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Abstract: This paper proposes a new actuator-fault detection and isolation (FDI) strategy for
closed-loop discrete time-invariant systems by using invariant sets and tubes. In this approach,
invariant sets are used for fault detection (FD) and the establishment of FDI conditions, while
the tubes are generated for fault isolation (FI) at transient state. Comparing with the existing
set-theoretic FDI techniques, the advantage of this approach consists in that it exhibits a balance
between the conservativeness of FDI conditions, the fast FI response and the computational
complexity. The effectiveness of the proposed technique is illustrated by a numerical example.

1. INTRODUCTION

Fault occurrence always implies the switching of the sys-
tem functioning modes (see [Blanke et al., 2006]). With
respect to each mode of the system, an invariant set can
be constructed to confine the residual of the mode and as
long as all invariant sets (one healthy invariant set and at
least one faulty invariant set) are disjoint from each other,
the fault can be isolated [Ocampo-Martinez et al., 2010].

In the literature, the features of the set-theoretic actuator
FDI techniques are that they are generally based on a
bank of observers and that only the observer selected by
the FDI module is used for FDI [Ocampo-Martinez et al.,
2010, Seron and Doná, 2010], e.g., if the i-th observer is
chosen to reconfigure the closed-loop system, then only the
residual generated by the i-th observer is real-time tracked
for FDI. Thus, once the residual corresponding to the i-th
observer leaves its corresponding invariant set, it implies
that a fault is detected. Then, FI is based on finding an
after-fault invariant set corresponding to the i-th observer,
which the residual of the i-th observer finally enters into.

Actually, these existing approaches waste some useful
system information, i.e., the information provided by the
other observers not matching the mode. In principle, if
the system information obtained by all the observers can
be used, the guaranteed FDI conditions will be at least
not more conservative than those proposed in [Ocampo-
Martinez et al., 2010, Seron and Doná, 2010].

Besides, the FI techniques proposed in [Ocampo-Martinez
et al., 2010] have to observe a waiting time until the
transit state between the modes elapses, which delays
the FI decision. To avoid this waiting time, [Seron and
Doná, 2010] proposed a technique to implement FDI one
step after faults by considering one-step-after-fault sets.

However, considering the contractiveness of observers,
the one-step-after-fault sets (transient sets) are generally
bigger than the corresponding invariant sets (steady limit
sets). Note that any increase in set size implies an increase
in the conservativeness of FDI conditions.

The objective of this paper is to propose a new technique
to obtain a balance among the existing invariant set-
based approaches. The main contribution lies in that it
uses the process information provided by all the observers
to implement FDI by establishing less conservative FDI
conditions and generating tubes to make FI decisions
during the transient state induced by faults.

The notation |·| denotes the elementwise absolute value,
Br is a box composed of r unitary intervals, the inequali-
ties are understood elementwise, O and I denote the zero
and the identity matrices with compatible dimensions,
respectively, the notation diag(·) denotes the diagonal
matrix, and for a vector a, its transpose is denoted as aT .

2. PROBLEM FORMULATION

The discrete time-invariant plant is modeled by

xk+1 = Axk +BFiuk + ωk, (1a)

yk = Cxk + ηk, (1b)

where A ∈ Rn×n, B ∈ Rn×p and C ∈ Rq×n are constant
matrices, xk ∈ Rn, uk ⊂ Rp and yk ∈ Rq are states, inputs
and outputs at time instant k, respectively, and ωk and
ηk denote process disturbances and measurement noises,
respectively. The matrix Fi ( i ∈ I = {0, 1, · · ·N}) is a
diagonal matrix modeling the i-th actuator mode 1 , where
F0 is the identity matrix describing the healthy mode.

1 The set I represents a finite range of actuator modes (healthy or
faulty) critical to the system performance and/or safety.



Assumption 2.1. The pairs (A,BFi) and (A,C) are stabi-
lizable and detectable, respectively. �
Assumption 2.2. Only one fault occurs at a time and the
fault is persistent such that the FDI module has enough
time to detect and isolate it. �

According to (1), the j-th ( j ∈ I) observer matching the
j-th mode is designed as

x̂jk+1 = (A− LjC)x̂jk +BFjuk + Ljyk, (2a)

ŷjk = Cx̂jk, (2b)

where x̂jk and ŷjk are the states and output estimations,
respectively, and Lj is the observer gain.

Assumption 2.3. The observer gain Lj assures that A −
LjC is a Schur matrix. �

This paper only considers FDI (from healthy to faulty)
and does not discuss mode switching (from faulty to
healthy/faulty to faulty), since the principles are similar.
Thus, the system is considered healthy at the beginning
and the corresponding reference system is designed as

xref
k+1 = Axref

k +Buref
k , (3)

where xref
k and uref

k denote the reference states and inputs.

The control objective of the closed-loop system is to
make the states asymptotically track the reference state
trajectory. Since the system is healthy, the state estimation
of the nominal observer is used for the closed-loop system
design. Using (1), (2) and (3), the control law is given as

uk = uref
k −K(x̂0

k − xref
k ), (4)

where x̂0
k is the estimated state from the nominal observer

and K is the feedback gain such that the closed-loop
system is always stable.

Assumption 2.4. uref
k , ωk and ηk are bounded, i.e.,

Uref ={uref
k ∈ Rp :

∣∣uref
k − ucref

∣∣ ≤ ūref, u
c
ref ∈ Rp, ūref ∈ Rp},

W ={ωk ∈ Rn : |ωk − ωc| ≤ ω̄, ωc ∈ Rn, ω̄ ∈ Rn},
V ={ηk ∈ Rq : |ηk − ηc| ≤ η̄, ηc ∈ Rq, η̄ ∈ Rq},

where the vectors ucref, ω
c, ηc, ūref, ω̄ and η̄ are constant.�

Note that, considering the structure of Uref, W and V ,
they can be rewritten as zonotopes: Uref = ucref⊕Hūref

Bp,
W = ωc⊕Hω̄Bn and V = ηc⊕Hη̄B

q, where Hūref
∈ Rp×p,

Hω̄ ∈ Rn×n and Hη̄ ∈ Rq×q are diagonal matrices with the
main diagonals being ūref, ω̄ and η̄, respectively.

3. SYSTEM ANALYSIS

3.1 Residuals

The components given in (1), (2), (3) and (4) constitute

the closed-loop system and, x̂jk, xref
k , ŷjk and yk are obtain-

able signals, which convey the real-time system informa-
tion. To implement the proposed technique, one defines
the residual corresponding to the j-th observer as

rjk = xref
k − x̂

j
k. (5)

In the fault-free situation, as indicated in (4), the state
estimation of the nominal observer is used to generate the
closed-loop control laws. Even though the system becomes
faulty, the nominal observer will still be used for the closed-
loop control before the fault is isolated.

Moreover, according to (2), (3), (4) and (5), the dynamics

of rjk are obtained as

rjk+1 =Arjk −BFjKr
0
k − LjCx̃

j
k + (B −BFj)uref

k

− Ljηk, (6)

where x̃jk is the state estimation error of the j-th observer,

which is defined as x̃jk = xk − x̂jk. As per (6), whichever
mode the system is in, the residual dynamics correspond-
ing to a certain observer have the same structure.

However, for different modes, the dynamics of x̃jk are
generally different. For example, in the i-th mode, the
dynamics of x̃jk are derived as

x̃jk+1 =(A− LjC)x̃jk +B(Fi − Fj)Kr0
k +B(Fi − Fj)uref

k

+ ωk − Ljηk, (7)

where Fi and Fj correspond to the i-th mode active at the
current situation and the j-th observer, respectively.

Since N + 1 observers are used, at each time instant, one
can obtain N + 1 residuals and N + 1 state estimation
errors. Thus, in order to collect all useful process informa-
tion, one defines the following vectors:

zik =

[
rik
x̃ik

]
, rik =


r0k
r1k
...
rNk

 , x̃ik =


x̃0
k

x̃1
k

...
x̃N
k

 , (8)

where rik and x̃ik collect all the residuals and state estima-
tion errors corresponding to all the observers in the i-th
mode, respectively. Moreover, according to (6) and (7), the
dynamics of zik are derived as

zik+1 = Aizz
i
k +Bizu

ref
k + Ez

ωωk + Ez
ηηk, (9)

where

Aiz =



A−BF0K O ··· O −L0C O ··· O
−BF1K A ··· O O −L1C ··· O

...
... ···

...
...

... ···
...

−BFNK O ··· A O O ··· −LNC
B(Fi−F0)K O ··· O A−L0C O ··· O
B(Fi−F1)K O ··· O O A−L1C ··· O

...
... ···

...
...

... ···
...

B(Fi−FN )K O ··· O O O ··· A−LNC


,

Biz =



B−BF0

B−BF1

...
B−BFN

B(Fi−F0)
B(Fi−F1)

...
B(Fi−FN )


, Ez

ω =


O
O
...
O
I
I
...
I

, Ez
η =



−L0

−L1

...
−LN

−L0

−L1

...
−LN

.

In the i-th mode, the behavior of the closed-loop system
can be described by (9). Considering uref

k , ωk and ηk are
bounded, by substituting their bounding sets into (9), one
can obtain a set-based dynamics of (9) as

Zik+1 = AizZ
i
k ⊕BizUref ⊕ Ez

ωW ⊕ Ez
ηV. (10)

In order to reduce computational complexity and the
consequences of the wrapping effect [Neumaier, 1993],
(9) is equivalently split into two different lower-order
dynamics that are presented as

rik+1 = Arr
i
k +Bru

ref
k + Ex̃x̃ik + Eηηk, (11)



where

Ar =


A−BF0K O O ··· O
−BF1K A O ··· O
−BF2K O A ··· O

...
...

... ···
...

−BFNK O O ··· A

, Br =


B−BF0

B−BF1

B−BF2

...
B−BFN

,

Ex̃ =


−L0C O O ··· O
O −L1C O ··· O
O O −L2C ··· O

...
...

... ···
...

O O O ··· −LNC

, Eη =


−L0

−L1

−L2

...
−LN

,

and

x̃ik+1 = Ax̃x̃ik +Bix̃u
ref
k + Eirr

0
k + Ex̃ωωk + Eηηk, (12)

where

Ax̃ =

A−L0C O ··· O
O A−L1C ··· O

...
... ···

...
O O ··· A−LNC

, Bix̃ =

 B(Fi−F0)
B(Fi−F1)

...
B(Fi−FN )

,

Eir =

 B(Fi−F0)K
B(Fi−F1)K

...
B(Fi−FN )K

, Ex̃ω =

 II...
I

.

Thus, by considering (11) and (12) together and substi-
tuting the sets of ωk and ηk into them, one can obtain
another set-based description of the dynamics:

Ri
k+1 =ArR

i
k ⊕ {Bru

ref
k } ⊕ Ex̃X̃i

k ⊕ EηV, (13a)

X̃i
k+1 =Ax̃X̃i

k ⊕ {Bix̃uref
k } ⊕ {Eirr0

k} ⊕ Ex̃ωW ⊕ EηV.
(13b)

Remark 1. Comparing (9) with (13), as long as rik∗ ∈ Ri
k∗

and x̃ik∗ ∈ X̃i
k∗ are satisfied at time instant k∗, rik ∈ Ri

k

and x̃ik ∈ X̃i
k always hold for all k ≥ k∗. 3

Proposition 3.1. Comparing (10) with (13), if Ri
k∗×X̃i

k∗ ⊆
Zik∗ , where × denotes the Cartesian product, then Ri

k ×
X̃i
k ⊆ Zik always holds for all k > k∗.

Proof : Substituting the sets of uref
k , ωk and ηk into

(9), one can obtain (10), while (13) is obtained by only
substituting the sets of ωk and ηk into (11) and (12). Since
(9) is equivalent to (11) and (12), (13) should be bounded
by (10) after k∗, as long as the sets of the two set-based
dynamics satisfy the condition in Proposition 3.1 at k∗. �

3.2 Real-time Bounds for State Estimation Errors

Since the state estimation errors are unmeasurable, this
paper aims to obtain their bounds by using available
signals. According to (1b) and (2b), the output estimation

error ỹjk of the j-th observer is defined as

ỹjk =yk − ŷjk = Cx̃jk + ηk. (14)

Similarly, when the system is in the i-th mode, one defines
the output estimation error vector as

ỹik = [ (ỹ0k)T (ỹ1k)T ... (ỹNk )T ]
T
, (15)

where, according to (14), ỹik is derived as

ỹik = Cx̃x̃ik + Fηηk, (16)

where Cx̃ = diag([C C ... C ]) and Fη = [ I I ... I ]
T

.

According to (16) and considering the bound of ηk, at time
instant k, one always has the relationship

Cx̃x̃ik ∈ {ỹik} ⊕ (−FηV ). (17)

By using (17), since the output estimation error ỹik is
available, the set of x̃ik can always be computed.

Remark 2. If Cx̃ is invertible, the set of x̃ik can be directly
computed with (17). If Cx̃ is not invertible, the set of x̃ik
can be obtained by intersecting all the strips determined
by componentwise inequalities of (17) with a set of x̃ik
determined by the physical constraints. 3

Remark 3. Although the set of x̃ik is obtained, considering
the use of set-based propagation in this paper, a box of
the set of x̃ik is more useful, which can be obtained and be

written as X̃i
k = [bik, bik], where bik and bik denotes the

lower and upper bounds of the box. 3

3.3 Invariant Sets of Residuals

Theorem 3.1. [Kofman et al., 2007, Olaru et al., 2010].
Considering the system xk+1 = A◦xk + B◦δk where A◦ is
a Schur matrix and δk ∈ ∆ = {δ : |δ − δ◦| ≤ δ̄}, and
A◦ = V ΛV −1 as the Jordan decomposition, the set

Φ(θ) ={x ∈ Rn :
∣∣V −1x

∣∣ ≤ (I − |Λ|)−1
∣∣V −1B◦

∣∣ δ̄ + θ}
⊕ ξ◦ (18)

is robust positively invariant (RPI) and attractive for
the system trajectories with θ any vector with positive
components and ξ◦ = (I −A◦)−1B◦δ

◦.

(1) For any θ, the set Φ(θ) is (positively) invariant, that
is, if x0 ∈ Φ(θ), then xk ∈ Φ(θ) for all k ≥ 0.

(2) Given θ ∈ Rn, θ > 0, and x0 ∈ Rn, there exists k∗ ≥ 0
such that xk ∈ Φ(θ) for all k ≥ k∗. H

Remark 4. [Olaru et al., 2010]. Considering the same sys-
tem in Theorem 3.1 and denoting X0 as an RPI initial set
of the system, each of the set iterations

Xj+1 = A◦Xj ⊕B◦∆, j ∈ N,
is an RPI approximation of the minimal RPI (mRPI) set
of the system (Xj denotes the j-th element of the set
sequence and N is the set of natural numbers). As j tends
to infinity, the set sequence converges to the mRPI set. 3

Remark 5. For any initial set X0, as j tends to infinity,
the set sequence always converges to the mRPI set. The
difference from Remark 4 is that the set Xj may not be a
RPI approximation of the mRPI set. 3

According to Remark 5, one knows that, as k tends to
infinity, (10) will converge to the mRPI set of zik. Thus,
according to Proposition 3.1, the set iterations of (13) are
contractive and bounded by the mRPI set of zik.

Moreover, since uref
k , ωk and ηk are bounded, for the i-th

mode, an RPI set, denoted as Zi, can be constructed to
confine the corresponding zik. By definition, the mRPI is
always contained in any RPI set. Thus, for the i-th mode,
the corresponding tube generated by (13) will ultimately
enter into Zi. Since zik is composed of rik and x̃ik, the

corresponding sets of rik and x̃ik (denoted as Ri and X̃i,
respectively) can be obtained by projecting Zi to the
spaces of rik and x̃ik, respectively.



4. FDI APPROACH

4.1 Fault Detection and Isolation

Once the i-th (i ∈ I0 = I \ {0}) fault occurs, the residual
vector 2 rk will enter into and stay inside the set Ri.

When the system is in the healthy functioning, if a
sufficient amount of time has passed since the start of the
system, rk should always be inside R0. Thus, a fault is
detected whenever a violation of

rk ∈ R0 (19)

is confirmed under the assumption of persistent faults.
Otherwise, it is considered that the system is still healthy.

It is assumed a fault is detected at time instant kd, rfkd and

ỹfkd can be obtained, where f denotes a new but unknown

mode. Thus, at time instant kd, by (17), one can obtain

X̃f
kd

=[bfkd ,b
f
kd

], (20a)

Rf
kd

=rfkd ⊕OBs, f ∈ I0. (20b)

Moreover, at time instant kd, using X̃f
kd

and Rf
kd

to

initialize N set-based faulty dynamics described by (13),
then all the residual tubes Ti (i ∈ I0) corresponding to
the N faults are generated, each of which corresponds to
a faulty mode. The i-th tube is denoted as

Ti = {Ri
kd
,Ri

kd+1,R
i
kd+2, . . . }.

According to Remark 1, it is known that at least one
residual tube out of the N tubes Ti (i ∈ I0) can always

bound rfk after time instant kd. If one and only one

residual tube can always bound rfk , FI can be guaranteed
by searching that tube, i.e., testing if

rfk ∈ Ri
k, i ∈ I0, k > kd. (21)

Eventually, by real-time testing the inclusion (21) between

rfk and the N faulty tubes, at a time instant ki when there
is one and only one tube that respects (21), it implies that
the fault is isolated at this time instant and indicated by
the index of that tube. The conditions to guarantee this
fact will be detailed in Section 5.

4.2 Computation of Tubes

The FI key is to compute tubes. As per Section 3.2, at the

FD time kd, X̃f
kd

and Rf
kd

indicated in Remark 3 and (20)
should be constructed to generate tubes. Since a box can

be expressed as a zonotope, the set X̃f
k is rewritten as

X̃f
k = x̃f,ck ⊕H

f,x̃
k Bsx̃ ,

where x̃f,ck and Hf,x̃
k are the corresponding center and

segment matrix, respectively.

Initializing (13) by using X̃f
kd

and R̃f
kd

at time instant kd,
one obtains the zonotopic form of residual tubes

2 rk is the general denotation of the residual vector while rik denotes
the residual vector under the i-th mode.

ri,ck+1 = Arr
i,c
k +Bru

ref
k + Ex̃x̃i,ck + Eηηc, (22a)

Hi,r
k+1 = [ArH

i,r
k Ex̃H

i,x̃
k EηHη̄], (22b)

x̃i,ck+1 = Ax̃x̃i,ck +Bix̃u
ref
k + Eirr

0
k + Ex̃

ωωc + Eηηc, (22c)

Hi,x̃
k+1 = [Ax̃H

i,x̃
k Ex̃

ωHω̄ EηHη̄], (22d)

where ri,ck and Hi,r
k denotes the center and segment matrix

of Ri
k, respectively.

Using (22), N residual tubes Tik (i ∈ I0) corresponding
to the N considered faults can be obtained. Additionally,
an FDI algorithm is used to summarize the proposed
FDI techniques in Section 4.1, where length(·) denotes the
number of elements in a set.

Algorithm 1 FDI algorithm

Require: Fault index set I0;
Ensure: Faulty index f ;

1: Initialize a bank of observers (2) and f = 0;
2: At time instant k: rk ∈ R0 and fault ← FALSE;
3: while fault 6= TRUE do
4: k ← k + 1;
5: Compute rk;
6: if rk 6∈ R0 then
7: fault ← TRUE, f 6= 0;

8: Obtain rfkd and ỹfkd to construct Rf
kd

and X̃f
kd

;

9: Initialize (13) to generate N tubes Ti (i ∈ I0);
10: end if
11: end while
12: while length(I0)6= 1 do
13: for i ∈ I0 do
14: if rfk 6∈ Ri

k then
15: Remove i from I0;
16: end if
17: end for
18: k ← k + 1;
19: end while
20: f ← I0 (finally only one element inside I0);
21: return f;

5. FDI CONDITIONS

5.1 Guaranteed FDI Conditions

To assure the considered faults are detectable and isolable
by the proposed technique, one establishes FDI conditions
based on the residual invariant sets.

According to Remark 5 and Proposition 4, once a fault
occurs, after initialization, the tube Ti (i ∈ I0) will enter
into the set Ri in accordance with the fault.

To guarantee FDI at transient state, one should assure
that, after initialization, there is one and only one tube
that can always bound rik, i.e., the sets Ri (i ∈ I) should
be separate from each other. For this objective, the FDI
conditions are established as follows.

Theorem 5.1. For any two modes i1 and i2 out of the N+1
modes, as long as

Ri1 ∩Ri2 = Ø, i1 6= i2 and i1, i2 ∈ I (23)

holds, it is guaranteed that all the considered faults are
detectable and then isolable during the transition.



Proof : If (23) is satisfied, the residual rk must leave the
healthy invariant set after fault occurrence and one and
only one tube can always contain the residual rk during
the transition, which guarantees FD and FI. �

5.2 Comparison of FDI Conditions

In the i-th mode, the RPI set of rjk is obtained by the
corresponding projection of Ri and is denoted as Ri,j .
As mentioned in Section 1, the existing works are based
on the residual corresponding to the observer matching
the current mode, i.e., only the residual r0

k corresponding
to the nominal observer is used for FDI and the FDI
conditions are based on the complete separation of all
after-fault invariant sets of r0

k under all modes, i.e.,

Ri1,0 ∩Ri2,0 = Ø, i1, i2 ∈ I. (24)

Comparatively, instead of using the system information
only from one observer, the proposed approach utilizes all
the process information from all the observers for FDI (see
(23)). Considering the structure of rik, it is known that
the set Ri is equivalent to the composition of N + 1 sets
corresponding to the residuals of the N + 1 observers, i.e.,
Ri = Ri,0×Ri,1×· · ·×Ri,N . Thus, Ri,j is the component
of Ri corresponding to rjk.

The condition (23) implies that the separation between
Ri1 and Ri2 can be guaranteed as long as there exists
one component of Ri1 that is disjoint from that of Ri2 ,
i.e., ∃i1, i2 ∈ I such that Ri1,j ∩ Ri2,j = Ø, where j
could not only be 0 but also any other index inside I.
This means the FDI condition (24) is only a particular
case of the FDI condition (23), which implies the reduced
conservativeness and enhanced fault sensitiveness of this
proposed FDI approach.

6. NUMERICAL EXAMPLE

An example modeled as (1) is presented. Two actuator
faults, F1 and F2, are considered and the parameters are

• system matrices:

A =

[
0.6 0.05
0.1 0.7

]
,B =

[
0.5 0.1
0.2 −0.3

]
, C =

[
1 0
0 1

]
,

• disturbances: w̄ = [0.1 0.1]
T

, wc = [0 0]
T

,

• noises: η̄ = [0.01 0.01]
T

, ηc = [0 0]
T

,

• observer gains: L0 = L1 = L2 =

[
1 0.05

0.1 0.2

]
,

• feedback gain: K =

[
0.2353 −0.1765
0.1471 −0.2353

]
,

• fault magnitudes: F1 =

[
0 1
0 1

]
, F2 =

[
1 0
0 0

]
,

• reference input (sinusoidal signal) set:

Uref =

[
5
5

]
⊕
[
0.3 0
0 0.3

]
B2,

• initial conditions:

x0 = [0 0]
T

, x̂0 = x̂1 = x̂2 = [0 0]
T

,
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Fig. 1. FDI of the fault 1



• sampling time: T = 0.1s.

The RPI sets of the residual under three different modes
are computed. For simplicity, they are written as boxes:

R0 = ([−0.9844, 0.9844], [−0.6294, 0.6294], [−302.4385, 306.01],

[0.1809, 3.8191], [−41.0474, 41.7616], [−4.588,−1.412]),

R1 = ([3.45780, 6.48780], [1.45490, 5.2730], [5.69540, 8.23340],

[3.8186, 7.3705], [3.7696, 6.8816], [−3.4091, 4.2094]),

R2 = ([−1.2622, 0.9716], [−2.8069,−0.9243], [−2.8646, 6.3562],

[−3.4321, 3.9370], [−0.8232, 1.3066], [−6.1596,−4.0726]),

which shows that R0, R1 and R2 are separate from each
other (the satisfaction of the FDI conditions (23)).

Thus, the proposed approach can be used to detect and
isolate the faults. In this example, the time span of
simulation for both faults is 90 time instants. The time
instants from 1 to 10 are used to initialize the system so
that the residuals stay inside the healthy invariant sets,
those from 11 to 30 represent the healthy functioning, and
those from 31 to 91 represent the faulty functioning.

In the simulation, both faults occur at time instant 31.
However, because of space limits of this paper, only the
results of the fault 1 are presented. In Figure 1, the first
residual component leaves its invariant set at time instant
34, which means the fault 1 is detected at that time.
Except the first component, all the other components of
the residual vector still stay inside their invariant sets.
Besides, all the residual components indicate the fault 1
is isolated at time instant 36. Note that, in Figure 1, the
constant bounds from 11 to 30 labelled with blue-green
mixed color denote the healthy invariant sets of residuals.

Since the tubes are computed by zonotopes and the resid-
ual zonotopes are reordered by Property A.3 in the Ap-
pendix to reduce the order of the zonotopes at each time
instant, the tubes cannot be accurately computed and
always include some approximate errors. But the compu-
tation of invariant sets (i.e., RPI approximations of the
mRPI set) is generally accurate (generally, the mRPI set
cannot be computed). Thus, if the accumulation of errors
in zonotope overapproximation is too big with respect to
the corresponding ideal tubes, the generated tubes may
fail to converge into their corresponding invariant sets.

Actually, the FI task of this approach can be divided
into two different and independent phases. The first phase
is based on the tubes for the transient-state FI while
the second phase is based on invariant set separation for
the steady-state FI. As long as the FDI conditions in
Theorem 5.1 are satisfied, the fault can be isolated at latest
when the system enters into the steady state, even though
the first phase of the proposed FI approach fails to isolate
the fault at transient state.

Thus, in the case that the tubes do not accurately con-
verge into their corresponding invariant sets because of
the accumulation errors, tube-based transient-state FI is
perhaps affected. But the invariant set-based steady-state
FI can still work normally (i.e., the whole availability of
the proposed FDI approach is not affected). Additionally,
since this approach uses the tubes, when designing the
observers and controllers, the wrapping effect should be
avoided as far as possible [Neumaier, 1993].

7. CONCLUSIONS

This paper proposes an actuator FDI strategy by using
invariant sets and tubes. The first advantage of this tech-
nique is that it uses all the available system-operating in-
formation to reduce the conservativeness of FDI conditions
and isolate the faults during the transition. The other
advantage is that if the FDI conditions cannot be fully
satisfied, the approach can still be used. The difference
consists in that perhaps the FI result is not unique but
it can reliably isolate the real fault, which implies the
extension of the effectiveness of the FDI framework.

APPENDIX

Definition A.1. The Minkowski sum of two sets A and B
is defined by A⊕B = {a+ b : a ∈ A, b ∈ B}. O
Property A.1. Given zonotopes X1 = g1 ⊕ G1B

r1 ⊂ Rn
and X2 = g2 ⊕G2B

r2 ⊂ Rn, the Minkowski sum of them
is X1 ⊕X2 = {g1 + g2} ⊕ [G1 G2]Br1+r2 . �
Property A.2. Given a zonotope X = g ⊕GBr ⊂ Rn and
a compatible matrix K, KX = Kg ⊕KGBr. �
Property A.3. Given X = g ⊕ GBr ⊂ Rn and an integer
s (n < s < r), denote by Ĝ the matrix resulting from
the recording of the columns of G in decreasing Euclidean
norm. X ⊆ g ⊕ [ĜT Q]Bs where ĜT is obtained from

the first s − n columns of matrix Ĝ and Q ∈ Rn×n
is a diagonal matrix whose elements are computed by
Qii =

∑r
j=s−n+1 | Ĝij |, i = 1, . . . , n. �
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