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SUMMARY

In this paper, robust fault detection is addressed basesanating the residual energy that it is compared
against worst-case value (threshold) generated consglparametric modelling uncertainty using interval
models. The evaluation of the residiilateshold energy can be done either in the time or frequeonaih.

This paper proposes methods to compute such energy in thddmains. The first method generates the
adaptive threshold in the time domain through determinimgvorst-case time evolution of the residual’s
energy using a zonotope-based algorithm. The second metladaates the worst-case energy evolution in
the frequency domain using the Kharitonov polynomials.uRe®btained using both approaches are related
through the Paserval's Theorem. Finally, two applicatiwaneples (a smart servoactuator and a two degrees
of freedom helicopter) will be used to assess the validityefproposed approaches and compare the results
obtained.
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1. INTRODUCTION

Model-based fault detection of dynamic processes is bagsethe use of models to check the
consistency of observed behaviours trough installed senstowever, when building a model
of a dynamic process to monitor its behavior, there is alwaysismatch between the modeled
and real behavior. This is because sorffeas are neglected, some non-linearities are linearised
in order to simplify the model, some parameters have totaramhen they are compared with
several units of the same component, some errors in paresetm the structure of the model are
introduced in the model calibration process, etc. Theseatmaglerrors introduce uncertainty in the
model and interfere with the fault detection. A fault deictalgorithm able to handle uncertainty
is calledrobust [11]. The robustnesof fault detection algorithm is the degree of sensitivity to
faults compared to the degree of sensitivity to uncertaifttgse last years, research on robust fault
detection methods has been very active in the fault deteetidl isolation (FDI) community. One
of the most developed families of approaches, callgile is based on generating residuals, which
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are insensitive to uncertainty, while at the same time $sgadio faults [L1]. On the other hand,
there is a second family of approaches, caffedsive which enhances the robustness of the fault
detection system at the decision-making stage. Sevetalitpres have been used, but most of them
are based on using aulaptive thresholat the decision-making stagel], 28, 24, 50].

Adaptive threshold generation has been a very active areasefrch in robust fault detection.
Since the seminal works of HoraR§] in case of structured uncertainty and Emami-Nae®dj [
in case of unstructured uncertainty, many researchers aasfyzed how the feect of model
uncertainty should be taken into account when determiniveg dptimal threshold to be used
in residual evaluation. Two approaches have been followrel:first based on determining the
optimal threshold in the time domair2§, 45, 29] and the second in the frequency domain
[21, 18, 24, 27, 47]. In the time domain approach, the uncertainty has been lynanodeled
using structured uncertainty iiterval model¥), while in the frequency domain approach first
unstructured uncertainty was usetB| and later structured uncertainty has been also taken into
account 7, 47]. However, the connection between time and frequency domgproaches has not
been established yet. In Hamel/], it is suggested as a future research. One of thecdities in
connecting both approaches is that in the time-domain agpes, the optimal threshold is directly
determined through the interval obtained by propagatingmpater uncertainty to the residual. On
the other hand, in the frequency domain approaches, theapthreshold is determined by the
worst-case evaluation of the residual’s energy on a timewin This diference can be explained
because the optimal threshold, in frequency or time donmogmputed using the most direct form
in each domain.

The aim of this paper is to introduce and compare two appesmdbr evaluating adaptive
thresholds bounding residual energy in case of considgrargmetric uncertainty by means of
interval models. The first approach works in the time domaievthe second in the frequency
domain. The time domain approach generates the adapteghibid through determining the worst-
case time evolution of the residual’s energy using a zoretmsed algorithm. On the other hand,
the frequency domain approach evaluates the worst-casgyesslution in the frequency domain
using the Kharitonov polynomials. Results obtained usiotih lapproaches are related through the
Paserval's Theorem. Finally, two application examplesnfars servoactuator and a two degrees
of freedom helicopter) is used to assess the validity of topg@sed approaches and compare the
results obtained.

The structure of this paper is the following: 8ectior2, the robust fault detection problem using
energy residual evaluation by considering parametric taicgies by means of interval models is
introduced. InSection3, an energy residual threshold generation approach usmgvtiist-case
response in time domain computed trough a zonotope basedthig is presented. I8ectiord, an
energy residual threshold generation approach in the émgyudomain usingd., and Kharitonov
polynomialsis presented . Relation between time-domaidrfraguency-domain residual evaluation
using Parseval’'s Theorem is presente8attiorb. Sectiornb presents the relation between time and
frequency domains of adaptive thresholding methodSdction7, an application example based on
the DAMADICS servoactuator benchmark is presented and tasassess the validity of the results
derived in the paper. ISection8, a second illustrative example based on the Twin-Rotor MIMO
System (TRMS) is introduced. Finally, Bectiord, the main conclusions are summarised.
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2. PROBLEM STATEMENT

2.1. Problem set-up

Let us consider that the system to be monitored can be deschip a MIMO linear uncertain
dynamic model expressed as follows:

A@)X(®) + B(@)uo(t) + Fa(8) fa(t) 1)
C@X(®) + Fy@fy(®) )

X(t)
y(t)

whereug(t) € R™ is the real system inpuy(t) € R™ is the system outpuk(t) € R"™ is the state-
space vectorfy(t) € R™ andfy(t) € R™ represents faults in the system actuators and output sgnsor
respectivelyA(d), B(6), C(6), D(6), Fa(d) andFy(6) are matrices of appropriate dimensions whiere
is the vector of system parameters.

The system 1)-(2) is monitored using a linear observer with Luenberger stimgcthat uses an
interval modebf the system, i.e., a model with parameters bounded byviaiter

6,<6,<6, i=1...n 3

that represent the uncertainty about the exact knowledgeealf system parametefs * This
observer, known as dnterval observeris expressed as followST]:

(¢, 6) (A®) — LC(6)) (¢, 6) + B(O)u(t) + Ly(t)
Ao(O)X(t, 0) + B(O)u(t) + Ly(t) (4)

J(t,0) = C(O)X(t, 0)

whereu(t) is the measured system input vectt, 6) is the estimated system state vecy(r, 6) is
the estimated system output vector a@) = A(9) — LC(0) is the observer matrix. Notice that the
measured system inpui(t), includes the fiect of faults in the input sensors and can be written as:

u(t) = uo(t) + Fu(®) fu(t) Q)

whereup(t) is the real system inpuf,(t) € R™ is the input sensor fault whilg,(6) € R"*M is its
associated matrix.

The observer gain matrik € R™*" is designed to stabilize the matrbg(d) and to guarantee
a desired performance regarding fault detection foroal® [12]. The dfect of the uncertain
parameters on the observer temporal respory$ed) will be bounded using an interval satisfying

9(t.0) € [50.3)] 6)

“The intervals for uncertain parameters can be inferred freal data using set-membership parameter estimation
algorithms B8, 43].
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in a non-faulty caseSuch interval can be computed independently for each output (i =
1,...,ny), neglecting couplings among outputs, as follows

%i(t) = mini(t.6)) and (1) = max(y(t. 6)) (@)

subject to the observer equations given by4). The optimisation problems(7) are solved using
numerical methods as in f6]. However, in this paper an alternative approach based on th
use of zonotopes (se@lgorithm 1 in Section 3 will be used that is more fficient from the
computational point of view). R2-1, R2-2

2.2. Observer design

The design of the interval observet) can be solved with the LMI pole placement technigii2 [

13, 48], that allows to locate the poles of the observer in a subregf the left half-plane using a

LMI region assuming the pair(A(6), C(0)) is detectable for alld € ©. R2-3
In particular, a disk LMI region calle® is defined with an fiix (—g, 0) and a radius such that

(—-g+r) < 0. The two scalarg| andr are used to determine a specific region included in the left

half-plane where the observer eigenvalues will be plackdréfore, this region puts a lower bound

on both the exponential decay rate and the damping raticeafltised-loop response. The design of

the interval observerd such that the observer poles are placed in this LMI regiguires to find

the observer gaih and unknown symmetric matriX = X" > 0 such that:

_rXx aX + ((A() — LC()"X)" -

(g + (A@9) - LC(0))TX —rX 0, (8)

forall 0 € ©.

Notice that expressior8] is a Bilinear Matrix Inequality (BMI) since there is a pradibetween
L andX. Thus, it cannot be solved with LMI classical tools. Butsifdossible to transform it into
the following LMI by means of the following change of varial = LTX:

—rX gX+ XTA@) - W'CH)" B

(+ A@)T)X - C(O)TW _rx 0. ©)

Then, the design procedure boils down to solving the L8Jland determinind. = (WX1)T.

To practically solve 9), two approaches have been proposed in the literature. lt@fiproach
is based on gridding the parameter space and solving theslf'each pointin the grid. However,
this approach does not rigourously guarantee observeorpaathce for alb € @. Alternatively, a
second approach can be used based on representing thalimedel by a polytopic model that
includes the interval model. The polytopic model is obtdibg the convex hull approach (seg)|
Then, applying the results presented in the same refereficehé solution of LMIs @) can be
obtained by solving them in the vertices of the polytopic elatithe matrixC does not depend on
the uncertain parametefisin case this matrix depends of the uncertain parametgrprgposes a
transformation of the system representation by means bfding a filter.
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2.3. Fault detection test

Fault detection is based on generating a nominal residumpadng the measurements of physical
system variableg(t) with their estimatiory(t) provided by the observe#):

r(t) = y(t) - ¥(t, 6n) (10)

wherer(t) € R is the residual set ang, being the nominal parameters that can be obtained
as: 6, = (8 + §)/2. . According to P5], the computational form of the nominal residual generatdt2-4
obtained using4), is:

r(s) = (I = H(s 6n)) y(s) — G(s. On)u(s) (11)

that has been derived taken into account that the joptgut form of the systenij-(2) (assuming
zero initial conditions) is given by

Y(S) = Yo(s. 0) + Gr,(s.0) fa(s) + Gr,(s.6) fy(9) (12)
where:
Yo(s6) = Gu(s d)uo(s) (13)
Gu(s6) = C(O)(sl-A®)B@) (14)
Gr(s6) = C(@)(sl-A®) " Fa) (15)
Gi(sd) = Fy(@) (16)

and the inpybutput form of the observed) is expressed as follows

Y(s6) = G(s6)u(s) + H(s 6)y(s)
= G(s 0)ug(s) + H(s O)Y(s) + Gy, (s, 0) fu(s) (17)
where:
G(s6) = C(O)(sl—Au(6))"B(®) (18)
H(s6) = C(O)(sl-Ao®) 'L (19)
G (s6) = G(sOFu®) (20)

When considering model uncertainty located in parameteesresidual generated bg@) will
not be zero, even in a non-faulty scenario. To cope with thiarpater uncertaintyféect, a passive
robust approach based on adaptive thresholding can be @sed4, 1, 5. Thus, using this
passive approach, théect of parameter uncertainty in the residu@) (associated to each system
outputy(t)) is bounded by the intervadlfp]:

r(t) € [r(t), 7] (21)

where:
r(t) = 9(t) - 9(t. 6n) andr(t) = J(t) - 9(t. ) (22)
(0000)
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wherey(t) andy(t) are the bounds of the system output estimation computegeonent-wise using
the interval observedj and obtained according t@)( The residual boundf®) can be expressed
in input-output form usingX(7) as follows:

[(®) = min. 2 (AG(s 6)u() + AH(S O)Y(9) (23)
() = max.2 ™ {AG(s A)u(s) + AH(s. 6)y(S)} (24)

where: AG(s,60) = G(s 0) — G(s,6,) and AH(s 0) = H(s 0) - H(s, 6,). 6, are the nominal
parameters.

Then, the fault detection test could be based on checkingeifresiduals satisfy or not the
condition given by 21). In case that this condition does not hold, a fault can beatdd.

However, in this paper, an energy based adaptive threstgptdchnique will be used based not
in bounding directly the residual, as discussed abovenistead a residual evaluation function. The
residual evaluation function is the residual energy

I = lIr(®lle (25)

that can be evaluated either in the time or frequency donTdian, the fault detection decision is
based on the following rule:
J(t) < Jn(t) for f(t) =0,

(26)
JO) > Jn(t) for () # 0.

whereJy(t) is the threshold for the residual energy taking into act@amameter uncertainty and
f(t) represents the considered faults.

According to the literaturel]7], fault detection test based on residual energy evaludtamnthe
advantage that is less sensitive to noise that basic faidttien test 21).

The threshold)y, is generated in such a way that with the considered parametertainty the
worst-case energy is bounded. So, while the energy of thémabnesidual is less than this threshold
no fault can be indicated. Otherwise, a fault can be indétaidis is the way how robustness is
achieved. On the other hand, this threshold establishesithienum detectable fault. That is, the
minimum fault size such that will produce a energy bigget tha threshold. Faults smaller than
this size will not be detectedn(issed alarms

3. ADAPTIVE THRESHOLDING IN THE TIME DOMAIN

3.1. Energy based adaptive thresholding in the time domain

As discussed inl[7], the residual evaluation function based on residual gnéfg = ||r(t)||c can be

evaluated in the time domain using a time windowT * as follows: R2-6
R2-5

"The selection of the time window length will be discusseddat the paper.
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IO = Ir®lleet = IrOll2er = \/ f r(o)r(r)dr (27)
=T
Then, the adaptive threshalg(t) in (26) can be computed as:
Jine(®) = max(||r@®) 1 - IFOlec7) (28)
where
t
Ir®fleer = Ir®O,0r = \/ ft @@ (29)
and
IFOllerr = POl = \/ ft_ . 7 (07 (r)dr (30)

The interval for residu If(t),?(t)] needed to compute adaptive threshalgt) can be obtained
from the interval predicted outpb:t(t), f/(t)] by means ofZ3) and @4). The interval for the predicted
output can determined by computing the worst-case timeoresgpof the observer given b$)(

The computation of the worst-case time response will regoisolve two optimization problems
(7) for each output subject to:

§i(t, 6) = C(O)PLIx(t,) + f ' CO)N B (31)

X(0) € |X(0). X(0)] (32)

This problem was first formulated by Horakq] in the context of adaptive threshold generation.
He proposed an algorithm calleBMI (“reachable minimum intervgl based on dynamic
optimization to solve it The dificulty of solving this problem is due to the fact that in gehéris
not true that considering only the responses at verticea@dmiain parameter and initial conditions
intervals would produce the tightest interval containifigpassible time responses. Only a small
number of systems satisfy this desirable propezfy.[In particular, they are those that satisfy the
guasi-isotonicity property

In case that this property is not satisfied, the vertex smhutinly provides an inner solution,
according to Kolev31]. The existent algorithms to determifit)| follow mainly two approaches
after applying some kind of time-discretization: the firppeoach is based on trying to solve the
associated optimizations problemd (see for example 4]). This is not in general an easy task
since global optimization is required to avoid local minimduced by the non-convexity of the
problems 7).

* In the literature this problem is found in many plac@alitative Reasoning10, 33], Constraint Satisfactiof16],
Validated Initial Value Problem§9, 30, 35, 40, 41, 42], Automatic Control6, 20, 49|, Fault Detectiof5, 28, 45] and
Circuit Tolerance Analysi§23, 31]
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On the other hand, the second approach tries to find one stepsien that provides interval
[¥(t)] at present instant from previous intervals determinedéwipus time instants (see for example
[20]). However, in this case there are also some problems asripping éfect that must be handled
[4€]). In this paper, this second approach will be followed byngzonotopes as means to handle the
wrapping éfect [2]. This approach guarantees that the zonotope computedfaiteeation encloses
all possible states reached by the interval observer.

3.2. Implementation using set-computations

In order to compute the intervdj(t)] at present instant from previous intervals determined in
previous time instants using zonotopes #mel method presented in P] (see Appendix A), the R2-7
observer 4) should be discretised. In principle any time discret@ascheme can be used. In this
paper, the Euler discretisation approach has been apphatleads the observet)(to formulated

in discrete-time as follows:

()
(k)

Ao(O)X(k — 1) + Bo(O)v(k — 1) (33)
CO)R(K) (34)

where: Ag(6) = | + At(A) — LC(0)), Bo(6) = At[B(®) L] and v(K) = [u(k) y(K)]' and At is
discretisation time step.

The discretisation error can also be bounded and includezkia uncertainty in the model
in order to guarantee that the internJ§(t)] contains all possible trajectories generated from the
continuous-time observed) at each time instan8[].

Definition 1. Given the sequence of measured inpﬁu(is)'c‘,‘1 and outputqy(i))'c‘,‘1 and assuming
that the initial states are bounded by a known compackgefThen, the exaatncertain estimated
state seKy at time k is expressed by:

s ary R e ~ . ko
Xy = {R(K) : (R0) = Ao(O)R( — 1) + Bo(O)V(i — 1)), 1%0 € Xo, 6 €O} (35)
The uncertain state set describedDefinition 1at timek can be computed approximately by

admitting the rupture of the existing relations betweenakdes of consecutive time instants. This
allows to compute an approximation of this set from the apjpnate uncertain set at tine-1.

Definition 2. Consider the interval observer given {(88)-(34), the set of uncertain states at time
k-1 (Xx_1) and the inpybuput valuegu(k — 1), y(k — 1)}. Then, the approximate set of estimated
statesXy at time k based on the measurements up to &kme is defined as:

XE = {)‘((k)  R(K) = Ag(O)X(k-1) + Bo(O)v(k—1) | k(k-1) € X1, 6 € O} (36)

Definition 1 and Definition 2 can be easily adapted to describe the exact uncertain ¢stima
output sefY at timek and the approximate set of estimated outfiif{s
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Since the exact set of estimated statgsand outputsyy are dificult to compute, one way is to
bound them using some geometric shapes easy to computeeasfaple: boxes (interval hull) as
in [44], ellipsoids as in$6] or zonotopes as ).

Here, the set of estimated staks(or outputsyy) introduced irDefinition 2will be approximated
iteratively using zonotopes (sefppendixA). From these zonotopes, an interval for each state
variable and output can also be obtained by computireginterval hull of the zonotope Z,
denoted asoZ . The sequence of interval hulisXy and oY} with k € [0, n] will be called the R2-8
interval observer estimatioof the system 33)-(34) wheren is the number of measurement data
considered. Following the previous idédgorithm 1is proposed to determine an approximation of
set of uncertain estimated statsdoutputs

Algorithm 1 Interval Observer using Set Computations

1 XE <= Xp

2:ke1

3: whilek < ndo

4:  Obtain and store input-output ddtak — 1), y(k — 1)}
Compute the approximated estimated stateX§gt,
Compute the approximated estimated outputsgt,

Compute the interval hull of the approximated estimatetestat,0X} = [X(k), ;“((k)]

Compute the interval hull of the approximated estimategotsetoYg = [9(K). J(K)]
9 kek+1 -
10: end while

The implementation of steps 5-8 in tiAdgorithm 1 using zonotopes is described in detail in
AppendixA

4. ADAPTIVE THRESHOLDING IN THE FREQUENCY DOMAIN

4.1. Introduction

Adaptive thresholding in the frequency domain has startéfl the seminal work of Emami-
Naeini [21]. Then, it was followed by Ding18] and Frank P4]. In these works, the uncertainty
was considered unstructured. But, more recently, Ramb@aliand Hamelin 7] have considered
the case of structured uncertainty. All these works try tarzbthe residual’s energy taking into
account the uncertainty in the model. The first approachesidering unstructured uncertainty
useH,, technigues to bound thefect of this uncertainty and the second approaches consideri
structured uncertainty use instead interval polynomiahoés. In the frequency domain approach,
although the considered residual evaluation function &ratihe residual’s energy, it is evaluated in
the frequency domain according to:

W
30) = IOl = IOl = \/% [ r@r @ 37)

wherer (w) = F{r(t)} andW is the frequency window.
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10

In order to use &7) in the fault detection test26), the adaptive threshold;, should also be
obtained in the frequency domain considering thiea of the parametric uncertainty in the residual
as follows

1 W %
na® =sp (3 [ .0 do) (38)
g0 \TT Jo
or alternatively, considering@)-(24) as follows

2

1 W
Jth,w(t)ZSUp(— f 1AG (.0 u(w) + AH (@.8)y (@)1 dw) (39)
T Jo

6O

This allows to compute the adaptive threshdjglthat will be used in the context of the fault
detection rule Z6).

4.2. Energy based adaptive thresholding using H

According to Chen11], the adaptive thresholdy, (38) can be bounded in thid,, framework as
follows

Jinw(t) < dullu®)lle + oy [Iy(t)lle (40)
taking into account that
”AG (0.), 0)”00 < 6U and ”AH (wa 0)”00 < 5y (41)

for all € ® and wherd|u(t)|l. and|ly(t)|lc are the input and ouptut energy, respectively, evaluated at
every time instant either in the time doma#¥J or in the frequency domair3{).
Then, the fault detection decision rulzgf applies as well.

4.3. Energy based adaptive thresholding using Kharitormymomials

TheH,, approach bounds the worst-case frequency response instrumtdred way as indicated in
(412). Alternatively, the worst-case frequency response cavelter approximated in the parametric
framework. In particular, the evaluation &f, through @38) requires to determine

sup |r (w, 6)] (42)
[Z=0)

according to RambeauxT]. This problem is related to the evaluation of frequencypoese
envelopes of an interval system. The maximum envelope alwagresponds with

supIN(w, 0)|
supr(w, ) = =2 43
b 1O = Snf e ) )

and it can be determined using Kharitonov polynomials (8gpendix B) associated with
the numeratoN and the denominatoD of r assuming that the uncertain parametérare
independent34]. However, frequency envelopes are not defined by a singl/énfunction in all
the frequency ranges. Instead, the frequency domain shewdécomposed intoflierent frequency
intervals fy, wi,],i = 1, ..., p, p being the number of intersections of the Kharitonov redesgith
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11

both the imaginary and real axes. Hence, the maximum eneelap be expressed as follows:

P
sup Ir(w, ) = ) (W)l (44)
i=1

6O

whereri(w) = r(w, 6;) is the maximum frequency envelope in the frequency ranged, ] obtained
with a given value of the uncertain parameteand|; is an indicative function such that

|i={1 if we[wk‘.,wh] (45)

0 if wéwk w]

Then . v . V2
W Wi
Jm,w=(% | ;omw)ui)zdw] =[‘:1% | (Iﬁ(w)lh)zdw] (46)

i ki

5. RELATING TIME AND FREQUENCY RESIDUAL EVALUATION APPROACIES

After presenting the time and frequency domain approachesdidual evaluation and adaptive
threshold generation, we now relate these two approachasgh Parseval’s Theorerfi][

5.1. Equivalence of unlimited time and frequency residnakgy evaluation

In Fourier signal analysis, tHearseval's Theoremestablishes a link between the evaluation of the
signal’s energy in the time and frequency domains, as falow

Ir®lle = lIr®ll2; = lIrOll2, (47)

where:
Ir®lloe = + fo (@)1 (7) dr (48)
IFOlz, = \/% [ rered 49)

The equivalence between time and frequency signal eneajyation established by Parseval's
Theorem requires that the signal should be evaluated indiomeain in the intervat € [0, o) and in
frequency-domain in the interval € (-0, ), respectively. However, the residual time evaluation
function @7) considers the energy in a limited time and the frequencyuatian function 87)
considers energy in a limited frequency window.

5.2. Equivalence of time and frequency limited residuatgyevaluation

Defining a time-window limited residual as

rr(®) = r®ip-ra®) (50)
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12
with:

_ 1 if teltot]
I . 51
[to,tl]( ) { 0 if t¢/[toty] (51)

the residual time evaluation functioB®) can be written as

IFOllpor = \/ ft PO (- \/ fo @ (@) dr = @l (52)

Then, applying Parseval's Theorem &)

I @)z, = \/ [ o - \/i [ i 53

where:rt (w) is the Fourier Transform af; (t). Therefore:

lIrr (ll2¢ = lIrr (Oll2., (54)

Finally, to relate residual time evaluation functidtv) with frequency evaluation functior87)
lIrrll2,., Should be evaluated over a finite frequency b#hd

W
e Ol = \/i [ @ @do 55

what is equivalent to band-limiting the residual by a filtébandwidthW.

Notice that in order to the energy evaluation in the time aeddency domains provide equivalent
results, both approaches should evaluate the energy ofthe signal. Since in the time domain
the energy evaluation is done over a time-window limitedd@ss rr, the same signal should also

be considered in the frequency domain evaluation. Othepifishe whole residual is used in the
frequency domain, the resulting energy will be larger.
Thus, bandlimiting the residua} as follows

rrw(w) = rr(w)low (w) (56)

with:
{3 1 v

then:
[Frwcol,,, = \/% [ s leido (58)

wherert (w) is the Fourier Transform aof; (t) band-limited to a bandwidttV. Finally, according
to Parseval's Theorem applied to $8):

t
o0l = Fenl, = | [ e )
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So, residual evaluation in time and frequency domain usagpectively,27) and 37), would be
equivalent if residual energy is evaluated, at the same fim&finite time windowT and frequency
bandW. However, as it is known from signal theory, according to tinge limited-band limited
theorem no signal can be both time limited and band limited simw@tarsly. This is because time-
limiting a signal is equivalent in the frequency to convelits spectrum with asinc’ signal whose
spectrum is of infinite extent. Analogously, band-limitiagignal is equivalent in the time-domain
to convolute it with a time &inc’ signal whose extent is also infinite. This theorem impllest every
signal must be of infinite extent, either in time or frequedoynains, or in both domains. Therefore,
equality 68) will only hold for a residual time-limited to a time horizdnif the bandwidthwW tends
to oo, or alternatively, for a residual band-limited to a bamntif the time horizonT tends toco.
As a conclusion, the equivalence of residual evaluatiortions 7) and @7) require, either an
infinite time horizon or bandwidth to be equivalent. Howewerm the practical point of view, time
and frequency domain energy evaluation using a time-luniésidualr+ would lead to very close
results if the timel and the frequency windoW are taken long enough. This will be seen in the
following example.

5.3. An example

The example is based on that proposed bS] gnd will be used in order to compare time and
frequency domain residual evaluation approaches.
Let us consider that the expression for the residual to bleiate is:

1
= 60
(s as+1 (60)
Or, alternatively in time domain: R2-11
1 .
rt)=—-e= (61)
07

ift>0andr(t)=0if t<O.

5.3.1. Energy evaluation in the time domaifypplying residual evaluation function in the time-
domain @7) using a time window :

IF@l = IFOlar = [P = \/2—2 [@-e2hu - @-e2FHue-T)] (62)

Figurel shows how the residual energy evaluation varies with the tiimdow lengthr . If this
length tends to infinity such that the limits of the integna i the intervat € [0, o) as in Parseval's
Theorem:

IFOlle = 1@l = fo r (@)1 (@) dr = %z; (63)

However, from the practical point of view it can be seen ttsng a time window lengtii = 3
the value achieved is very close to the one achieved withtivéte window length.
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Q

Figure 1. Hfect of finite time window length in the residual energy evébhra

5.3.2. Energy evaluation in the frequency domahmalogously, applying evaluation functioh@)
in frequency domain:

W
IOl = KOl = \/i [ P o = |~ @ @w) (64

assuming that the signg(t) is known in the time intervak € [0, ).
Figure2 shows how the residual energy evaluation varies with theuigacy window lengtiw.
If this length tends to infinity

Il = Il = \/ﬂ% [ re@r@a=-— (65

that corresponds to the result obtained when infinite timedatvs length is used ir68) which is
not surprising due to Parseval’s Theorem.

However, from the practical point of view it can be seen trgihg a frequency window length
W = 30/« the value achieved is very close to the one achieved withntfireite window length.

5.3.3. Comparison of energy evaluation in the time and feegy domainslf energy residual

evaluation in frequency domaid@)) is applied to the same time windowed residual used#), (

the following result is obtained (assuming than the bantiwid is infinity or long enough) in order
to be comparable with6Q))*:

$Otherwise, a band-limited version of the residual shouletus computing §2) in order to obtain the same results in
frequency and time domain according &®).
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1/sqgrt(2a) -

Energy
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Figure 2. Hfect of finite frequency window length in the residual energgl@ation

efort<T:

T~
Ir®lle = IOl \/; fo (@) 1 (1) () do -

- JE(-eHum-ut-1)

where:rt (w) = fOT r (r) e"letdr.
efort>T:

Ir®lle = lIr Oll2..w

1 oo ’ *
\/; fo rr (w) r; (w) do 67)

\/2—{1 (e2F —eZ)ut-T)

where:rt () = ftt_T r (r) e letdr

Figure3 represents graphically the time domain energy evalua@ignyith a time window length
T = 3a and the frequency domain energy evaluatiém) (with a frequency window lengthlV =
30/a. These window lengths provide similar results that the itdiones as discussed previously
and it can be seen from Figurésend2. From Figure3, it can be noticed that the same curves are
obtained.

Obviously, expression$6)-(67) tend to £3) if the time window used to evaluate the residual
energy in the frequency domain tends to infinity.

Remark. From this example, the following rules of thumb can be used tselect the time and

frequency windows (T and W, respectively): R2-10

e Time window T can be chosen as three times the dominant time constant of tmesidual
(see Figure 1)
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Figure 3. Time vs frequency residual energy computation

e Frequency window W can be chosen as thirty times the inverse of the dominant time
constant of the residual (see Figure 2).

Both rules can also be verified analytically for this exampleby means of Eq. (62) and
Eq. (64). For a general residual, the dominant time constantan be extracted, for example,

through the spectral analysis determining the bandwidth.

6. RELATING TIME AND FREQUENCY ADAPTIVE THRESHOLD GENERATDN
APPROACHES

6.1. Equivalence of time and frequency unlimited adaptiveshold generation
Again, thanks to Parseval's Theorem, threshold generdtionesidual energy can be computed

either in time and frequency domains

Jth = Jtnt = o (68)
Taking into account thaly,; andJy,, are given respectively by2{) and @6), this implies
+00 12 +00 12 P 1 (o 12
’ — _ — 2
Sup(f r (T)l’(T)dT) = (f r (T)I’(T)dT) = [Z —f (ri(w)| 1) da)) (69)
0c® \Jo 0 ic1 T Jwy
wherer(r) denotes the maximum time envelope of the residual.
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On the other hand, applying Parseval’'s Theorem&) {ollows

p I v p 0 v
i=1 v~

i=1 Wi

Then, the maximum time envelope of the residual can be aédatmough

P y2 P y2
) = [Z ﬁz(o] [Z (fi(w)h) ] (71)
i=1 i

Moreover:

L) = F ()i} = r(t, 9.)®(ﬁsmc( ;t) - %smc(w"t)) (72)

T
where:
rt,6) = 7 ri(w)) (73)

6.2. Equivalence of time and frequency limited adaptiveghold generation

The equivalence presented in previous section assumegdrifme and frequency windows. As
in the case of residual energy evaluation (see Se&)pusing a time window, the adaptive
threshold generation in time domai28] and frequency domairtf) would be equivalent if a large
enough frequency bandy is used.

7. APPLICATION EXAMPLE 1: DAMADICS SERVOACTUATOR

7.1. Description

The first application example is based on the DAMADICS sectator proposed as fault detection
and isolation benchmark bg][(see Fig4). This actuator modifies the position of a valve to control
the flow.

Figure 4. View of the typical indus-
trial control valve actuator.

The servoactuator consists of three main components (geé)Ficontrol valve, spring-and-
diaphragm pneumatic servo-motor and positio@grControl valveis used to manipulate the flow.
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The position of the control valve is changed by a servoméa@pring-and-diaphragm pneumatic
servomotoris a compressible (air) fluid powered device in which the fladts upon the flexible
diaphragm, to provide linear motion of the servomotor st®asitioneris a device applied to
eliminate the control-valve-steam miss-positions preduloy the external or internal sources such
as friction, pressure unbalance, hydrodynamic forces, letwonsists in a inner loop with a Pl
controller of a cascade control structure, including thgpousignal of the outer loop of the flow or
level controller and the inner loop of the position coneall

PSP

Pz

| Pneumatic servo § A cvI
CVP| cv
! motor E/P |<—| ZC |<—'—

5

x{
Valve V L
Fv

Fv3

=
V3

Figure 5. The actuator scheme.

7.2. Model of DAMADICS servoactuator

Using physical modelling presented i8] pnd the set-membership parameter estimation algorithm
proposed in43], the following linear interval model for the servoactuabtas been obtained as:

X(t) = A@)x(t) + B@)u(t) (74)
yit) = CxXt)
where:
0 0 -065 04
A@)=| 1 0 -6, |. BO=[0 |. C=(0 0 1),
01 -6 0

X(t) = (x1(t) x2(t) X3(t)) corresponds to the acceleration, velocity and positiorhefdervomotor,
respectively,u(t) = CVR(t) andy(t) is the position of the valve measured by the displacement
transducer (in Volt)CVP(K) is the command pressure (in Pascal). The uncertain paresrete
bounded by#; € [22.13, 61.37], 6, € [17.33, 48.08] 63 €[0.388 1.077] andd, € [-2.11, 2.3]
where the nominal values af = 41.75,65 = 32.71, 63 = 0.7324 and) = 0.0937.
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7.3. Application of the fault detection approaches

Using this interval model#4), a Luenberger interval observer, given By, (s designed by solving
the LMI problem Q) with poles placed in a disk region withifex g = 60 and radius = 55. In this
case, since matri¢ does not contain uncertain parameters, the LMI problgmméed only to be
solved at the vertices of the parameter intervals, as disclis Sectior2.2. The resulting observer
gainis:

L' =10°| 65669 13957 00463 |

After the interval observer has been designed, the propfasdtddetection approaches can be
applied as follows: the nominal residual can be generategyuwminal parameters according to
(10). The interval for the residual that bounds thigeet of parameter uncertainty is computed using
(21) andAlgorithm 1that computes the interval for observer output estimatorergy of nominal
residuald in the time domain is computed using7j while in the frequency domain is computed
using B7). Residual energy thresholt}, in the time domain is computed usinggj and residual
interval 21). On the other hand, this threshold in the frequency donsadoimputed using3g) and
Algorithm 2to evaluate the worst-case frequency response.

Analyzing the dynamics and frequency response of the rakakiit was done in the case of the
example presented in SectibrB, it has been determined that using a time window 100sand a
frequency windowwV = 2Hz, the residual and threshold energy evaluation produce$isdhat are
equivalent from the practical point of view. This will beu#itrated in the following section.

7.4. Fault scenarios

The proposed fault detection approaches will be used in fvibbeofault scenarios proposed in the
DAMADICS benchmarkf; (Medium evaporation) anfd o (diaphragm perforation). The results are
presented in the following.

7.4.1. Fault§: Medium evaporation

In this case, a fault in the control valve is introduced (see3). The fault is ‘medium evaporation
or critical flow” that consists in two phase flow (mixture of fluid and steamjsesl when local fluid
pressure drops down to steam evaporation pressure [dvéh [the DAMADICS benchmark, this
fault is named a$;. In the present experiments, the fault scenario that willided corresponds to
the abrupt big size. The fault appears at time insta@00.

In Fig. 6(a), results from fault detection based on the basic rekigualuation presented in
Section 2.are presented. The residual signal corresponding to thiggrosf valve is generated and
evaluated using the interval for the residual that consitlee parametric uncertainty. The interval
for the residual is generated using the worst-case timersspusing zonotope81) introduced in
Section 3 This fault detection tes2@) does not detect the fault in a persistent way after the fault
appearance. In Fig(b), results from the evaluation of the residual energy ragjaihe adaptive
energy thresholdJ,) are presented when a window tinfe= 100s and a frequency window
W = 2Hz are used. Applying the fault detection te86), in the time and in the frequency domain,
the fault is detected dt= 9005s until t = 1002 corresponding with the end of the time window.
Notice than with this timgrequency window lengths, residual and threshold energyuetion in
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time and frequency domains provides results close enoulgé tlistinguished when represented in
the same plot. These results illustrate the equivalensesisied irSection 5and6.
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Figure 6. Fault of medium evaporation or critical flofy. (a) Residual of the critical flow.
(b) Residual energy of the critical flow

7.4.2. Fault {fo: diaphragm perforation

In this case, a fault in the pneumatic servomotor is intredu(see Fig5). The fault consists
in servomotor’s diaphragm perforation caused by fatiguedieiphragm material 7). In the
DAMADICS benchmark this fault is named &g. In the present experiment, the fault scenario
that will be used corresponds to the abrupt big size. The &gudears at time instaht 900.
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In Fig. 7(a) results from fault detection based on the basic residuauation. As in the case

of the fault scenaridy, this fault detection tes2¢) does not detect the fault in a persistent way
after the fault appearance. Finally, Fiffb) show the evaluation of the residual energy against the

adaptive energy thresholdy) in the time and frequency domains when the same/fieguency
windows used in previous fault scenario are used. Thesétseinfirm as well the equivalences
between the time and frequency approaches presenfaection Zand6.
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Figure 7. Fault in the pneumatic servomotf (a) Residual of the position of the valve.

(b) Residual energy of of the position of the valve.
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8. APPLICATION EXAMPLE 2: TWIN-ROTOR MIMO SYSTEM

8.1. Description of Twin-Rotor MIMO System

This equipment called TRMS (Twin-Rotor Multiple Input Migte Output (MIMO) System) is a
laboratory set-up developed by Feedback Instruments &tiit2]) available at the laboratories
of the Advanced Control Systems Research Group at the Adioi@antrol Department (ESAII)

of Technical University of Catalonia (UPC). The system iscp&zed as a challenging engineering
problem due to its high non-linearity and inaccessibilitgome of its states through measurements.
The TRMS mechanical unit has two rotors placed on a beamhegeitith a counterbalance whose
arm with a weight at its end is fixed to the beam at the pivot adétermines a stable equilibrium
position (see Fig8). The TRMS consists of a beam pivoted on its base in such a katyittcan
rotate freely both in the horizontal and vertical planeshéth ends of the beam there are rotors (the
main and tail rotors) driven by DC motors.

Tail rotor

Main rotor

Counterbalance

Qpi

Figure 8. Components of the TRMS

The system input vector isi = (u,, W) where u, is the input voltage of the tail motor
and u, is the input voltage of the main motor. On the other hand, tystesn states arg =
Gh, Qn, Oy, Qy, wi, wm) WhereQy is the angular velocity around the vertical axdg,is the
azimuth angle of beam (horizontal plane),is the rotational velocity of the tail rotof), is the
angular velocity around the horizontal axds,is the pitch angle of beam (vertical plane) angd is
the rotational velocity of the main rotor.

8.2. Model of TRMS

A linear model can be obtained by linearisation of the TRM®&-tioear model proposed ir2f]
considering the following input = (up, u,)’ and outpul = (an, ay)’ vectors:

Xt = AG)X({) + B(O)uo(t)
yit) = Cxt) (75)

(0000)
Prepared usingacsauth.cls /acs



23

where:
6, -0.2094 36941 0 0 0
0 -0.6863 0 0 0 0
AG) = 0 0 -2.4406 0 0 0 ’
0 0, -0.5083 -0.1833 -3.4363 0
0 0.0076 2734 Q9961 -0.086 O
0.9906 0551 Q0947 0 0 0
0.0947 -0.0053
0 03
B(O) = 0.9377 0 ’
-0.0109 00076
0.0699 00001
0.0016 00139

(000001
“loooo0 10/

and the following parameters are boundeddaye [-0.5737 —0.1793],6, € [0.1235 0.4835] and
03 € [0.9027, 1.0627] to take into account their variation with the opergtpoint. Their nominal
values are = —0.3765,69 = 0.3035 and’3 = 0.9827.

The system is controlled using a MPC (Model Predictive Gahtrontroller designed by the
MPC Toolbox of MATLAB with prediction horizon equal tassnd control horizon equal tosl

C

8.3. Application of the fault detection approaches

Using this interval model75), a Luenberger interval observer, given B, (s designed by solving
the LMI problem Q) with poles placed in the disk region witlffix q = 27.5 and radiug = 25. In
this case, as in the DAMADICS example, since ma@igoes not contain uncertain parameters, the
LMI problem (9) need only to be solved at the vertices of the parametenialteras discussed in
Section2.2. The resulting observer gain is:

-1.9255 -0.0158 -0.0213 -0.0022 00374
00023 01742 00340 -0.0019

1.3520
-0.3927 06010

L' =10°

Analyzing the dynamics and frequency response of the rakahkiit was done in the case of the
example presented in SectibrB, it has been determined that using a time windbw 20s and a
frequency windowV = 20Hz, the residual and threshold energy evaluation producetise¢bat are
equivalent from the practical point of view. This will betiitrated in the following section.

The procedure to apply the proposed fault detection appesain this example is the same that
the one described in previous DAMADICS example (see Sedgtign

8.4. Fault scenarios

The proposed fault detection approaches will be used iretfaalt scenarios. The results are
summarized in the following.
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8.4.1. Fault scenario Ipresents an additive sensor fault of the input voltage ofatenotor f,,:

fut (t) = {

ov,
0.12v, for

t <50
t > 50

for

(76)

In Fig. 9(a)-(b) results from fault detection based on the basidtedievaluation are presented
for the azimuth angle and pitch angle of the beam. This fatiction test41) does not detect the
fault in a persistent way after the fault appearance. In $g)-(d) results from the evaluation of
the residual energy against the adaptive energy threstigldafe presented when a time window
of T = 20s and frequency window ofV = 20Hzis used. The fault detection te&d] in frequency
domain provides equivalent results than the time domaias&hesults are summarized for azimuth

and pitch angle in th&ablel, where the detection time instant is presented for eacltti@tetest.
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Figure 9. Fault scenario Input sensor fault f = 0.12V (a) Residual of azimuth angle. (b) Residual of pitch

©

(d)

angle. (c) Residual energy of azimuth angle. (d) Resideaksgy of pitch angle.

Fault Scenario 1 Azimuth angle| Pitch angle
Detection Test Det. Time Det. Time
Basic residual 50.50s 50.10s

Residual energy (Freq) 52.18s 53.38s
Residual energy (Time 52.20s 53.40s

Table I. Detection indexes when the input sensor fipls 0.12V is presented.
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8.4.2. Fault scenario Zoresents an additive sensor fault of the azimuth angle ahbiga

Orad, for t<30
feh(t)={ (77)

0.05rad, for t>30

As in the case of the fault scenario 1, in FigXa)-(b) results from fault detection based on the
basic residual evaluatio@{) detect the fault after a second after the fault appearamégg. 10(c)-
(d) results from the evaluation of the residual energy agjdire adaptive energy thresholt}.j are
presented when a window time df= 20s and frequency window dfV = 20Hzis used. Applying
the fault detection test2¢), either in the time or the frequency domain, the fault isedttd at
t = 50.02s until t = 70.01 according to the time window used. These results are suizedafor
azimuth angle in th@ablell .
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Figure 10.0utput sensor fault of,f = 0.05 (a) Residual of azimuth angle. (b) Residual of pitch ang@le
Residual energy of azimuth angl€ € 20s). (d) Residual energy of pitch angl€ & 20s).

Fault Scenario 2 Azimuth angle
Detection Test Detection Instant Detection Time
Basic residual 50.02s 1.09s
Residual energy (Freqy) 50.02s 19.99s
Residual energy (Time 50.02s 19.99s

Table II. Detection indexes when the output sensor
fault of fy, = 0.05rad is presented.
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8.4.3. Fault scenario Jresents an additive actuator fault of the voltage of thenmaitor f,, :

fan(t) = {

0,
0.025 for

for

t <60
t > 60

(78)

In Fig. 11(a)-(b) results from fault detectior2{) based on the basic residual evaluation detect
the fault att = 60.67s. In Fig. 11(c)-(d) results from the evaluation of the residual energgimast
the adaptive energy thresholdy) are presented when a window time Df= 20s and frequency
window of W = 20Hzis used. The fault detection te&f] in frequency domain provides equivalent
results than the ones obtained in the time domain. Noticthignfault scenario, the basic residual
approach detects the fault 4Before the residual energy approaches. These resultsraraanzed

for azimuth and pitch angle in tHeblelll .

S
.
~~~~~~

Residual
|

) Fault indicator

.
50 60 70

Time (seconds)

@)

20 30 40

«=w==d (Frec)
4“00“0“0‘.‘." "
4
» *,
0’ *
¢

4 Jm(Tlme)

*,

»,
.,
‘g | = Fault (Time)

—— Fault (Frec)

Residual

Fault indicator

2 -
20 30

0 60 70
Time (seconds)

(b)

40 5

e 900040q
PRodad e,

—]

ammm Jm(Frec,)

Residual energy

4 Jm(Tlme)

—— Fault (Frec)

Residual energy

= Fault (Time)

KY
N"’MOHOH'

o k. N w s o @ o~

L ., )
| 44000000044

af
[ ‘

80 90 100

Fault indicators

—oF

20 30 40 50 60 70

Time (seconds)

©

—_—

[ Faultindicators

|

20 30

40 80 90 100

50 60 70
Time (seconds)

(d)

Figure 11. Fault scenario Actuator fault § = 0.5 (a) Residual of azimuth angle. (b) Residual of pitch
angle. (c) Residual energy of azimuth angle={ 15s). (d) Residual’'s energy of pitch angl€é & 15s).

Fault Scenario 3 Azimuth angle| Pitch angle
Detection Test Det. Instant | Det. Instant
Basic residual 60.68s 56.05s
Residual energy (Freq)) 70.43s 68.00s
Residual energy (Time 70.42s 68.00s
Table IlI. Detection indexes when the actuator fafy|t= 0.025 is presented.

Prepared usingacsauth.cls

(0000)
/acs



27

8.5. Results discussion

From the results obtained in the previous fault scenariagn be noticed that using the proposed
time/frequency windows, the fault detection and endilgyeshold evaluation results obtained using
the time and frequency approaches proposed in this papegaiealent from the practical point of
view. These results reconfirm the ones obtained with the DAMZS application.

9. CONCLUSIONS

In this paper, two approaches based on interval models faoustofault detection are proposed
as means to produce energy adaptive thresholds for theuedsidising techniques in time
and frequency domains. The first approach proposes gemgrati adaptive threshold through
determining the worst-case time evolution of the residuahergy using a zonotope-based
algorithm. The second approach evaluates the worst-casgyeavolution in the frequency domain
using the Kharitonov polynomials. The paper has also reldte results obtained using both
approaches using the Parseval’s Theorem. As result of scaimparison, it is concluded that from
the theoretical point of view both approaches produce threegasults when infinite tinfieequency
windows. In real applications, however, finite tiftequency windows should be used. The paper
shows that practically equivalent results in tjifinequency can be obtained when long enough
time/frequency windows are used. The proposed fault detectioboti approaches have been
successfully applied to DAMADICS and TRMS examples allogvat the same time to prove the
practical equivalence of the results obtained using thpgsed approaches. As future research, the
effect of noise in the performance of both approaches will béyaad.
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A. INTERVAL MODEL TIME RESPONSE USING ZONOTOPES

In this paper, zonotopes are used to bound the set of untedtimated states and outputs. Let us
introduce zonotopes:

Definition 3. The Minkowski sum of two setsandY is defined byK & Y = {x+y: xe X,y € Y}.

Definition 4. Given a center vector € R" and a matrixH € R™™, the Minkowski sum of
the segments defined by the columns of matriis called a zonotope of order m. This set is
represented as:

X=neoHB"={n+Hz:zepM

where 8™ is a unitary box, composed Ioy unitary intervals.
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Definition 5. The interval hulloX of a closed seX is the smallest interval box that contaiis

Given a zonotop& = 7 & HB™, its interval hull can be easily computed by evaluatirg H3™,
foralli=1,...,n:
OX = {X: X — i < [[Hill} (79)

wherex; andx; arei " components ok andr, respectively, andH; is i M-row of H.
Interval observer estimatio3§)-(34) using zonotopes can be carry out using the following result
Theorem 1."Zonotope Inclusion” (see 2]). Consider a family of zonotopes represented by

X = 7o MB™ wherer € R" is a real vector and Me I™™ is an interval matrix. A zonotope
m

inclusion¢(X) is defined by»(X) = 7 & (mid(M) G)( B ] = Jgmm

where Ge R™" is a diagonal matrix that satisfies:G= ZT‘zl diamZ(M”),i =1,2,...,n, mid denotes

the center andliam the diameter of the interval according t89]. Under this definitionX C ¢(X).
Note that this result is the generalization of the lineargmaf a zonotope given by the following

property:

Property 1.”Zonotope Linear Image Transformation” (se&]) Consider a zonotope represented

by X = 7 ® HB™ wherer € R" is a vector and He R™™M is a matrix. The image of the zonotajie

through a linear transformation &8 R™" is a zonotopé&” defined by:

Y =q@ Ng™ (80)

where:q = Tx and N = TH. The existence of this property motivates the use of zorestdp
propagate the uncertainty in dynamic systems.

Using Theoreml, the zonotopé&y, ; that bounds the trajectory of the system at instett, is
computed from the previous approximating zonotope at timnstaintk, X¢ = n(k) ® Hy8™, using the
natural interval extension oB{) as suggested byd§] and the zonotope inclusion operator, as a
generalization of Kithn's method (se&)):

Xy = 1k + 1) ® Hi18' (81)
where:

ak+1) = midA(@)r(K) + midBo@)V(K)
Hii = (J1 J2 Ja)
Ji = sedo(Ao(0)Hk))

e - A,
sy - SamEE)

J; is calculated using the zonotope inclusion operator s8®fiX) = M considering thak = 7 &
MgB™ is a zonotope (seBefinition 4.

It is important to notice that the set of estimated statesdmamcreasing number of segments
generating the zonotopky, , using this method. In order to control the domain complexty
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reduction step is thus implemented. Here we use the metlopadped in 14] to reduce the zonotope
complexity.

Analogously,Theorem Ican be used to obtain the sé&} from the set} through the expression
for the estimated outpuB4).

B. INTERVAL MODEL FREQUENCY RESPONSE USING KHARITONOV POINOMIALS

Let .
Pl( J w, 9)

Pa(jw, 0)
be a transfer function for which maximum and minimum valussnhodule and angle have to be
determined with respect to a set of uncertain parameétei&hen:

G(jw,0) = (82)

oy max(IPy(jw)l) , .y min([Py(jw)l)
max(IG(jw)l) = min(Pa(ia))’ min(|G(jw)l) = max(Py(jw))) (83)
and
max(ZG(jw)) = max(ZPi(jw)) —min(z Py(jw)), (84)

min (£ G(jw))

min (£ P1(jw)) — max(z Pz(jw)).

It is clear that it is necessary to know how to determine thg&imam and the minimum values
for the module and the angle of a general interval polynorRigl). The previous results to
Kharitonov’'s Theorem give some rules or conditions needethis representation. At a given
frequency it is correct to write that all the possible imagkthe interval polynomial

P(jwr) = [Pg. Pg] (i) + [ Pg1- P a | (j0)®t + -+ + [ pg. P | (G + [pg. 0§]  (85)

are contained in a rectangle in the complex plane whosecesrtare the four Kharitonov
polynomials:

Pi(jor) = PG+ Pi(jwi) + Pz (jw)® + P (jo)® + pi(Jaw)* + -, (86)
Po(jr) = P+ Pr(jw) + P (jw)® + p3(jwi) + P (jw)* + -+, (87)
Pa(jox) = Py + Pi(jwi) + P3(jw)® + P (jor) + pa(Jw)* + -, (88)
Pa(jor) = PG+ Pr(jwi) + Pz (jw)® + P (jo)® + pi(Ja)* + - . (89)

If these vertices are plotted in complex plahé will result something like this:

Note that there are more than nine possible relative sitnatbetween the Kharitonov rectangle
and the axis of the complex plane, nine of them are illustraté-igurel3.

We say “more than” nine situations because when a rectantgesects with at least one axis it
can do so either in a symmetric or asymmetric way. Accordirttpis consideration, the set of rules
is presented ir\lgorithm 1

IFor simplicity in the notationthe dependency of all transfer functions and polynomials wi be omitted in the
sequel
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Imaginary
Axis
1 Pijon)

Pi(jax)

Py (jax)

Py(jan)

Real Axis

Figure 12. Example of a plot d#(jwy) in C

Imaginary
Axis
A
P; (jax) P (jox) P; (jax) P (jor) P; (jax) P (jox)
P (jor) Py(jor) P:(jor) Py(jor) Py(joy) Py(jor)
P;(jo) P;(jor)
Ps(jor) Pi(jor) P;(jox) Pi(jox)
Real Axis
P (jou,) Py (jor) P (jon) Py(jor)
P (jor) Py(jor)
P;(jon) P (jax) 120129) P (jor) P;(jon) P (jox)
P (jor) Py(jox) P:(jor) Py(jor) Py(jor) Py(jor)
Figure 13. Possible relative situations between a pl&(¢dy) and axis inC
Algorithm 2. Set of the rules
1: if Re{Ky(jwk)} > 0and Im {Ky(jwy)} > 0
2: P(jo)l" = IKe(jwx)l
3 IP(jol” = [Ka(jwr)l
4 /P(jo)" = £ Ka(jwx)
5. /P(jwx)” = £Ka(jwk)
6: else ifRe{Kz(jwk)} < 0and Im {Kz(jwk)} > 0 and Re{K4(jwy)} = 0
7. [P(jwl” = [Kz(jw)l
8 /P(jwx)" = £Ka(jwk)
9 /P(jwx)” = £Ka(jwk)
10:  if Re{Kz(jwk)} + Re{Ks(jwk)} = 0
11: IP(jw)l™ = IIK(jwr)ll
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12:
13:
14:
. else ifRe{K4(jwk)} < 0and Im {K4(jwk)} > O
16:
17:
18:
19:
. else ifRe{Ky(jwk)} < 0and Im {Kz(jwy)} < 0and Im {Kz(jwy)} > 0
21:
22:
23:
24:
25:
26:
27:
28:
: else ifRe{K1(jwk)} < 0and Im {Ky(jwk)} < O
30:
31:
32:
33:
. else ifRe{K3(jwk)} < 0and Im {K3(jwk)} < 0and Im {Ky(jwy)} = 0
35:
36:
37:
38:
39:
40:
41:
42:
. else ifRe{K3z(jwk)} > 0and Im {K3(jwk)} < O
44:
45:
46:
47:
. else ifRe{Kz(jwk)} > 0and Im {Ky(jwk)} < 0and Im {K3(jwy)} = 0
49:
50:
51:
52:
53:
54:
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else

IP(jwi)l™ = IIKs(jwll
end if

IP(jw)l™ = IK3(jwi)l
IP(jw)l™ = IKa(jw)l
LP(jo)" = £Ka(jwk)
LP(jo)™ = £ Ky(jwx)

IP(jw)l™ = K1 (jw)l

LP(jo)" = £ Ky(jw)

LP(jo)” = £Ka(jwk)

if Im {Ka(jwk)} + Im {K3(jwk)} > 0
IP(jw)l™ = IKs(jwi)l

else
IP(jw)l™ = IKa(jwi)l

end if

IP(jw)l™ = IKa(jwi)l
IP(jw)l™ = K1 (jw)l
£ P(jor)" = £ Kg(jwy)
LP(jo)™ = £Ks(jwk)

IP(jw)l™ = IKs(jwk)l

£ P(jor)" = £ Ky(jwy)

LP(jo)™ = £Ks(jwk)

if Re{Ka(jwk)} + Re{Ka(jwy)} = 0
IP(jw)l™ = IKa(jwi)l

else
IP(jwl™ = IKa(jwi)l

end if

IP(Jw)l™ = IKz(jwx)l
IP(jw)l™ = IKe(jw)l
£ P(jor)" = £ Kg(jwy)
£ P(jox)™ = £ Kz(jwy)

IP(jw)l™ = Ka(jwk)l

£ P(jor)" = £ Kg(jwy)

£P(jox)™ = £ Ky(jwy)

if Im {Ka(jowk)} + Im {K3(jwk)} = 0
IP(jwl™ = IKe(jwi)l

else
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55: IP(jw)l™ = IKa(jwi)l
56: endif
57: else

58:  |P(jwy)l” =0

591 /P(jwn)" = £ Ka(jwk)

60:  /P(jowx)” = £Ka(jwy)

61: if Im{Ki(jwk)} + Im{Ka(jwk)} = 0and Re{K;(jwk)} + Re{Ka(jwy)} = 0

62: IP(jw)l™ = IKy(jwx)l

63: else ifIm{Ky(jww)} + Im{Ks(jwk)} < 0and Re{Ki(jwy)} + Re{Ka(jwy)} < 0
64: IP(jw)™ = IKa(jew)l

65: else ifIm{Ky(jwy)} + Im{Ks(jwy)} > 0and Re{Ki(jwy)} + Re{Ka(jwy)} < 0

66: IP(jwl™ = IKa(jwi)l
67: else

68: IP(jw)l™ = IKa(jwi)l
69: endif

70: end if

Once itis known how to determine the maximum and the minimatuerof the module and angle
of a given interval polynomial, it will be easy to determie tmaximum and minimum module and
angle of an interval transfer function. Consequently, #teo$ inclusion rules as constrains for the
optimization problem can now be written.
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