fL16 fL19 fL27 fL39 fL41 fL45 fL47 fL53 fL54 fL56 fL80 

L3 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
L7 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 
L8 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 
L9 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
L16 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 
L19 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
L27 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
L39 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
L41 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 
L45 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 
L54 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 
L56 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
L80 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 

 724 
 FSM sign Matrix 725 

 fL3 fL7 fL8 fL9 fL16 fL19 fL27 fL39 fL41 fL45 fL47 fL53 fL54 fL56 fL80 

L3 +1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 
L7 0 +1 0 0 0 0 0 0 0 0 0 -1 0 0 0 
L8 0 0 +1 0 -1 0 0 0 0 0 0 0 0 0 0 
L9 0 0 0 +1 0 0 0 0 0 0 0 0 0 0 0 
L16 0 0 0 0 +1 0 0 0 0 0 0 0 0 0 -1 
L19 0 0 0 0 0 +1 0 0 0 0 0 0 0 0 0 
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L27 0 0 0 0 0 0 +1 0 0 0 0 0 0 0 0 
L39 0 0 0 0 0 0 0 +1 0 0 0 0 0 0 0 
L41 0 0 0 0 0 0 0 -1 +1 0 0 0 0 0 0 
L45 0 0 0 0 0 0 0 0 -1 +1 -1 0 0 0 0 
L54 0 0 0 0 0 0 0 0 0 0 0 -1 +1 -1 0 
L56 0 0 0 0 0 0 0 0 0 0 0 0 0 +1 0 
L80 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 +1 

 726 

 727 

 FSM sensit Matrix 728 
 fL3 fL7 fL8 fL9 fL16 fL19 fL27 fL39 fL41 fL45 fL47 fL53 fL54 fL56 fL80 

L3 0.241 0 0 0 0 0 -0.156 0 0 0 0 0 0 0 0 
L7 0 0.115 0 0 0 0 0 0 0 0 0 -0.033 0 0 0 
L8 0 0 0.360 0 -0.193 0 0 0 0 0 0 0 0 0 0 
L9 0 0 0 0.128 0 0 0 0 0 0 0 0 0 0 0 
L16 0 0 0 0 0.383 0 0 0 0 0 0 0 0 0 -1 
L19 0 0 0 0 0 0.033 0 0 0 0 0 0 0 0 0 
L27 0 0 0 0 0 0 0.082 0 0 0 0 0 0 0 0 
L39 0 0 0 0 0 0 0 0.379 0 0 0 0 0 0 0 
L41 0 0 0 0 0 0 0 -0.958 0.042 0 0 0 0 0 0 
L45 0 0 0 0 0 0 0 0 -0.254 0.014 0.187 0 0 0 0 
L54 0 0 0 0 0 0 0 0 0 0 0 -0.810 1 -0.393 0 
L56 0 0 0 0 0 0 0 0 0 0 0 0 0 0.080 0 
L80 0 0 0 0 0 0 0 0 0 0 -0.580 0 0 0 0.256 

  729 
FSM order Matrix 730 

 fL3 fL7 fL8 fL9 fL16 fL19 fL27 fL39 fL41 fL45 fL47 fL53 fL54 fL56 fL80 

L3 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 
L7 0 1 0 0 0 0 0 0 0 0 0 2 0 0 0 
L8 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 
L9 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
L16 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 
L19 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
L27 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
L39 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
L41 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 
L45 0 0 0 0 0 0 0 0 2 1 2 0 0 0 0 
L54 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 
L56 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
L80 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 

 731 

FSMtime Matrix 732 
 fL3 fL7 fL8 fL9 fL16 fL19 fL27 fL39 fL41 fL45 fL47 fL53 fL54 fL56 fL80 

L3 [0,0] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [900,6300] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] 

L7 [-1,-1] [0,0] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [2100,5400] [-1,-1] [-1,-1] [-1,-1] 

L8 [-1,-1] [-1,-1] [0,0] [-1,-1] [600,4200] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1]  [-1,-1] [-1,-1] [-1,-1] 

L9 [-1,-1] [-1,-1] [-1,-1] [0,0] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] 

L16 [-1,-1] [-1,-1] [-1,-1] [-1,-1] [0,0] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [300,2400] 

L19 [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [0,0] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] 

L27 [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [0,0] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] 

L39 [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [0,0] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] 

L41 [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [300,3900] [0,0] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] 

L45 [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [300,1800] [0,0] [300,30600] [-1,-1] [-1,-1] [-1,-1] [-1,-1] 

L54 [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [0,0] [0,0]  [0,0]  [-1,-1] 

L56 [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [0,0] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [0,0] [-1,-1] 

L80 [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [0,0] [-1,-1] [-1,-1] [-1,-1] [0,0] [-1,-1] [-1,-1] [-1,-1] [0,0] 

 733 

APPENDIX  3 734 
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This appendix presents the averages values of the minimum initial and steady state detectable faults. The intervals correspond 735 

to the evaluation of Eq (18) with  1
min ( )kφ H  and  1

max ( )kφ H . 736 

 737 

 738 

 739 

 740 

Initial minimum detectable faults  741 

minf f
  with  1( ) |f qS q


 742 

 fL3 fL7 fL8 fL9 fL16 fL19 fL27 fL39 fL41 fL45 fL47 fL53 fL54 fL56 fL80

RL3 [0.1,0.22] ∞ ∞ ∞ ∞ ∞ [0.45,1] ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

RL7 ∞ [0.06,0.1] ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ [0.3,0.5] ∞ ∞ ∞ 

RL8 ∞ ∞ [0.1,0.15] ∞ [0.4,0.6] ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

RL9 ∞ ∞ ∞ [0.1,0.43] ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

RL16 ∞ ∞ ∞ ∞ [0.1,0.35] ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ [0.28,1] 

RL19 ∞ ∞ ∞ ∞ ∞ [0.1,0.13] ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

RL27 ∞ ∞ ∞ ∞ ∞ ∞ [0.1,0.27] ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

RL39 ∞ ∞ ∞ ∞ ∞ ∞ ∞ [0.1,0.57] ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

RL41 ∞ ∞ ∞ ∞ ∞ ∞ ∞ [0.4,1.2] [0.1,0.32] ∞ ∞ ∞ ∞ ∞ ∞ 

RL45 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ [0.07,0.7] [0.1,0.92] [0.11,0.97] ∞ ∞ ∞ ∞ 

RL54 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞  [0.35,0.55] [0.1,0.16] [0.42,0.67] ∞ 

RL56 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ [0.1,0.39] ∞ 

RL80 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ [0.13,0.46] ∞ ∞ ∞ [0.1,0.36]

 743 

Steady state minimum detectable faults  744 

minf f
  with  1

1( ) |f qS q


 745 

 fL3 fL7 fL8 fL9 fL16 fL19 fL27 fL39 fL41 fL45 fL47 fL53 fL54 fL56 fL80

RL3 [0.4,0.91] ∞ ∞ ∞ ∞ ∞ [0.45,1] ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

RL7 ∞ [0.31,0.5] ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ [0.3,0.5] ∞ ∞ ∞ 

RL8 ∞ ∞ [0.3,0.45] ∞ [0.41,0.6] ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

RL9 ∞ ∞ ∞ [0.67,2.9] ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

RL16 ∞ ∞ ∞ ∞ [0.3,1] ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ [0.28,1] 

RL19 ∞ ∞ ∞ ∞ ∞ [3,30] ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

RL27 ∞ ∞ ∞ ∞ ∞ ∞ [0.8,2] ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

RL39 ∞ ∞ ∞ ∞ ∞ ∞ ∞ [0.4,2.3] ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

RL41 ∞ ∞ ∞ ∞ ∞ ∞ ∞ [0.4,1.2] [0.6,2.1] ∞ ∞ ∞ ∞ ∞ ∞ 

RL45 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ [0.07,0.7] [1.1,9.2] [0.11,0.97] ∞ ∞ ∞ ∞ 

RL54 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞  [0.35,0.55] [0.45,0.73] [0.42,0.67] ∞ 

RL56 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ [2,7.8] ∞ 

RL80 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ [0.13,0.46] ∞ ∞ ∞ [0.45,1.64]

 746 
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