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SUMMARY

In this paper, robust fault detection is addressed based on evaluating the residual energy that it is compared
against worst-case value (threshold) generated considering parametric modelling uncertainty using interval
models. The evaluation of the residual/threshold energy can be done either in the time or frequency domain.
This paper proposes methods to compute such energy in the twodomains. The first method generates the
adaptive threshold in the time domain through determining the worst-case time evolution of the residual’s
energy using a zonotope-based algorithm. The second methodevaluates the worst-case energy evolution in
the frequency domain using the Kharitonov polynomials. Results obtained using both approaches are related
through the Paserval’s Theorem. Finally, two application examples (a smart servoactuator and a two degrees
of freedom helicopter) will be used to assess the validity ofthe proposed approaches and compare the results
obtained.
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1. INTRODUCTION

Model-based fault detection of dynamic processes is based on the use of models to check the

consistency of observed behaviours trough installed sensors. However, when building a model

of a dynamic process to monitor its behavior, there is alwaysa mismatch between the modeled

and real behavior. This is because some effects are neglected, some non-linearities are linearised

in order to simplify the model, some parameters have tolerance when they are compared with

several units of the same component, some errors in parameters or in the structure of the model are

introduced in the model calibration process, etc. These modeling errors introduce uncertainty in the

model and interfere with the fault detection. A fault detection algorithm able to handle uncertainty

is called robust [11]. The robustnessof fault detection algorithm is the degree of sensitivity to

faults compared to the degree of sensitivity to uncertainty. These last years, research on robust fault

detection methods has been very active in the fault detection and isolation (FDI) community. One

of the most developed families of approaches, calledactive, is based on generating residuals, which
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are insensitive to uncertainty, while at the same time sensitive to faults [11]. On the other hand,

there is a second family of approaches, calledpassive, which enhances the robustness of the fault

detection system at the decision-making stage. Several techniques have been used, but most of them

are based on using anadaptive thresholdat the decision-making stage [21, 28, 24, 50].

Adaptive threshold generation has been a very active area ofresearch in robust fault detection.

Since the seminal works of Horak [28] in case of structured uncertainty and Emami-Naeini [21]

in case of unstructured uncertainty, many researchers haveanalyzed how the effect of model

uncertainty should be taken into account when determining the optimal threshold to be used

in residual evaluation. Two approaches have been followed:the first based on determining the

optimal threshold in the time domain [28, 45, 29] and the second in the frequency domain

[21, 18, 24, 27, 47]. In the time domain approach, the uncertainty has been mainly modeled

using structured uncertainty (“interval models”), while in the frequency domain approach first

unstructured uncertainty was used [28] and later structured uncertainty has been also taken into

account [27, 47]. However, the connection between time and frequency domain approaches has not

been established yet. In Hamelin [27], it is suggested as a future research. One of the difficulties in

connecting both approaches is that in the time-domain approaches, the optimal threshold is directly

determined through the interval obtained by propagating parameter uncertainty to the residual. On

the other hand, in the frequency domain approaches, the optimal threshold is determined by the

worst-case evaluation of the residual’s energy on a time window. This difference can be explained

because the optimal threshold, in frequency or time domain,is computed using the most direct form

in each domain.

The aim of this paper is to introduce and compare two approaches for evaluating adaptive

thresholds bounding residual energy in case of consideringparametric uncertainty by means of

interval models. The first approach works in the time domain while the second in the frequency

domain. The time domain approach generates the adaptive threshold through determining the worst-

case time evolution of the residual’s energy using a zonotope-based algorithm. On the other hand,

the frequency domain approach evaluates the worst-case energy evolution in the frequency domain

using the Kharitonov polynomials. Results obtained using both approaches are related through the

Paserval’s Theorem. Finally, two application examples (a smart servoactuator and a two degrees

of freedom helicopter) is used to assess the validity of the proposed approaches and compare the

results obtained.

The structure of this paper is the following: InSection2, the robust fault detection problem using

energy residual evaluation by considering parametric uncertainties by means of interval models is

introduced. InSection3, an energy residual threshold generation approach using the worst-case

response in time domain computed trough a zonotope based algorithm is presented. InSection4, an

energy residual threshold generation approach in the frequency domain usingH∞ and Kharitonov

polynomials is presented . Relation between time-domain and frequency-domain residual evaluation

using Parseval’s Theorem is presented inSection5. Section6 presents the relation between time and

frequency domains of adaptive thresholding methods. InSection7, an application example based on

the DAMADICS servoactuator benchmark is presented and usedto assess the validity of the results

derived in the paper. InSection8, a second illustrative example based on the Twin-Rotor MIMO

System (TRMS) is introduced. Finally, inSection9, the main conclusions are summarised.
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2. PROBLEM STATEMENT

2.1. Problem set-up

Let us consider that the system to be monitored can be described by a MIMO linear uncertain

dynamic model expressed as follows:

ẋ(t) = A(θ̃)x(t) + B(θ̃)u0(t) + Fa(θ̃) fa(t) (1)

y(t) = C(θ̃)x(t) + Fy(θ̃) fy(t) (2)

whereu0(t) ∈ ℜnu is the real system input,y(t) ∈ ℜny is the system output,x(t) ∈ ℜnx is the state-

space vector,fa(t) ∈ ℜnu and fy(t) ∈ ℜny represents faults in the system actuators and output sensors,

respectively.A(θ̃), B(θ̃), C(θ̃), D(θ̃), Fa(θ̃) andFy(θ̃) are matrices of appropriate dimensions whereθ̃

is the vector of system parameters.

The system (1)-(2) is monitored using a linear observer with Luenberger structure that uses an

interval modelof the system, i.e., a model with parameters bounded by intervals

θi ≤ θi ≤ θi , i = 1, . . . ,nθ (3)

that represent the uncertainty about the exact knowledge ofreal system parameters̃θ. ∗ This

observer, known as aninterval observer, is expressed as follows [37]:

˙̂x(t, θ) = (A(θ) − LC(θ)) x̂(t, θ) + B(θ)u(t) + Ly(t)

= A0(θ)x̂(t, θ) + B(θ)u(t) + Ly(t) (4)

ŷ(t, θ) = C(θ)x̂(t, θ)

whereu(t) is the measured system input vector,˙̂x(t, θ) is the estimated system state vector, ˆy(t, θ) is

the estimated system output vector andA0(θ) = A(θ) − LC(θ) is the observer matrix. Notice that the

measured system input,u(t), includes the effect of faults in the input sensors and can be written as:

u(t) = u0(t) + Fu(θ) fu(t) (5)

whereu0(t) is the real system input,fu(t) ∈ ℜnu is the input sensor fault whileFu(θ) ∈ ℜnu×nu is its

associated matrix.

The observer gain matrixL ∈ ℜnx×ny is designed to stabilize the matrixA0(θ) and to guarantee

a desired performance regarding fault detection for allθ ∈ Θ [12]. The effect of the uncertain

parametersθ on the observer temporal response ˆy(t, θ) will be bounded using an interval satisfying

ŷ(t, θ) ∈
[

ŷ(t), ŷ(t)
]

(6)

∗The intervals for uncertain parameters can be inferred fromreal data using set-membership parameter estimation
algorithms [38, 43].
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in a non-faulty case.Such interval can be computed independently for each outputi (i =

1, . . . ,ny), neglecting couplings among outputs, as follows

ŷi(t) = min
θ∈Θ

(ŷi (t, θ)) and ŷi(t) = max
θ∈Θ

(ŷi (t, θ)) (7)

subject to the observer equations given by (4). The optimisation problems(7) are solved using

numerical methods as in [46]. However, in this paper an alternative approach based on the

use of zonotopes (seeAlgorithm 1 in Section 3 will be used that is more efficient from the

computational point of view). R2-1, R2-2

2.2. Observer design

The design of the interval observer (4) can be solved with the LMI pole placement technique [12,

13, 48], that allows to locate the poles of the observer in a subregion of the left half-plane using a

LMI region assuming the pair(A(θ),C(θ)) is detectable for allθ ∈ Θ. R2-3

In particular, a disk LMI region calledD is defined with an affix (−q, 0) and a radiusr such that

(−q+ r) < 0. The two scalarsq and r are used to determine a specific region included in the left

half-plane where the observer eigenvalues will be placed. Therefore, this region puts a lower bound

on both the exponential decay rate and the damping ratio of the closed-loop response. The design of

the interval observer (4) such that the observer poles are placed in this LMI region requires to find

the observer gainL and unknown symmetric matrixX = XT > 0 such that:















−rX qX+ ((A(θ) − LC(θ))TX)T

(q+ (A(θ) − LC(θ))TX −rX















< 0, (8)

for all θ ∈ Θ.

Notice that expression (8) is a Bilinear Matrix Inequality (BMI) since there is a product between

L andX. Thus, it cannot be solved with LMI classical tools. But, it is possible to transform it into

the following LMI by means of the following change of variableW = LTX,:















−rX qX+ XT A(θ) −WTC(θ)T

(q+ A(θ)T)X −C(θ)TW −rX















< 0. (9)

Then, the design procedure boils down to solving the LMI (9) and determiningL = (WX−1)T .

To practically solve (9), two approaches have been proposed in the literature. The first approach

is based on gridding the parameter space and solving the LMI’s for each point in the grid. However,

this approach does not rigourously guarantee observer performance for allθ ∈ Θ. Alternatively, a

second approach can be used based on representing the interval model by a polytopic model that

includes the interval model. The polytopic model is obtained by the convex hull approach (see [4]).

Then, applying the results presented in the same reference [4], the solution of LMIs (9) can be

obtained by solving them in the vertices of the polytopic model if the matrixC does not depend on

the uncertain parametersθ. In case this matrix depends of the uncertain parameters, [4] proposes a

transformation of the system representation by means of including a filter.
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2.3. Fault detection test

Fault detection is based on generating a nominal residual comparing the measurements of physical

system variablesy(t) with their estimation ˆy(t) provided by the observer (4):

r(t) = y(t) − ŷ(t, θn) (10)

wherer(t) ∈ ℜny is the residual set andθn being the nominal parameters that can be obtained

as: θn = (θ + θ)/2. . According to [25], the computational form of the nominal residual generator, R2-4

obtained using (4), is:

r(s) = (I − H(s, θn)) y(s) −G(s, θn)u(s) (11)

that has been derived taken into account that the input/output form of the system (1)-(2) (assuming

zero initial conditions) is given by

y(s) = y0(s, θ̃) +G fa(s, θ̃) fa(s) +G fy(s, θ̃) fy(s) (12)

where:

y0(s, θ̃) = Gu(s, θ̃)u0(s) (13)

Gu(s, θ̃) = C(θ̃)(sI − A(θ̃))−1B(θ̃) (14)

G fa(s, θ̃) = C(θ̃)(sI − A(θ̃))−1Fa(θ̃) (15)

G fy(s, θ̃) = Fy(θ̃) (16)

and the input/output form of the observer (4) is expressed as follows

ŷ(s, θ) = G(s, θ)u(s) + H(s, θ)y(s)

= G(s, θ)u0(s) + H(s, θ)y(s) +G fu(s, θ) fu(s) (17)

where:

G(s, θ) = C(θ)(sI − A0(θ))−1B(θ) (18)

H(s, θ) = C(θ)(sI − A0(θ))−1L (19)

G fu(s, θ) = G(s, θ)Fu(θ) (20)

When considering model uncertainty located in parameters,the residual generated by (10) will

not be zero, even in a non-faulty scenario. To cope with the parameter uncertainty effect, a passive

robust approach based on adaptive thresholding can be used [28, 45, 1, 5]. Thus, using this

passive approach, the effect of parameter uncertainty in the residualr(t) (associated to each system

outputy(t)) is bounded by the interval [46]:

r(t) ∈ [r(t), r(t)] (21)

where:

r(t) = ŷ(t) − ŷ(t, θn) andr(t) = ŷ(t) − ŷ(t, θn) (22)
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whereŷ(t) andŷ(t) are the bounds of the system output estimation computed component-wise using

the interval observer (4) and obtained according to (7). The residual bounds (22) can be expressed

in input-output form using (17) as follows:

r(t) = min
θ∈Θ

L
−1 {∆G(s, θ)u(s) + ∆H(s, θ)y(s)} (23)

r(t) = max
θ∈Θ

L
−1 {∆G(s, θ)u(s) + ∆H(s, θ)y(s)} (24)

where: ∆G(s, θ) = G(s, θ) −G(s, θn) and ∆H(s, θ) = H(s, θ) − H(s, θn). θn are the nominal

parameters.

Then, the fault detection test could be based on checking if the residuals satisfy or not the

condition given by (21). In case that this condition does not hold, a fault can be indicated.

However, in this paper, an energy based adaptive thresholding technique will be used based not

in bounding directly the residual, as discussed above, but instead a residual evaluation function. The

residual evaluation function is the residual energy

J(t) = ‖r(t)‖e (25)

that can be evaluated either in the time or frequency domain.Then, the fault detection decision is

based on the following rule:
J(t) < Jth(t) for f (t) = 0,

J(t) > Jth(t) for f (t) , 0.
(26)

whereJth(t) is the threshold for the residual energy taking into account parameter uncertainty and

f (t) represents the considered faults.

According to the literature [17], fault detection test based on residual energy evaluationhas the

advantage that is less sensitive to noise that basic fault detection test (21).

The thresholdJth is generated in such a way that with the considered parameteruncertainty the

worst-case energy is bounded. So, while the energy of the nominal residual is less than this threshold

no fault can be indicated. Otherwise, a fault can be indicated. This is the way how robustness is

achieved. On the other hand, this threshold establishes theminimum detectable fault. That is, the

minimum fault size such that will produce a energy bigger that the threshold. Faults smaller than

this size will not be detected (missed alarms).

3. ADAPTIVE THRESHOLDING IN THE TIME DOMAIN

3.1. Energy based adaptive thresholding in the time domain

As discussed in [17], the residual evaluation function based on residual energy J(t) = ‖r(t)‖e can be

evaluated in the time domain using a time windowT † as follows: R2-6
R2-5

†The selection of the time window length will be discussed later in the paper.
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J(t) = ‖r(t)‖e,t,T = ‖r(t)‖2,t,T =

√

∫ t

t−T
r ′ (τ) r (τ) dτ (27)

Then, the adaptive thresholdJth(t) in (26) can be computed as:

Jth,t(t) = max
(∥

∥

∥r(t)
∥

∥

∥

e,t,T
, ‖r(t)‖e,t,T

)

(28)

where

∥

∥

∥r(t)
∥

∥

∥

e,t,T
=

∥

∥

∥r(t)
∥

∥

∥

2,t,T
=

√

∫ t

t−T
r ′ (τ) r (τ) dτ (29)

and

‖r(t)‖e,t,T = ‖r(t)‖2,t,T =

√

∫ t

t−T
r ′ (τ) r (τ) dτ (30)

The interval for residual
[

r̂(t), r̂(t)
]

needed to compute adaptive thresholdJth(t) can be obtained

from the interval predicted output
[

ŷ(t), ŷ(t)
]

by means of (23) and (24). The interval for the predicted

output can determined by computing the worst-case time response of the observer given by (4).

The computation of the worst-case time response will require to solve two optimization problems

(7) for each output subject to:

ŷi(t, θ) = C(θ)eA(θ)(t−to)x(to) +
∫ t

to

C(θ)eA(θ)(t−τ)B(θ)u(τ)dτ (31)

x(0) ∈
[

x(0), x(0)
]

(32)

This problem was first formulated by Horak [28] in the context of adaptive threshold generation.

He proposed an algorithm calledRMI (“ reachable minimum interval”) based on dynamic

optimization to solve it‡. The difficulty of solving this problem is due to the fact that in general it is

not true that considering only the responses at vertices of uncertain parameter and initial conditions

intervals would produce the tightest interval containing all possible time responses. Only a small

number of systems satisfy this desirable property [26]. In particular, they are those that satisfy the

quasi-isotonicity property.

In case that this property is not satisfied, the vertex solution only provides an inner solution,

according to Kolev [31]. The existent algorithms to determine
[

ŷ(t)
]

follow mainly two approaches

after applying some kind of time-discretization: the first approach is based on trying to solve the

associated optimizations problems (7) (see for example [46]). This is not in general an easy task

since global optimization is required to avoid local minimainduced by the non-convexity of the

problems (7).

‡ In the literature this problem is found in many places:Qualitative Reasoning[10, 33], Constraint Satisfaction[16],
Validated Initial Value Problems[9, 30, 35, 40, 41, 42], Automatic Control[6, 20, 49], Fault Detection[5, 28, 45] and
Circuit Tolerance Analysis[23, 31]
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On the other hand, the second approach tries to find one step recursion that provides interval
[

ŷ(t)
]

at present instant from previous intervals determined in previous time instants (see for example

[20]). However, in this case there are also some problems as the wrapping effect that must be handled

[46]). In this paper, this second approach will be followed by using zonotopes as means to handle the

wrapping effect [2]. This approach guarantees that the zonotope computed at each iteration encloses

all possible states reached by the interval observer.

3.2. Implementation using set-computations

In order to compute the interval
[

ŷ(t)
]

at present instant from previous intervals determined in

previous time instants using zonotopes andthe method presented in [2] (see Appendix A), the R2-7

observer (4) should be discretised. In principle any time discretisation scheme can be used. In this

paper, the Euler discretisation approach has been applied what leads the observer (4) to formulated

in discrete-time as follows:

x̂(k) = Ã0(θ)x̂(k− 1)+ B̃0(θ)v(k− 1) (33)

ŷ(k) = C̃(θ)x̂(k) (34)

where: Ã0(θ) = I + ∆t(A(θ) − LC(θ)), B̃0(θ) = ∆t [B(θ) L] and v(k) =
[

u(k) y(k)
]′ and ∆t is

discretisation time step.

The discretisation error can also be bounded and included asextra uncertainty in the model

in order to guarantee that the interval
[

ŷ(t)
]

contains all possible trajectories generated from the

continuous-time observer (4) at each time instant [30].

Definition 1. Given the sequence of measured inputs(u(i))k−1
0 and outputs(y(i))k−1

0 and assuming

that the initial states are bounded by a known compact setX0. Then, the exactuncertain estimated

state setXk at time k is expressed by:

Xk =
{

x̂(k) :
(

x̂(i) = Ã0(θ)x̂(i − 1) + B̃0(θ)v(i − 1)
)k

i=1
| x̂0 ∈ X0, θ ∈ Θ} (35)

The uncertain state set described inDefinition 1at timek can be computed approximately by

admitting the rupture of the existing relations between variables of consecutive time instants. This

allows to compute an approximation of this set from the approximate uncertain set at timek−1.

Definition 2. Consider the interval observer given by(33)-(34), the set of uncertain states at time

k−1 (Xk−1) and the input/ouput values{u(k− 1), y(k− 1)}. Then, the approximate set of estimated

statesXe
k at time k based on the measurements up to timek−1 is defined as:

X
e
k =

{

x̂(k) : x̂(k) = Ã0(θ)x̂(k−1)+ B̃0(θ)v(k−1) | x̂(k−1) ∈ Xk−1, θ ∈ Θ} (36)

Definition 1 and Definition 2 can be easily adapted to describe the exact uncertain estimated

output setYk at timek and the approximate set of estimated outputsYe
k.
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Since the exact set of estimated statesXe
k and outputsYe

k are difficult to compute, one way is to

bound them using some geometric shapes easy to compute as forexample: boxes (interval hull) as

in [44], ellipsoids as in [36] or zonotopes as in [2].

Here, the set of estimated statesXe
k (or outputsYe

k) introduced inDefinition 2will be approximated

iteratively using zonotopes (seeAppendixA). From these zonotopes, an interval for each state

variable and output can also be obtained by computingthe interval hull of the zonotope Z,

denoted as�Z . The sequence of interval hulls�Xe
k and�Ye

k with k ∈ [0, n] will be called the R2-8

interval observer estimationof the system (33)-(34) wheren is the number of measurement data

considered. Following the previous idea,Algorithm 1is proposed to determine an approximation of

set of uncertain estimated statesandoutputs.

Algorithm 1 Interval Observer using Set Computations

1: Xe
k ⇐ X0

2: k← 1
3: while k ≤ n do
4: Obtain and store input-output data{u(k− 1), y(k− 1)}
5: Compute the approximated estimated state set,X

e
k

6: Compute the approximated estimated output set,Y
e
k

7: Compute the interval hull of the approximated estimated state set,�Xe
k =

[

x̂(k), x̂(k)
]

8: Compute the interval hull of the approximated estimated output set,�Ye
k =

[

ŷ(k), ŷ(k)
]

9: k← k+ 1
10: end while

The implementation of steps 5-8 in theAlgorithm 1 using zonotopes is described in detail in

AppendixA

4. ADAPTIVE THRESHOLDING IN THE FREQUENCY DOMAIN

4.1. Introduction

Adaptive thresholding in the frequency domain has started with the seminal work of Emami-

Naeini [21]. Then, it was followed by Ding [18] and Frank [24]. In these works, the uncertainty

was considered unstructured. But, more recently, Rambeaux[47] and Hamelin [27] have considered

the case of structured uncertainty. All these works try to bound the residual’s energy taking into

account the uncertainty in the model. The first approaches considering unstructured uncertainty

useH∞ techniques to bound the effect of this uncertainty and the second approaches considering

structured uncertainty use instead interval polynomial methods. In the frequency domain approach,

although the considered residual evaluation function is again the residual’s energy, it is evaluated in

the frequency domain according to:

J(t) = ‖r(t)‖e,ω,W = ‖r(t)‖2,ω,W =

√

1
π

∫ W

0
r ′ (ω) r∗ (ω) dω (37)

wherer (ω) = F {r(t)} andW is the frequency window.
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In order to use (37) in the fault detection test (26), the adaptive thresholdJth should also be

obtained in the frequency domain considering the effect of the parametric uncertainty in the residual

as follows

Jth,ω(t) = sup
θ∈Θ

(

1
π

∫ W

0
|r (ω, θ)|2 dω

)

1
2

(38)

or alternatively, considering (23)-(24) as follows

Jth,ω(t) = sup
θ∈Θ

(

1
π

∫ W

0
|∆G (ω, θ) u (ω) + ∆H (ω, θ) y (ω)|2 dω

)

1
2

(39)

This allows to compute the adaptive thresholdJth that will be used in the context of the fault

detection rule (26).

4.2. Energy based adaptive thresholding using H∞

According to Chen [11], the adaptive thresholdJth (38) can be bounded in theH∞ framework as

follows

Jth,ω(t) < δu ‖u(t)‖e+ δy ‖y(t)‖e (40)

taking into account that

‖∆G (ω, θ)‖∞ < δu and ‖∆H (ω, θ)‖∞ < δy (41)

for all θ ∈ Θ and where‖u(t)‖e and‖y(t)‖e are the input and ouptut energy, respectively, evaluated at

every time instant either in the time domain (27) or in the frequency domain (37).

Then, the fault detection decision rule (26) applies as well.

4.3. Energy based adaptive thresholding using Kharitonov polynomials

TheH∞ approach bounds the worst-case frequency response in a non-structured way as indicated in

(41). Alternatively, the worst-case frequency response can bebetter approximated in the parametric

framework. In particular, the evaluation ofJth through (38) requires to determine

sup
θ∈Θ
|r (ω, θ)| (42)

according to Rambeaux [47]. This problem is related to the evaluation of frequency response

envelopes of an interval system. The maximum envelope always corresponds with

sup
θ∈Θ
|r(ω, θ)| =

sup
θ∈Θ
|N(ω, θ)|

inf
θ∈Θ
|D(ω, θ)| (43)

and it can be determined using Kharitonov polynomials (seeAppendix B) associated with

the numeratorN and the denominatorD of r assuming that the uncertain parametersθ are

independent [34]. However, frequency envelopes are not defined by a single analytic function in all

the frequency ranges. Instead, the frequency domain shouldbe decomposed into different frequency

intervals [ωki , ωl i ], i = 1, ..., p, p being the number of intersections of the Kharitonov rectangles with
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both the imaginary and real axes. Hence, the maximum envelope can be expressed as follows:

sup
θ∈Θ
|r(ω, θ)| =

p
∑

i=1

|r i(ω)| I i (44)

wherer i(ω) = r(ω, θi) is the maximum frequency envelope in the frequency range [ωki , ωl i ] obtained

with a given value of the uncertain parameterθi andI i is an indicative function such that

I i =















1 i f ω ∈ [

ωki , ωl i
]

0 i f ω <
[

ωki , ωl i
]

(45)

Then

Jth,ω =















1
π

∫ W

0

p
∑

i=1

(|r̄ i(ω)| I i)
2dω















1/2

=















p
∑

i=1

1
π

∫ ωli

ωki

(|r̄ i(ω)| I i)
2dω















1/2

(46)

5. RELATING TIME AND FREQUENCY RESIDUAL EVALUATION APPROACHES

After presenting the time and frequency domain approaches to residual evaluation and adaptive

threshold generation, we now relate these two approaches through Parseval’s Theorem [3].

5.1. Equivalence of unlimited time and frequency residual energy evaluation

In Fourier signal analysis, theParseval’s Theoremestablishes a link between the evaluation of the

signal’s energy in the time and frequency domains, as follows

‖r(t)‖e = ‖r(t)‖2,t = ‖r(t)‖2,ω (47)

where:

‖r(t)‖2,t =
√

∫ ∞

0
r ′ (τ) r (τ) dτ (48)

‖r(t)‖2,ω =
√

1
π

∫ +∞

0
r ′ (ω) r∗ (ω) dω (49)

The equivalence between time and frequency signal energy evaluation established by Parseval’s

Theorem requires that the signal should be evaluated in time-domain in the intervalt ∈ [0,∞) and in

frequency-domain in the intervalω ∈ (−∞,∞), respectively. However, the residual time evaluation

function (27) considers the energy in a limited time and the frequency evaluation function (37)

considers energy in a limited frequency window.

5.2. Equivalence of time and frequency limited residual energy evaluation

Defining a time-window limited residual as

rT(t) = r(t)i [t−T,t](t) (50)
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with:

i [t0,t1](t) =















1 i f t ∈ [t0, t1]

0 i f t < [t0, t1]
(51)

the residual time evaluation function (27) can be written as

‖r(t)‖2,t,T =
√

∫ t

t−T
r ′ (τ) r (τ) dτ =

√

∫ ∞

0
r ′T (τ) rT (τ) dτ = ‖rT(t)‖2,t (52)

Then, applying Parseval’s Theorem to (52):

‖rT(t)‖2,ω =
√

∫ ∞

0
r ′T(τ)rT(τ)dτ =

√

1
π

∫ ∞

0
r ′T(ω)r∗T(ω)dω (53)

where:rT (ω) is the Fourier Transform ofrT (t). Therefore:

‖rT(t)‖2,t = ‖rT(t)‖2,ω (54)

Finally, to relate residual time evaluation function (27) with frequency evaluation function (37)

‖rT‖2,ω should be evaluated over a finite frequency bandW:

‖rT(t)‖2,ω,W =

√

1
π

∫ W

0
r ′T (ω) r∗T (ω) dω (55)

what is equivalent to band-limiting the residual by a filter of bandwidthW.

Notice that in order to the energy evaluation in the time and frequency domains provide equivalent

results, both approaches should evaluate the energy of the same signal. Since in the time domain

the energy evaluation is done over a time-window limited residual rT , the same signal should also

be considered in the frequency domain evaluation. Otherwise, if the whole residualr is used in the

frequency domain, the resulting energy will be larger.

Thus, bandlimiting the residualrT as follows

rT,W(ω) = rT(ω)I[0,W] (ω) (56)

with:

I[0,W](ω) =















1 i f ω ∈ [0,W]

0 i f ω < [0,W]
(57)

then:
∥

∥

∥rT,W(t)
∥

∥

∥

2,ω
=

√

1
π

∫ +∞

0
r ′T,W(ω)r∗T,W(ω)dω (58)

whererT,W (ω) is the Fourier Transform ofrT (t) band-limited to a bandwidthW. Finally, according

to Parseval’s Theorem applied to (58): R2-9

∥

∥

∥rT,W(t)
∥

∥

∥

2,ω
≈

∥

∥

∥rT,W(t)
∥

∥

∥

2,t
=

√

∫ t

t−T
r ′T,W (τ) rT,W (τ)dτ (59)
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So, residual evaluation in time and frequency domain using,respectively, (27) and (37), would be

equivalent if residual energy is evaluated, at the same time, in a finite time windowT and frequency

bandW. However, as it is known from signal theory, according to thetime limited-band limited

theorem, no signal can be both time limited and band limited simultaneously. This is because time-

limiting a signal is equivalent in the frequency to convolute its spectrum with a “sinc” signal whose

spectrum is of infinite extent. Analogously, band-limitinga signal is equivalent in the time-domain

to convolute it with a time “sinc” signal whose extent is also infinite. This theorem implies that every

signal must be of infinite extent, either in time or frequencydomains, or in both domains. Therefore,

equality (58) will only hold for a residual time-limited to a time horizonT if the bandwidthW tends

to ∞, or alternatively, for a residual band-limited to a bandW if the time horizonT tends to∞.

As a conclusion, the equivalence of residual evaluation functions (27) and (37) require, either an

infinite time horizon or bandwidth to be equivalent. However, from the practical point of view, time

and frequency domain energy evaluation using a time-limited residualrT would lead to very close

results if the timeT and the frequency windowW are taken long enough. This will be seen in the

following example.

5.3. An example

The example is based on that proposed by [19] and will be used in order to compare time and

frequency domain residual evaluation approaches.

Let us consider that the expression for the residual to be evaluated is:

r (s) =
1

αs+ 1
(60)

Or, alternatively in time domain: R2-11

r (t) =
1
α

e−
t
α (61)

if t ≥ 0 and r(t) = 0 if t < 0.

5.3.1. Energy evaluation in the time domain.Applying residual evaluation function in the time-

domain (27) using a time windowT:

‖r(t)‖e = ‖r(t)‖2,t,T =

√

∫ t

t−T
r ′(τ)r(τ)dτ =

√

1
2α

[

(1− e−2 t
α )u(t) − (1− e−2 t−T

α )u(t − T)
]

(62)

Figure1 shows how the residual energy evaluation varies with the time window lengthT. If this

length tends to infinity such that the limits of the integral are in the intervalt ∈ [0,∞) as in Parseval’s

Theorem:

‖r(t)‖e = ‖r(t)‖2,t =
√

∫ ∞

0
r ′ (τ) r (τ) dτ =

1√
2α

(63)

However, from the practical point of view it can be seen that using a time window lengthT = 3α

the value achieved is very close to the one achieved with the infinite window length.
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Figure 1. Effect of finite time window length in the residual energy evaluation

5.3.2. Energy evaluation in the frequency domain.Analogously, applying evaluation function (10)

in frequency domain:

‖r(t)‖e = ‖r(t)‖2,ω,W =

√

1
πα

∫ W

0
r ′(ω)r∗(ω)dω =

√

1
πα

tan−1 (αW) (64)

assuming that the signalr(t) is known in the time interval:t ∈ [0,∞).

Figure2 shows how the residual energy evaluation varies with the frequency window lengthW.

If this length tends to infinity

‖r‖e = ‖r‖2,ω,W =
√

1
πτ

∫ ∞

0
r ′ (ω) r∗ (ω) dω =

1√
2α

(65)

that corresponds to the result obtained when infinite time windows length is used in (63) which is

not surprising due to Parseval’s Theorem.

However, from the practical point of view it can be seen that using a frequency window length

W = 30/α the value achieved is very close to the one achieved with the infinite window length.

5.3.3. Comparison of energy evaluation in the time and frequency domains.If energy residual

evaluation in frequency domain (10)) is applied to the same time windowed residual used in (62),

the following result is obtained (assuming than the bandwidth W is infinity or long enough) in order

to be comparable with (62))§:

§Otherwise, a band-limited version of the residual should used in computing (62) in order to obtain the same results in
frequency and time domain according to (59).
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Figure 2. Effect of finite frequency window length in the residual energy evaluation

• for t < T:

‖r(t)‖e = ‖r(t)‖2,ω,W =

√

1
π

∫ ∞

0
r ′T (ω) r∗T(t) (ω) dω

=

√

1
2α

(

1− e−
2t
α

)

(u (t) − u (t − T))

(66)

where:rT (ω) =
∫ T

0
r (τ) e− jωτdτ.

• for t > T:

‖r(t)‖e = ‖r(t)‖2,ω,W =

√

1
π

∫ ∞

0
r ′T (ω) r∗T (ω) dω

=

√

1
2α

(

e−2 t−T
α − e−2 t

α

)

u (t − T)

(67)

where:rT (ω) =
∫ t

t−T
r (τ) e− jωτdτ

Figure3 represents graphically the time domain energy evaluation (62) with a time window length

T = 3α and the frequency domain energy evaluation (67) with a frequency window lengthW =

30/α. These window lengths provide similar results that the infinite ones as discussed previously

and it can be seen from Figures1 and2. From Figure3, it can be noticed that the same curves are

obtained.

Obviously, expressions (66)-(67) tend to (63) if the time window used to evaluate the residual

energy in the frequency domain tends to infinity.

Remark. From this example, the following rules of thumb can be used toselect the time and

frequency windows (T and W, respectively): R2-10

• Time window T can be chosen as three times the dominant time constant of theresidual

(see Figure 1).
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Figure 3. Time vs frequency residual energy computation

• Frequency window W can be chosen as thirty times the inverse of the dominant time

constant of the residual (see Figure 2).

Both rules can also be verified analytically for this exampleby means of Eq. (62) and

Eq. (64). For a general residual, the dominant time constantcan be extracted, for example,

through the spectral analysis determining the bandwidth.

6. RELATING TIME AND FREQUENCY ADAPTIVE THRESHOLD GENERATION

APPROACHES

6.1. Equivalence of time and frequency unlimited adaptive threshold generation

Again, thanks to Parseval’s Theorem, threshold generationfor residual energy can be computed

either in time and frequency domains

Jth = Jth,t = Jth,ω (68)

Taking into account thatJth,t andJth,ω are given respectively by (27) and (46), this implies

sup
θ∈Θ

(∫ +∞

0
r ′(τ)r(τ)dτ

)1/2

=

(∫ +∞

0
r ′(τ)r(τ)dτ

)1/2

=















p
∑

i=1

1
π

∫ ωli

ωki

(|r̄ i(ω)| I i)
2 dω















1/2

(69)

wherer(τ) denotes the maximum time envelope of the residual.
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On the other hand, applying Parseval’s Theorem to (46) follows

Jth =















p
∑

i=1

1
π

∫ ωli

ωki

|r̄ i(ω)|2 I idω















1/2

=















p
∑

i=1

∫ ∞

−∞
r̄ 2
i (τ)dτ















1/2

(70)

Then, the maximum time envelope of the residual can be obtained through

r̄(t) =















p
∑

i=1

r̄ 2
i (t)















1/2

=















p
∑

i=1

[

F −1 {r i(ω)I i }
]2














1/2

(71)

Moreover:

r̄ i(t) = F −1 {r i(ω)I i } = r(t, θi) ⊗
(

ωki

π
sinc

(

ωki t

π

)

− ωl i

π
sinc

(

ωl i t

π

))

(72)

where:

r(t, θi) = F −1 {r i(ω)} (73)

6.2. Equivalence of time and frequency limited adaptive threshold generation

The equivalence presented in previous section assumes infinite time and frequency windows. As

in the case of residual energy evaluation (see Section5), using a time windowrT , the adaptive

threshold generation in time domain (28) and frequency domain (46) would be equivalent if a large

enough frequency bandW is used.

7. APPLICATION EXAMPLE 1: DAMADICS SERVOACTUATOR

7.1. Description

The first application example is based on the DAMADICS servoactuator proposed as fault detection

and isolation benchmark by [8] (see Fig.4). This actuator modifies the position of a valve to control

the flow.

Figure 4. View of the typical indus-
trial control valve actuator.

The servoactuator consists of three main components (see Fig. 5): control valve, spring-and-

diaphragm pneumatic servo-motor and positioner [8]. Control valveis used to manipulate the flow.
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The position of the control valve is changed by a servomotor.A spring-and-diaphragm pneumatic

servomotoris a compressible (air) fluid powered device in which the fluidacts upon the flexible

diaphragm, to provide linear motion of the servomotor stem.Positioner is a device applied to

eliminate the control-valve-steam miss-positions produced by the external or internal sources such

as friction, pressure unbalance, hydrodynamic forces, etc. It consists in a inner loop with a PI

controller of a cascade control structure, including the output signal of the outer loop of the flow or

level controller and the inner loop of the position controller.

Figure 5. The actuator scheme.

7.2. Model of DAMADICS servoactuator

Using physical modelling presented in [8] and the set-membership parameter estimation algorithm

proposed in [43], the following linear interval model for the servoactuator has been obtained as:

ẋ(t) = A(θ)x(t) + B(θ)u(t)

y(t) = Cx(t)
(74)

where:

A(θ) =



























0 0 −θ3
1 0 −θ2
0 1 −θ1



























, B(θ) =



























θ4

0

0



























, C =
(

0 0 1
)

,

x(t) = (x1(t) x2(t) x3(t))′ corresponds to the acceleration, velocity and position of the servomotor,

respectively,u(t) = CVP(t) and y(t) is the position of the valve measured by the displacement

transducer (in Volt),CVP(k) is the command pressure (in Pascal). The uncertain parameters are

bounded by:θ1 ∈ [22.13, 61.37], θ2 ∈ [17.33, 48.08] θ3 ∈ [0.388, 1.077] andθ4 ∈ [−2.11, 2.3]

where the nominal values areθ01 = 41.75,θ02 = 32.71,θ03 = 0.7324 andθ04 = 0.0937.
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7.3. Application of the fault detection approaches

Using this interval model (74), a Luenberger interval observer, given by (4), is designed by solving

the LMI problem (9) with poles placed in a disk region with affix q = 60 and radiusr = 55. In this

case, since matrixC does not contain uncertain parameters, the LMI problem (9) need only to be

solved at the vertices of the parameter intervals, as discussed in Section2.2. The resulting observer

gain is:

L′ = 103
[

6.5669 1.3957 0.0463
]

After the interval observer has been designed, the proposedfault detection approaches can be

applied as follows: the nominal residual can be generated using nominal parameters according to

(10). The interval for the residual that bounds the effect of parameter uncertainty is computed using

(21) andAlgorithm 1that computes the interval for observer output estimation.Energy of nominal

residualJ in the time domain is computed using (27) while in the frequency domain is computed

using (37). Residual energy thresholdJth in the time domain is computed using (28) and residual

interval (21). On the other hand, this threshold in the frequency domain is computed using (38) and

Algorithm 2to evaluate the worst-case frequency response.

Analyzing the dynamics and frequency response of the residual as it was done in the case of the

example presented in Section5.3, it has been determined that using a time windowT = 100s and a

frequency windowW = 2Hz, the residual and threshold energy evaluation produces results that are

equivalent from the practical point of view. This will be illustrated in the following section.

7.4. Fault scenarios

The proposed fault detection approaches will be used in two of the fault scenarios proposed in the

DAMADICS benchmark:f 7 (Medium evaporation) andf 10 (diaphragm perforation). The results are

presented in the following.

7.4.1. Fault f7: Medium evaporation

In this case, a fault in the control valve is introduced (see Fig. 5). The fault is “medium evaporation

or critical flow” that consists in two phase flow (mixture of fluid and steam) caused when local fluid

pressure drops down to steam evaporation pressure level [7]. In the DAMADICS benchmark, this

fault is named asf 7. In the present experiments, the fault scenario that will beused corresponds to

the abrupt big size. The fault appears at time instantt=900.

In Fig. 6(a), results from fault detection based on the basic residual evaluation presented in

Section 2.2are presented. The residual signal corresponding to the position of valve is generated and

evaluated using the interval for the residual that considers the parametric uncertainty. The interval

for the residual is generated using the worst-case time response using zonotopes (81) introduced in

Section 3. This fault detection test (26) does not detect the fault in a persistent way after the fault

appearance. In Fig.6(b), results from the evaluation of the residual energy against the adaptive

energy threshold (Jth) are presented when a window timeT = 100s and a frequency window

W = 2Hz are used. Applying the fault detection test (26), in the time and in the frequency domain,

the fault is detected att = 900.5s until t = 1002s corresponding with the end of the time window.

Notice than with this time/frequency window lengths, residual and threshold energy evaluation in
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time and frequency domains provides results close enough tobe distinguished when represented in

the same plot. These results illustrate the equivalences discussed inSection 5and6.

800 850 900 950 1000 1050 1100

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
−3

Time (seconds)

R
es

id
u

al

 

 

 Fault indicator

r
r
th

(a)

800 850 900 950 1000 1050 1100

0

2

4

6

8

10

x 10
−3

Time (seconds)

R
es

id
u

al
 e

n
er

g
y

 

 

 Fault indicators

J

J
th

(Frec.)

J
th

(Time)

Fault (Frec)

Fault (Time)

(b)

Figure 6. Fault of medium evaporation or critical flowf7. (a) Residual of the critical flow.
(b) Residual energy of the critical flow

7.4.2. Fault f10: diaphragm perforation

In this case, a fault in the pneumatic servomotor is introduced (see Fig.5). The fault consists

in servomotor’s diaphragm perforation caused by fatigue ofdiaphragm material [7]. In the

DAMADICS benchmark this fault is named asf 10. In the present experiment, the fault scenario

that will be used corresponds to the abrupt big size. The fault appears at time instantt = 900.

(0000)
Prepared usingacsauth.cls /acs



21

In Fig. 7(a) results from fault detection based on the basic residualevaluation. As in the case

of the fault scenariof7, this fault detection test (26) does not detect the fault in a persistent way

after the fault appearance. Finally, Fig.7(b) show the evaluation of the residual energy against the

adaptive energy threshold (Jth) in the time and frequency domains when the same time/frequency

windows used in previous fault scenario are used. These results confirm as well the equivalences

between the time and frequency approaches presented inSection 5and6.
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Figure 7. Fault in the pneumatic servomotorf10 (a) Residual of the position of the valve.
(b) Residual energy of of the position of the valve.
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8. APPLICATION EXAMPLE 2: TWIN-ROTOR MIMO SYSTEM

8.1. Description of Twin-Rotor MIMO System

This equipment called TRMS (Twin-Rotor Multiple Input Multiple Output (MIMO) System) is a

laboratory set-up developed by Feedback Instruments Limited [22]) available at the laboratories

of the Advanced Control Systems Research Group at the Automatic Control Department (ESAII)

of Technical University of Catalonia (UPC). The system is perceived as a challenging engineering

problem due to its high non-linearity and inaccessibility of some of its states through measurements.

The TRMS mechanical unit has two rotors placed on a beam together with a counterbalance whose

arm with a weight at its end is fixed to the beam at the pivot and it determines a stable equilibrium

position (see Fig.8). The TRMS consists of a beam pivoted on its base in such a way that it can

rotate freely both in the horizontal and vertical planes. Atboth ends of the beam there are rotors (the

main and tail rotors) driven by DC motors.

Figure 8. Components of the TRMS

The system input vector isu = (uh, uv)′ where uh is the input voltage of the tail motor

and uv is the input voltage of the main motor. On the other hand, the system states arex =

(θh, Ωh, θv, Ωv, ωt, ωm)′ whereΩh is the angular velocity around the vertical axis,θh is the

azimuth angle of beam (horizontal plane),ωt is the rotational velocity of the tail rotor,Ωv is the

angular velocity around the horizontal axis,θv is the pitch angle of beam (vertical plane) andωm is

the rotational velocity of the main rotor.

8.2. Model of TRMS

A linear model can be obtained by linearisation of the TRMS non-linear model proposed in [22]

considering the following inputu = (uh,uv)′ and outputy = (αh, αv)′ vectors:

ẋ(t) = A(θ)x(t) + B(θ)u0(t)

y(t) = Cx(t) (75)
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where:

A(θ) =































































θ1 −0.2094 3.6941 0 0 0

0 −0.6863 0 0 0 0

0 0 −2.4406 0 0 0

0 θ2 −0.5083 −0.1833 −3.4363 0

0 0.0076 2.734 0.9961 −0.086 0

0.9906 0.551 0.0947 0 0 0































































,

B(θ) =































































0.0947 −0.0053

0 θ3

0.9377 0

−0.0109 0.0076

0.0699 0.0001

0.0016 0.0139































































,

C =















0 0 0 0 0 1

0 0 0 0 1 0















,

and the following parameters are bounded by:θ1 ∈ [−0.5737, −0.1793],θ2 ∈ [0.1235, 0.4835] and

θ3 ∈ [0.9027, 1.0627] to take into account their variation with the operating point. Their nominal

values areθ01 = −0.3765,θ02 = 0.3035 andθ03 = 0.9827.

The system is controlled using a MPC (Model Predictive Control) controller designed by the

MPC Toolbox of MATLAB with prediction horizon equal to 5s and control horizon equal to 1s.

8.3. Application of the fault detection approaches

Using this interval model (75), a Luenberger interval observer, given by (4), is designed by solving

the LMI problem (9) with poles placed in the disk region with affix q = 27.5 and radiusr = 25. In

this case, as in the DAMADICS example, since matrixC does not contain uncertain parameters, the

LMI problem (9) need only to be solved at the vertices of the parameter intervals, as discussed in

Section2.2. The resulting observer gain is:

L′ = 103















1.3520 −1.9255 −0.0158 −0.0213 −0.0022 0.0374

−0.3927 0.6010 0.0023 0.1742 0.0340 −0.0019















Analyzing the dynamics and frequency response of the residual as it was done in the case of the

example presented in Section5.3, it has been determined that using a time windowT = 20s and a

frequency windowW = 20Hz, the residual and threshold energy evaluation produces results that are

equivalent from the practical point of view. This will be illustrated in the following section.

The procedure to apply the proposed fault detection approaches in this example is the same that

the one described in previous DAMADICS example (see Section7.3).

8.4. Fault scenarios

The proposed fault detection approaches will be used in three fault scenarios. The results are

summarized in the following.
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8.4.1. Fault scenario 1presents an additive sensor fault of the input voltage of thetail motor fut :

fut (t) =















0V, for t < 50

0.12V, for t ≥ 50
(76)

In Fig. 9(a)-(b) results from fault detection based on the basic residual evaluation are presented

for the azimuth angle and pitch angle of the beam. This fault detection test (21) does not detect the

fault in a persistent way after the fault appearance. In Fig.9(c)-(d) results from the evaluation of

the residual energy against the adaptive energy threshold (Jth) are presented when a time window

of T = 20s and frequency window ofW = 20Hz is used. The fault detection test (26) in frequency

domain provides equivalent results than the time domain. These results are summarized for azimuth

and pitch angle in theTableI, where the detection time instant is presented for each detection test.
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Figure 9. Fault scenario 1.Input sensor fault fut = 0.12V (a) Residual of azimuth angle. (b) Residual of pitch
angle. (c) Residual energy of azimuth angle. (d) Residual’senergy of pitch angle.

Fault Scenario 1 Azimuth angle Pitch angle
Detection Test Det. Time Det. Time
Basic residual 50.50s 50.10s

Residual energy (Freq.) 52.18s 53.38s
Residual energy (Time) 52.20s 53.40s

Table I. Detection indexes when the input sensor faultfut = 0.12V is presented.
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8.4.2. Fault scenario 2presents an additive sensor fault of the azimuth angle of beam fθh:

fθh(t) =















0rad, for t < 30

0.05rad, for t ≥ 30
(77)

As in the case of the fault scenario 1, in Fig.10(a)-(b) results from fault detection based on the

basic residual evaluation (21) detect the fault after a second after the fault appearance.In Fig.10(c)-

(d) results from the evaluation of the residual energy against the adaptive energy threshold (Jth) are

presented when a window time ofT = 20s and frequency window ofW = 20Hz is used. Applying

the fault detection test (26), either in the time or the frequency domain, the fault is detected at

t = 50.02s until t = 70.01 according to the time window used. These results are summarized for

azimuth angle in theTableII .
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Figure 10.Output sensor fault of fθh = 0.05 (a) Residual of azimuth angle. (b) Residual of pitch angle. (c)
Residual energy of azimuth angle (T = 20s). (d) Residual energy of pitch angle (T = 20s).

Fault Scenario 2 Azimuth angle
Detection Test Detection Instant Detection Time

Basic residual 50.02s 1.09s
Residual energy (Freq.) 50.02s 19.99s
Residual energy (Time) 50.02s 19.99s

Table II. Detection indexes when the output sensor
fault of fθh = 0.05rad is presented.
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8.4.3. Fault scenario 3presents an additive actuator fault of the voltage of the main motor fam:

fam(t) =















0, for t < 60

0.025, for t ≥ 60
(78)

In Fig. 11(a)-(b) results from fault detection (21) based on the basic residual evaluation detect

the fault att = 60.67s. In Fig. 11(c)-(d) results from the evaluation of the residual energy against

the adaptive energy threshold (Jth) are presented when a window time ofT = 20s and frequency

window ofW = 20Hz is used. The fault detection test (26) in frequency domain provides equivalent

results than the ones obtained in the time domain. Notice, inthis fault scenario, the basic residual

approach detects the fault 10sbefore the residual energy approaches. These results are summarized

for azimuth and pitch angle in theTableIII .
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Figure 11. Fault scenario 1.Actuator fault fam = 0.5 (a) Residual of azimuth angle. (b) Residual of pitch
angle. (c) Residual energy of azimuth angle (T = 15s). (d) Residual’s energy of pitch angle (T = 15s).

Fault Scenario 3 Azimuth angle Pitch angle
Detection Test Det. Instant Det. Instant
Basic residual 60.68s 56.05s

Residual energy (Freq.) 70.43s 68.00s
Residual energy (Time) 70.42s 68.00s

Table III. Detection indexes when the actuator faultfam = 0.025 is presented.
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8.5. Results discussion

From the results obtained in the previous fault scenarios, it can be noticed that using the proposed

time/frequency windows, the fault detection and energy/threshold evaluation results obtained using

the time and frequency approaches proposed in this paper areequivalent from the practical point of

view. These results reconfirm the ones obtained with the DAMADICS application.

9. CONCLUSIONS

In this paper, two approaches based on interval models for robust fault detection are proposed

as means to produce energy adaptive thresholds for the residuals using techniques in time

and frequency domains. The first approach proposes generating an adaptive threshold through

determining the worst-case time evolution of the residual’s energy using a zonotope-based

algorithm. The second approach evaluates the worst-case energy evolution in the frequency domain

using the Kharitonov polynomials. The paper has also related the results obtained using both

approaches using the Parseval’s Theorem. As result of such acomparison, it is concluded that from

the theoretical point of view both approaches produce the same results when infinite time/frequency

windows. In real applications, however, finite time/frequency windows should be used. The paper

shows that practically equivalent results in time/frequency can be obtained when long enough

time/frequency windows are used. The proposed fault detection ofboth approaches have been

successfully applied to DAMADICS and TRMS examples allowing at the same time to prove the

practical equivalence of the results obtained using the proposed approaches. As future research, the

effect of noise in the performance of both approaches will be analysed.
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A. INTERVAL MODEL TIME RESPONSE USING ZONOTOPES

In this paper, zonotopes are used to bound the set of uncertain estimated states and outputs. Let us

introduce zonotopes:

Definition 3. The Minkowski sum of two setsX andY is defined byX ⊕ Y = {x+ y : x ∈ X, y ∈ Y}.

Definition 4. Given a center vectorπ ∈ ℜn and a matrixH ∈ ℜn×m, the Minkowski sum of

the segments defined by the columns of matrixH is called a zonotope of order m. This set is

represented as:

X = π ⊕ Hβm = {π + Hz : z ∈ βm}

where: βm is a unitary box, composed bym unitary intervals.
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Definition 5. The interval hull�X of a closed setX is the smallest interval box that containsX.

Given a zonotopeX = π ⊕ Hβm, its interval hull can be easily computed by evaluatingπ ⊕ Hβm,

for all i = 1, . . . , n:

�X = {x : |xi − πi | ≤ ‖Hi‖1} (79)

wherexi andπi arei th components ofx andπ, respectively, andHi is i th-row of H.

Interval observer estimation (33)-(34) using zonotopes can be carry out using the following result:

Theorem 1. ”Zonotope Inclusion” (see [2]). Consider a family of zonotopes represented by

X = π ⊕ Mβm whereπ ∈ ℜn is a real vector and M∈ In×m is an interval matrix. A zonotope

inclusion⋄(X) is defined by:⋄(X) = π ⊕ (mid(M) G)















βm

βn















= π ⊕ Jβn+m

where G∈ ℜn×n is a diagonal matrix that satisfies: Gii =
∑m

j=1
diam(Mi j )

2 , i = 1,2, . . . ,n, mid denotes

the center anddiam the diameter of the interval according to [39]. Under this definition,X ⊆ ⋄(X).

Note that this result is the generalization of the linear image of a zonotope given by the following

property:

Property 1.”Zonotope Linear Image Transformation” (see [15]) Consider a zonotope represented

byX = π ⊕ Hβm whereπ ∈ ℜn is a vector and H∈ ℜn×m is a matrix. The image of the zonotopeX

through a linear transformation T∈ ℜn×n is a zonotopeY defined by:

Y = q⊕ Nβm (80)

where:q = Tπ and N = T H. The existence of this property motivates the use of zonotopes to

propagate the uncertainty in dynamic systems.

Using Theorem1, the zonotopeXe
k+1 that bounds the trajectory of the system at instantk+1, is

computed from the previous approximating zonotope at time instantk,Xe
k = π(k) ⊕ Hkβ

m, using the

natural interval extension of (34) as suggested by [39] and the zonotope inclusion operator, as a

generalization of Kühn’s method (see [32]):

X
e
k+1 = π(k+ 1)⊕ Hk+1β

r (81)

where:

π(k+ 1) = mid(A0(θ))π(k) +mid(B0(θ))v(k)

Hk+1 = (J1 J2 J3)

J1 = seg(⋄(A0(θ)Hk))

J2 =
diam(Ao(θ))

2
π(k)

J3 =
diam(Bo(θ))

2
v(k)

J1 is calculated using the zonotope inclusion operator andseg(X) = M considering thatX = π ⊕
Mβmz is a zonotope (seeDefinition 4).

It is important to notice that the set of estimated states hasan increasing number of segments

generating the zonotopeXe
k+1 using this method. In order to control the domain complexity, a
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reduction step is thus implemented. Here we use the method proposed in [14] to reduce the zonotope

complexity.

Analogously,Theorem 1can be used to obtain the setYe
k from the setXe

k through the expression

for the estimated output (34).

B. INTERVAL MODEL FREQUENCY RESPONSE USING KHARITONOV POLYNOMIALS

Let

G( jω, θ) =
P1( jω, θ)
P2( jω, θ)

(82)

be a transfer function for which maximum and minimum values for module and angle have to be

determined with respect to a set of uncertain parametersθ¶. Then:

max(|G( jω)|) = max(|P1( jω)|)
min(|P2( jω)|) , min(|G( jω)|) = min(|P1( jω)|)

max(|P2( jω)|) (83)

and
max(∠G( jω)) = max(∠P1( jω)) −min(∠P2( jω)),

min(∠G( jω)) = min(∠P1( jω)) −max(∠P2( jω)).
(84)

It is clear that it is necessary to know how to determine the maximum and the minimum values

for the module and the angle of a general interval polynomialP( jω). The previous results to

Kharitonov’s Theorem give some rules or conditions needed to this representation. At a given

frequency it is correct to write that all the possible imagesof the interval polynomial

P( jωk) =
[

p−q , p
+
q

]

( jωk)
q +

[

p−q−1, p
+
q−1

]

( jωk)
q−1 + · · · +

[

p−q , p
+
q

]

( jωk) +
[

p−0 , p
+
0

]

(85)

are contained in a rectangle in the complex plane whose vertices are the four Kharitonov

polynomials:

P1( jωk) = p+0 + p+1 ( jωk) + p−2 ( jωk)
2 + p−3 ( jωk)

3 + p+4 ( jωk)
4 + · · · , (86)

P2( jωk) = p−0 + p−1 ( jωk) + p+2 ( jωk)
2 + p+3 ( jωk)

3 + p−4 ( jωk)
4 + · · · , (87)

P3( jωk) = p−0 + p+1 ( jωk) + p+2 ( jωk)
2 + p−3 ( jωk)

3 + p−4 ( jωk)
4 + · · · , (88)

P4( jωk) = p+0 + p−1 ( jωk) + p−2 ( jωk)
2 + p+3 ( jωk)

3 + p+4 ( jωk)
4 + · · · . (89)

If these vertices are plotted in complex planeC it will result something like this:

Note that there are more than nine possible relative situations between the Kharitonov rectangle

and the axis of the complex plane, nine of them are illustrated in Figure13.

We say “more than” nine situations because when a rectangle intersects with at least one axis it

can do so either in a symmetric or asymmetric way. According to this consideration, the set of rules

is presented inAlgorithm 1.

¶For simplicity in the notation,the dependency of all transfer functions and polynomials will be omitted in the
sequel
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Figure 12. Example of a plot ofP( jωk) in C

Figure 13. Possible relative situations between a plot ofP( jωk) and axis inC

Algorithm 2. Set of the rules

1: if Re{K2( jωk)} > 0 and Im {K2( jωk)} > 0

2: |P( jωk)|+ = |K1( jωk)|
3: |P( jωk)|− = |K2( jωk)|
4: ∠P( jωk)+ = ∠K3( jωk)

5: ∠P( jωk)− = ∠K4( jωk)

6: else ifRe{K2( jωk)} ≤ 0 and Im {K2( jωk)} > 0 and Re{K4( jωk)} ≥ 0

7: |P( jωk)|− = |K2( jωk)|
8: ∠P( jωk)+ = ∠K2( jωk)

9: ∠P( jωk)− = ∠K4( jωk)

10: if Re{K2( jωk)} + Re{K4( jωk)} ≥ 0

11: |P( jωk)|+ = ‖K1( jωk)‖
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12: else

13: |P( jωk)|+ = ‖K3( jωk)‖
14: end if

15: else ifRe{K4( jωk)} < 0 and Im {K4( jωk)} > 0

16: |P( jωk)|+ = |K3( jωk)|
17: |P( jωk)|− = |K4( jωk)|
18: ∠P( jωk)+ = ∠K2( jωk)

19: ∠P( jωk)− = ∠K4( jωk)

20: else ifRe{K1( jωk)} < 0 and Im {K2( jωk)} ≤ 0 and Im {K3( jωk)} ≥ 0

21: |P( jωk)|− = |K1( jωk)|
22: ∠P( jωk)+ = ∠K4( jωk)

23: ∠P( jωk)− = ∠K1( jωk)

24: if Im {K2( jωk)} + Im {K3( jωk)} ≥ 0

25: |P( jωk)|+ = |K3( jωk)|
26: else

27: |P( jωk)|+ = |K2( jωk)|
28: end if

29: else ifRe{K1( jωk)} < 0 and Im {K1( jωk)} < 0

30: |P( jωk)|+ = |K2( jωk)|
31: |P( jωk)|− = |K1( jωk)|
32: ∠P( jωk)+ = ∠K4( jωk)

33: ∠P( jωk)− = ∠K3( jωk)

34: else ifRe{K3( jωk)} ≤ 0 and Im {K3( jωk)} < 0 and Im {K1( jωk)} ≥ 0

35: |P( jωk)|− = |K3( jωk)|
36: ∠P( jωk)+ = ∠K1( jωk)

37: ∠P( jωk)− = ∠K3( jωk)

38: if Re{K2( jωk)} + Re{K4( jωk)} ≥ 0

39: |P( jωk)|+ = |K4( jωk)|
40: else

41: |P( jωk)|+ = |K2( jωk)|
42: end if

43: else ifRe{K3( jωk)} > 0 and Im {K3( jωk)} < 0

44: |P( jωk)|+ = |K2( jωk)|
45: |P( jωk)|− = |K1( jωk)|
46: ∠P( jωk)+ = ∠K4( jωk)

47: ∠P( jωk)− = ∠K3( jωk)

48: else ifRe{K2( jωk)} > 0 and Im {K2( jωk)} ≤ 0 and Im {K3( jωk)} ≥ 0

49: |P( jωk)|− = |K2( jωk)|
50: ∠P( jωk)+ = ∠K4( jωk)

51: ∠P( jωk)− = ∠K1( jωk)

52: if Im {K2( jωk)} + Im {K3( jωk)} ≥ 0

53: |P( jωk)|+ = |K1( jωk)|
54: else
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55: |P( jωk)|+ = |K4( jωk)|
56: end if

57: else

58: |P( jωk)|− = 0

59: ∠P( jωk)+ = ∠K4( jωk)

60: ∠P( jωk)− = ∠K1( jωk)

61: if Im {K1( jωk)} + Im {K4( jωk)} ≥ 0 and Re{K1( jωk)} + Re{K2( jωk)} ≥ 0

62: |P( jωk)|+ = |K1( jωk)|
63: else if Im {K1( jωk)} + Im {K4( jωk)} < 0 and Re{K1( jωk)} + Re{K2( jωk)} < 0

64: |P( jωk)|+ = |K2( jωk)|
65: else if Im {K1( jωk)} + Im {K4( jωk)} > 0 and Re{K1( jωk)} + Re{K2( jωk)} < 0

66: |P( jωk)|+ = |K3( jωk)|
67: else

68: |P( jωk)|+ = |K4( jωk)|
69: end if

70: end if

Once it is known how to determine the maximum and the minimum value of the module and angle

of a given interval polynomial, it will be easy to determine the maximum and minimum module and

angle of an interval transfer function. Consequently, the set of inclusion rules as constrains for the

optimization problem can now be written.
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