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Abstract—This paper deals with the problem of set-
membership identification and fault detection using a Bayesian 
framework. The paper presents how the set-membership model 
estimation problem can be reformulated from a Bayesian 
viewpoint in order to determine the feasible parameter set and, 
in a posterior fault detection stage, to check the consistency 
between data and the model. The paper shows that, assuming 
uniform distributed measurement noise and flat model prior 
probability distribution, the Bayesian approach leads to the 
same feasible parameter set than the set-membership strips 
technique and, additionally, can deal with models nonlinear in 
the parameters. The procedure and results are illustrated by 
means of the application to a quadruple tank process. 

I. INTRODUCTION 

N the Control Engineering field, the so-called Robust 
Identification techniques deal with the problem of 
obtaining not only a nominal model of the plant, but also 

an estimate of the uncertainty associated to the nominal 
model. Such model of uncertainty is typically characterized 
as a region in the parameter space or as an uncertainty band 
around the frequency response of the nominal model. 

Uncertainty models have been widely used in the design 
of robust controllers [1] and, recently, their use in model-
based fault detection procedures is increasing [2]. In this 
later case, consistency between new measurements and the 
uncertainty region is checked. When an inconsistency is 
found, the existence of a fault is decided. 

There exist two main approaches to the modeling of 
model uncertainty: the deterministic/worst case methods and 
the stochastic/probabilistic methods. For a survey, see e.g. 
[3]. Deterministic methods lead to hard bounds on the 
uncertainty region and the most representative are the set 
membership (SM) techniques [4] and the deterministic 
versions of the model error modeling (MEM) approach [5]. 

Stochastic methods, such as the Non Stationary Stochastic 
Embedding (NSSE) [6], lead to probabilistic bounds on the 
uncertainty region. In early years, this fact was perceived as 
a drawback but recent advances in robust risk adjusted 
controllers [7] and probabilistic fault detection [8] have 
given raise to stochastic methods. In particular, there is a 
renewed interest for the Bayesian point of view in system 
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identification [9]-[10]. The topic is not new since early 
works in system identification already considered the 
Bayesian parameter estimation problem [11] and model 
classification problem [12]. The Bayesian ideas, although 
appealing, have largely not been implemented due to the 
difficult computation of the integrals involved in the 
posterior distributions. Recent advances in simulation 
techniques such as the Markov chain Monte Carlo (MCMC) 
have overcome this situation [13]. 

In this paper, we focus on the problem of set-membership 
identification and fault detection using Bayesian tools. The 
paper presents how the set-membership model estimation 
problem can be reformulated such that the Bayesian tools 
can be used to determine the feasible parameter set and to 
check the consistency between data and the model. The 
paper shows that the Bayesian approach, assuming uniform 
distributed measurement noise and flat model prior 
probability distribution, leads to the same feasible parameter 
set than the set-membership approach. Additionally, the 
Bayesian methodology can deal with models nonlinear in 
the parameters such the ones derived from the use of 
observers. These features are exemplified using a quadruple 
tank process. 

This paper is organized as follows:  Section II establishes 
the model parameterization that is going to be used and 
formulates the parameter set estimation problem and the 
fault detection problem. Section III addresses both problems 
from a Bayesian viewpoint. In particular, we define the so-
called Bayesian credible model set and particularize it in 
order to solve the set-membership parameter estimation 
problem. We also derive a test to check for faults on the 
basis of the resulting feasible parameter set. Section IV 
illustrates the application of the proposed method to a 
quadruple tank process and presents the results in both the 
linear and the nonlinear cases. Finally, Section V concludes 
the paper. 

II. PROBLEM DEFINITION 

A. Model Parameterization 

Let us assume that the system can be expressed by means 
of the following regression model   

ˆ( ) ( , ) ( ) ( , ) ( ) , 1,...,y k F k e k y k e k k M    θ θ  (1) 

where 
- ( , )F k θ  is the regression function, or observation function, 

which, in a general case, is assumed to be nonlinear in the 
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parameters θ , and it can contain any function of inputs 
( )u k  and outputs ( )y k . 

- oθ Θ  is the parameter vector of dimension 1n  .  

- oΘ  is the set in the parameter space that contains the a 

priori bounds for the parameter values.   
- ( )e k  is an additive error term which is unknown but it is 

assumed to be bounded by a constant ( ) ( )e k k . 

B. Parameter Estimation 

According to [14], the parameter estimation problem 
consists in determining the region in the parameter space 
that contains all models consistent with the M input/output 
data. This consistency region is known as Feasible 
Parameter Set (FPS) and, for the parameterization (1), it is 
defined as follows 

 FPS | ( ) ( ) ( , ) ( ) ( ), 1, ,o y k k F k y k k k M      θ Θ θ       

(2) 

In the case that the regression function is expressed 

linearly as ( , ) ( )TF k kθ φ θ , the parameterization (1) can 

be formulated as  

ˆ( ) ( ) ( ) ( ) ( )Ty k k e k y k e k   φ θ      (3) 

where ( )T kφ  is the regressor vector of dimension 1 n . In 

this case, the FPS is a polytope that can be described in the 
 -polytope form [15]. Also, in the simplest case the FPS 
can be obtained by intersecting all M strips defined by the 

pairs of parallel lines defined by ( ) ( ) 2 ( )Ty k k k φ θ . 

In the case that the regression function is nonlinear in the 
parameters, the resulting FPS is no longer a convex polytope 
but a set with a complex shape. In order to avoid dealing 
with the exact description of this FPS, several algorithms 
exist that obtain inner or outer simpler regions that 
approximate the exact FPS. Such regions are known as 
Approximated Feasible Parameter Sets (AFPS).   

Inner approximations find the parameter set of maximum 
volume such that all the parameters of the approximate set 
are inside the feasible parameter set, AFPS FPSin  . On the 

other hand, outer approximation algorithms find the 
parameter set of minimum volume that guarantees that the 
feasible parameter set is inside the approximate set, 
FPS AFPSout . 

When ( , )F k θ  is linear, boxes, parallelotopes, ellipsoids 

or zonotopes are used to obtain the AFPS [16]-[21]. In the 
nonlinear case, a minimum outer box can be determined by 
means of a set of optimization problems [18]. But since the 
parameters enter in a nonlinear way in (1), the resulting 
optimization problems are nonconvex and obtaining the 
solution is NP-hard.  

As an alternative, recursive algorithms can be used as 
FPS( +1)=FPS( ) S( )k k k , where S(k) is the set of 

parameters consistent with data at instant k. 

    S( ) | ( ) , ( )nk k y k F k k       θ θ       (4) 

Recursive algorithms allow the efficient computation of 
inner, AFPS ( +1) AFPS ( ) S( )in ink k k , or outer 

approximations, AFPS ( ) S( ) AFPS ( +1)out outk k k  . 

In this approach, the AFPS can be approximated by using 
subpavings and the SIVIA algorithm which is based on 
refining the initial a priori set oΘ  by iteratively bisecting it 

[18]. 

C. Fault Detection 

Once the FPS (or its approximation) has been estimated 
with nonfaulty data, the fault detection test consists in 
checking if new data (possibly containing faults) are 
inconsistent with the FPS. The inconsistency can be checked 
by means of the intersection of S(k) with the FPS. A fault 
will be indicated if this intersection leads to an empty set 

S( ) FPSk           (5) 

In the linear case, if the identification data length is 
moderate, fault detection test (5) can be solved efficiently by 
determining the feasibility of a linear optimization problem. 
However, when the data length increases inner/outer 
approximations must be used and missed alarms (in outer 
approximations) and false alarms (in inner approximations) 
can appear [20]. 

III. SET-MEMBERSHIP ESTIMATION AND FAULT DETECTION 

IN THE BAYESIAN FRAMEWORK 

A. Bayesian Credible Model Set 

In the Bayesian framework, the model set that 
characterizes the model uncertainty can be described by 
means of a Bayesian Credible Model Set (BCMS) which is 
defined as follows: 

 : ( ) ( )G p G c   yB G        (6) 

where  TMyy )(...)1(y . 

The BCMS contains all the models G belonging to a 
model class G  whose posterior probability distribution 

conditioned to measurement data, p(G|y), is higher than a 
given critical value ( )c  , where 100(1-  )% is the desired 

credibility level. 
The set B  is inspired in the Feasible Model Set (FMS) of 

deterministic methods in the sense that it also combines a 
priori information with a posteriori information [22]. In the 
FMS, the a priori information is contained in the Candidate 
Model Set (CMS) which consists of a noise class and a 
model class. In the set B , the a priori information is defined 
by means of the prior probability distributions on the error 
term pe(e) and on the model p(G).   

The measurement data y, i.e. the a posteriori information, 
is introduced into the credible set by means of the likelihood 



 
 

 

function of the observations y conditioned to the model G, 
p(y|G).  

The posterior distribution p(G|y) of the model G 
conditioned to the observations y is obtained by applying the 
Bayes rule, 

( | ) ( )
( | )

( )

p G p G
p G

p


y
y

y
       (7) 

where the factor p(y) is just a normalizing constant. In 
summary, we have )()|()|( GpGpGp yy  , where the 

prior distribution p(G) contains the information about the 
plant before the data is obtained while the posterior 
distribution p(G|y) contains the information about the plant 
updated by the measurements y. 

B. Set-membership Estimation 

Let us illustrate how the FPS region defined in (2) can be 
obtained by means of the application of (7). Since the region 
defined in (2) describes parametric-type uncertainty, the 
Bayesian credible model set reduces to the Bayesian credible 
parameter set: 

 : ( ) ( )n p c   θ θ θ yB      (8) 

where the process model is characterized by means of the 
parameter vector θ . Now, we have to decide which is the 
model prior probability distribution, p( θ ). In the Bayesian 
framework, this probability is a subjective probability [22]. 
For instance, here it is assumed that we have no information 
about which the value of the “true” parameter vector θ  will 
be; consequently we take a flat p( θ ) over the initial set oΘ . 

This way the model posterior distribution is directly 
proportional to the likelihood function of the observations, 

)|()|( θyyθ pp  , in the considered initial support oΘ . 

The likelihood of the observations jointly conditioned to 
the model (parameter vector) and to the error bound 

 (1) ... ( )
T

M   on the additive error coincides in 

form with the error term probability distribution, i.e., 

 ˆ( | , ) | ,ep p y θ y y θ  , where  ˆ ˆ ˆ(1) ... ( )
T

y y My , 

since ˆ( ) ( , )y k F k θ , k , are deterministic quantities.   

If we want to estimate a hard-bounded 
uncertainty/credible region, we must assume that the error 
term is uniform distributed, ( )e k ~  ( ), ( )k k U , k , 

where ( )k  is selected to be the additive error bound of the 

set-membership setup presented in Section II. In this case, 
the resulting likelihood function is nonzero and constant in 
the region where models (parameters) are consistent with the 
measurements and it is zero outside this region.  

Note that, in this approach, we are not really concerned 
on obtaining the posterior distribution for ; instead, what 
we obtain is the region (within the initial support oΘ ) for 

which the posterior distribution for  is constant and 
nonzero. This region serves as a characterization of the FPS. 
Note also that, since the value of the posterior distribution 

for  is constant over the FPS, the  value is not relevant 
here. All models  will be equally probable to occur, and the 
probability level will be related to the FPS size.  

If we were interested in different levels of probability 
inside the hard-bounded FPS, we could use different prior 
distributions for , i.e. Gaussian distributions. Still, if we 
were interested in soft-bounded FPSs we could use, for 
instance, Gaussian likelihood functions instead of uniform 
likelihood functions. These two latter situations are out of 
the scope of this paper and will not be treated here. 

The likelihood function can be numerically estimated by 
using a Monte Carlo approach (see e.g. [9]-[10]). However, 
in the present paper, we estimate it by means of the gridding 
of the candidate parameter vectors i and taking the so-
called equation-error assumption [14]. On the contrary to, 
the error-in-variables approach, where the regression 
function itself presents an error term, the equation-error 
approach assumes that the error term is additive to data at 
each time sample k. This way, we can assume that the error 
samples )(ˆ)()( kykyke  , where ˆ( ) ( , )iy k F k θ , are i.i.d. 

(independent and identically distributed), and we can 
compute the likelihood function as follows 

1

ˆ( | , ) ( ( ) ( ) | , ( ))
M

e i e i
k

p p y k y k k


 y θ θ    (9) 

Therefore, the approximation for the FPS in this approach 
is the following: 

   AFPS | ( ) ( , ) | , ( ) 0, 1, ,i o e i ip y k F k k k M     θ Θ θ θ B

(10) 

A high level description of the procedure is summarized 
in the following algorithm: 

Algorithm  
(i) Define a grid of candidate models i oθ Θ . 

(ii) For a fixed iθ   

(ii.1) compute the error between the measured 
response y(k) and the output predicted by the model ˆ( )y k , 

k=1,…,M. 
(ii.2) estimate the probability that iθ  has generated 

y(k) by computing ˆ( ( ) ( ) | , ( ))e ip y k y k k θ , where this 

term corresponds to a uniform probability density 
function defined between ( )k  and ( )k . 

(ii.3) perform the product of all the previous terms 
k  in order to obtain the likelihood function 

corresponding to the M samples, ( | , )e ip y θ  .  See (9) 

(iii) Repeat (ii) for all the models iθ  in the grid in order 

to obtain the sampled credible region. 

It is noteworthy that there is no difference in the 
computation of the likelihood function whether ( , )F k θ  is 

linear in the parameters or not. Also, note that the resulting 
region is characterized by means of a grid of points 



 
 

 

belonging to the inner approximation of the feasible 
parameter set defined in (7). 

C. Fault Detection 

Once we have calibrated the model (i.e, once we have 
obtained the likelihood function ( | , )e ip y θ   for all the 

points iθ  in the parameter grid and for the nonfaulty 

samples k = 1,…,M), the detection of faults can be 
performed, for every new measurement y(k), k>M, by 
computing the new likelihood function 

ˆ( ( ) ( ) | , ( ))e ip y k y k k θ  and verifying whether there is 

at least one parameter vector jθ  in the grid for which both 

( | , )e jp y θ   and ˆ( ( ) ( ) | , ( ))e jp y k y k k θ  are nonzero. 

If this parameter (or set of parameters) exists, we conclude 
that the new measurement is consistent with the feasible 
parameter set.  

The consistency can be checked by simply multiplying 

both likelihood functions for each parameter iθ  in the grid. 

If the product is equal to zero for all the parameters in the 
grid, 

ˆ( | , )· ( ( ) ( ) | , ( )) 0,e i e i ip p y k y k k  y θ θ θ ,  (11) 

we conclude that the new measurement y(k) is not consistent 
with the feasible parameter region and therefore we decide 
that a fault has occurred. 

Of course, the ability to detect “small” faults depends on 
the grid density. A denser grid will be able to detect smaller 
deviations of the parameter vector. This implies a more 
computationally intense calibration stage. However, the fault 
detection stage is not so intensive computationally since it 
can consider one sample at once. This feature allows the on-
line implementation of the method. 

IV. EXAMPLE 

A. Plant Description 

A quadruple-tank process, proposed by Johansson [23], is 
used to illustrate the methodology presented in this paper. 
The process inputs are the input voltages to the pumps, 1v  

and 2v , and the process outputs are the tank levels 

, 1, ,4ih i   .  

For illustrative purposes, we focus only on a part of the 
whole system. We assume that the levels 1h , 3h  and the 

voltage 1v  can be directly measured. The equation that 

describes the dynamic behavior of this part of the system is: 

31 1 1
1 1 3 1

1 1 1

2 2
aa k

h gh gh v
A A A


               (12) 

where 1 1 /h dh dt , a1 and a3 are the cross-sections of the 

outlet holes of tanks 1 and 3, 2
1 28A cm  is the cross-section 

of tank 1. The term 1 1k v  with 3
1 3.33 /k cm Vs  is the first 

pump flow and the parameter 1 0.7  is determined from 

how the first valve is set prior to the experiment. The gravity 

acceleration is 2981 /g cms g. The parameters a1 and a3 are 

the ones to be estimated and their nominal values are 

assumed to be 2
1 3 0.071a a cm  . 

B. Discrete Models 

Discrete models for the linear and non-linear regression 
cases will be used to illustrate that the proposed approach 
works well in either case: 

1) Linear case. A discrete, linearized version of (12) can 
be obtained by means of the forward approximation of the 

derivative 1 1( ( ) ( 1)) / sh h k h k T    with sampling time 

1sT s . This way, (12) can be expressed in the following 

linear regression form 

1 1
1 1 1

1

( ) ( 1) ( ) ( 1) ( )T k
h k h k k v k e k

A


     φ θ   (13) 

where 1 3
1 1

1 1
( ) 2 ( 1) 2 ( 1)T k gh k gh k

A A

 
    
 

φ  is the 

regressor vector and  1 3
T

a aθ  is the model parameter 

vector to be estimated. The term ( )e k is the additive error 

due to the measurement noises and discretization and it is 
assumed to be bounded, 1( ) 0.05e k cm  . 

2) Non-linear case. A model nonlinear in the parameters 
can be obtained if an output observer is used. Observers 
improve the ability of detecting output faults but lead to 
structures nonlinear in the parameters. In our example, the 
resulting expression is 

 

1 1
1 1 1

1

1 1

ˆ ˆ( ) ( 1) ( ) ( 1)

ˆ( ) ( 1) ( 1)

T k
h k h k k v k

A

e k L h k h k


    

    

φ θ
  (14) 

where 1 3
1 1

1 1ˆ( ) 2 ( 1) 2 ( 1)T k gh k gh k
A A

 
    
 

φ , 

 1 3
T

a aθ , and 1( ) 0.05e k cm  .   

C. Uncertainty estimation in a fault-free scenario 

To obtain the uncertainty region (FPS), i.e., to determine 
the uncertainty region for a1 and a3 in the parameter space, a 
set of M=140 measurements has been obtained in a fault-
free scenario.  

1) Linear case. Fig. 1a shows the FPS obtained by the 
strips intersection using the set-membership technique 
described in Section II. The red little circles indicate the 
final (i.e., after M intersections) polytope vertices.  

Fig. 1b shows the FPS region obtained by computing the 
contour of the sampled likelihood function assuming that the 
error is uniform distributed as  , U  for a grid of 6060 



 
 

 

parameters. As expected, this region coincides to the one 
obtained by the strips intersection method shown in Fig. 1a.   
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(a)             (b) 

Fig. 1.  FPS obtained by (a) strips intersection and (b) point gridding 

 
2) Non-linear case. In the observer case, since the 

resulting recursive structure is nonlinear in the parameters, 
the strips intersection technique cannot be applied. By 
contrast, in the Bayesian approach, the same methodology 
(9)-(10) can be used for either linear or nonlinear systems. 

Fig. 2a shows the FPS region obtained for the case when 
an observer with gain L=0.1 is used. As expected, the use of 
the observer leads to a tightened FPS region compared to 
those of Fig. 1.  
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Fig. 2.  (a) FPS for the nonlinear case. (b) Faulty scenario 

D. Fault detection results 

In order to compare the performance of the strips 
intersection and Bayesian fault detection tests, different fault 
scenarios have been created.  

Here we illustrate the case when a fault consisting of an 
additive constant of value 0.035 acting over the parameter 

1a  is introduced at k=1201. The faulty behavior is shown in 

Fig. 2b. 
Fig. 3 illustrates the fault detection test (5) for the set-

membership technique based on strip intersection in the 
linear case. Fig. 3a shows the FPS and the consistency 
parameter strip Sk  corresponding to the measured data at 

k=1200. Since the intersection between the FPS and Sk  is 

not empty, we conclude that the observed deviation from the 
nominal behavior is due to the model uncertainty and not to 
a fault. In other words, we say that the measurement at 
k=1200 is consistent with the model and consequently we 
(correctly) decide that there is no fault. On the other hand, 
Fig. 3b shows that at k=1201 the FPS and the strip Sk  are 

disjoint, so their intersection is empty. This indicates that the 
deviation of the behavior cannot be explained by the model 
uncertainty and therefore we (correctly, again) decide that a 
fault has occurred. 
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(a)             (b) 

Fig. 3.  Fault detection test (5): (a) No fault, (b) fault 

Finally, Fig. 4 illustrates the Bayesian fault detection test 
in the linear case for a grid of 6060 parameters. Fig. 4a 
shows the initial likelihood function corresponding to the 
FPS (10) and the likelihood function computed for the new 
measurement at k=1200. The top value in both functions has 
been scaled to 5 and 10 for comparison purposes. In this 
case, the new likelihood totally covers the FPS and so their 
product is nonzero over the entire FPS region. Since the 
product of the two likelihood functions is nonzero in at least 
one point of the grid, we conclude that the data are 
consistent with the model and therefore we (correctly) 
decide that there is no fault. On the other hand, Fig. 4b 
illustrates that at k=1201, the two likelihood functions are 
totally separated. This way, their product is zero for all the 
values over the parameter grid. The conclusion is that the 
observed deviation of the behavior is not due to the 
uncertainty because the FPS does not contain any value 
consistent with the observed data. In this case we (correctly, 
again) decide that a fault has taken place. 
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Fig. 4.  Likelihood fault detection test (11): (a) No fault, (b) fault 

In the example above, for the linear case, the strips 
intersection test and the Bayesian test have led to the same 
successful results since the obtained FPS regions were the 
same. 

In the non-linear case, the comparison cannot be 
performed since the strips technique cannot deal with 
structures nonlinear in the parameters. However, for the case 
of plant plus observer, the Bayesian fault detection test has 
been applied and has successfully detected the fault at 
k=1200. Even more, in the case when an output observer is 
used, since the resulting FPS regions may be smaller, the 
methodology is able to detect faults of smaller magnitude. In 
this example, the test (11) can detect faults as small as 
0.001cm2, for an observer gain of 0.1 and a 6060 parameter 
grid in the range [0.076 0.066][0.076 0.066]. 



 
 

 

V. CONCLUSION 

In this paper we have presented a new set-membership 
estimation approach to obtain hard-bounded feasible 
parameter regions and to perform fault detection on the basis 
of them. The method is based on a Bayesian framework for 
system identification assuming that the error bounds are 
uniform distributed and that the model prior distribution is 
flat. In the linear case, the method presented here leads to 
the same FPS regions obtained by the strips intersection set-
membership technique. 

The Bayesian approach presents some advantages and 
drawbacks compared to the set-membership technique. In 
the identification stage, the computation of the likelihood 
function by means of the expression (9) may result a 
computationally intensive task and the more points in the 
grid of θ , the more computation resources are needed. On 
the other hand, the Bayesian approach can deal with 
nonlinear parameterizations of the system. This is especially 
interesting when nonlinear structures, such as observers, are 
used to improve the model estimation.   

Although in the quadruple tank case study considered 
here we have obtained a deterministic region as a particular 
case of the Bayesian methodology, it has to be stressed that 
the Bayesian approach is a probabilistic approach, and that 
this stochastic nature is an advantage rather than the reverse. 
In a general case, the adequate selection of the model prior 
probability distributions may lead to probabilistic 
uncertainty regions that are tighter than the ones obtained by 
conventional system identification methods. 

Regarding the fault detection stage, we have illustrated 
the detection of faults for the non-linear case. Since the FPS 
regions obtained in the calibration stage were similar for the 
set-membership technique and the Bayesian technique, the 
two fault detection procedures (5) and (11) lead to the same 
results. In this stage, the Bayesian method presents a 
computation cost similar to the set-membership strips 
approach and it can also be implemented on-line. 

It is important to mention that the characterization of the 
FPS region by means of a point-wise gridding of the initial 
parameter set presents some shortcomings in the fault 
detection stage. For example, very small FPS could lay in 
the spaces between the points grid, thus giving zero 
likelihood for all the points and deciding erroneously that a 
fault has taken place. This drawback can be overcome by 
taking a denser grid, by implementing an adaptive 
mechanism in the points’ selection stage, or even by 
generalizing the method in order to characterize the FPS by 
means model intervals instead of model points.  
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