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Abstract

In this paper, an actuator-fault detection and isolation (FDI) approach is proposed. The FDI approach is based on a bank of interval
observers, each of which is designed to match a healthy or faulty system mode. To ensure reliable FDI for all considered actuator
faults, a collection of invariant set-based FDI conditions are established for the proposed technique. Under these guaranteed FDI
conditions, all the considered faults can be detected and isolated during the transition induced by fault occurrences. Comparing
with the existing set-based FDI approaches, the advantage of the proposed technique consists in that it combines the advantages of
interval observers in the transient-state functioning and the advantages of invariant ses in the steady-state functioning. This paper is
completed with the study of a continuous stirred-tank reactor (CSTR), which illustrates the effectiveness of the proposed method.
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1. Introduction

The interval observers, as one of set-theoretic FDI ap-
proaches, are well-known for robust fault detection (FD) [1,
2, 3], which consists in propagating the effect of uncertain-
ties through the system models to generate real-time intervals
for the real outputs. Provided that the system is healthy, the
current outputs should be inside the output intervals estimated
by the interval observer based on the healthy system model.
When the system is affected by faults, once the current out-
puts violate their intervals, the FD task will be triggered. In
the literature, there exist different types of set-theoretic FD ap-
proaches: the set-valued observer [4], the set-membership state
estimation [5, 6], the invariant set-based [7, 8] and the inter-
val observer-based approaches [2, 3]. Regarding fault isola-
tion (FI), interval observers (or other related techniques such as
the set-membership estimation) generally turn to other FI tech-
niques such as the fault signature matrix approach [9, 10]. So
far, few works have been addressed for the FI application of in-
terval observers, especially when considering that one wants to
obtain guaranteed FI once the considered actuator faults affect
the system.
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Figure 1: Interval observer-based FDI scheme

The objective of this paper is to propose an interval observer-
based FDI approach in which both FD and FI are implemented
by means of interval observers and without relying on other FI
techniques. To provide FDI guarantees, invariant sets are used
to establish FDI conditions [8, 11]. In [12], the relationship
of interval observers and invariant sets in FD is investigated
and some useful results for the present paper are given there.
In a previous work [13], a bank of interval observers, where
each observer is designed to match either one healthy or one
of the faulty modes, is used to implement FDI. This paper fol-
lows the framework proposed in [13] and further proposes new
techniques to enhance the performance of the FDI framework
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shown in Figure 1.
In this paper, the design of interval observers is based on

the discrete-time Luenberger observer structure, and the uncer-
tainties (disturbances, offsets and noises, etc) and faults with
unknown magnitudes but known bounds are considered. In
principle, the proposed method can be extended to the plant
with parametric uncertainties [2]. Additionally, considering the
balance among the expressional concision, computational pre-
cision and complexity, this paper uses zonotopes as the con-
tainment set to propagate the effect of uncertainties in interval
observers (see [5, 6] for zonotopes in state estimation).

The contribution of this paper is threefold. First, it provides
a novel perspective to the FI application of interval observers
by merging the notions of interval observers and invariant sets.
Second, the proposed method extends this FDI framework for
unknown faults but with known bounds. Third, this technique
can detect and isolate faults during the transition between dif-
ferent modes with less conservative FDI conditions. In this en-
deavor, this paper builds on the primer results in [13, 14].

The remainder of this paper is organized as follows. Section
2 introduces the plant and interval observers. Section 3 defines
residual zonotopes and derives their bounding zonotopes. In
Section 4, a collection of invariant set-based FDI conditions are
established. The FDI algorithm is presented in Section 5. In
Section 6, a CSTR example is used to illustrate the effectiveness
of this approach. Finally, Section 7 draws general conclusions.

The notation ⊕ represents the Minkowski sum (Minkowski
sum of two sets A and B is defined by A ⊕ B = {a + b : a ∈
A, b ∈ B}), |·| denotes the elementwise absolute value, and Br

is a box composed of r unitary intervals. The inequalities are
understood elementwise. The bold matrices denote, such as A,
interval matrices, and mid(·) and diam(·) compute the center
and diameter of an interval matrix, respectively. The notation I
denotes the identity matrix with compatible dimensions. Given
a vector g ∈ Rn and a matrix G ∈ Rn×m (n ≤ m), a zonotope
X with an order m is defined as X = g ⊕ GBm, where g and
G are called the center and segment matrix of the zonotope,
respectively. For some ε > 0, one denotes Bn

p0
(ε) = {x ∈ Rn : ‖

x ‖p0≤ ε}, where ‖ x ‖p0 is the p0-norm of vector x.

2. Plant and interval observers

2.1. Plant dynamics

The linear discrete time-invariant plant under the effect of
actuator faults is modelled as

xk+1 = Axk + BFiuk + ωk, (1a)
yk = Cxk + ηk, (1b)

where A ∈ Rn×n, B ∈ Rn×p and C ∈ Rq×n are constant matrices,
xk ∈ Rn, uk ∈ Rp and yk ∈ Rq are states, inputs and outputs
at the k-th time instant, respectively, ωk and ηk represent sys-
tem uncertainties (disturbances, noises, offsets, etc) in states
and outputs, respectively, and Fi ( i ∈ I = {0, 1, · · · ,N} repre-
sents a finite range of actuator-fault modes important to system

performance or safety) is a p× p diagonal matrix modelling the
i-th actuator mode (healthy or faulty)1.

Note that F0 is the identity matrix with compatible dimen-
sions and describes the healthy actuator mode, and Fi with
i ∈ I \ {0} models the fault-affected system. The diagonal el-
ements of Fi (i ∈ I \ {0}) belong to the interval [0, 1], where an
element taking the value 0 or 1 represents the complete outage
or health of the corresponding actuator, respectively, while tak-
ing a value inside (0, 1) denotes the partial performance degra-
dation of the corresponding actuator.

Assumption 2.1. The uncertainties ωk and ηk are unknown but
bounded by known sets W and V with the form

W ={ω ∈ Rn : |ω − ωc| ≤ ω̄, ωc ∈ Rn, ω̄ ∈ Rn},

V ={η ∈ Rq : |η − ηc| ≤ η̄, ηc ∈ Rq, η̄ ∈ Rq},

respectively, where the vectors ωc, ηc, ω̄ and η̄ are constant.

Note that, the sets W and V can be rewritten as zonotopes

W =ωc ⊕ Hω̄Bn, (2a)
V =ηc ⊕ Hη̄Bq, (2b)

where Hω̄ ∈ Rn×n and Hη̄ ∈ Rq×q are diagonal matrices with
diagonal entries composed of ω̄ and η̄, respectively.

Assumption 2.2. The pairs (A, BFi) for all i ∈ I are stabiliz-
able and the given control inputs uk guarantee the stability of
the plant (1) (or the plant (1) is stable) and the pair (A,C) is
detectable.

Assumption 2.3. In the i-th actuator-fault mode, Fi is bounded
by an interval matrix Fi, i.e., Fi ∈ Fi, where Fi (the actual
magnitude of the i-th fault) is unknown and Fi (the bound of
the magnitude of the i-th fault) is known.

Note that Fi is used to model the i-th actuator fault, while Fi
is used to describe the range of fault magnitude (an important
feature for system performance or safety) of the corresponding
actuators in the i-th mode.

Remark 2.1. A fault occurrence indicates a change from Fi to
F j (i , j) in (1). Since the actuator-fault magnitude is un-
known, when the system is in the functioning of the i-th mode,
Fi can be any value inside its bound Fi, which implies that Fi

can be constant or time-varying with any profile.

2.2. Interval observers

Interval observers use the plant inputs and outputs to estimate
the state and output sets. The interval observer corresponding to
the healthy functioning is introduced first to explain the general
design procedure, which is further employed for the description
of the rest of interval observers.

1A system mode characterizes the system as being under a certain dynamics,
which corresponds to either healthy or faulty behaviors.
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2.2.1. Interval observer for healthy mode
Considering the plant (1), in the healthy mode, the healthy

interval observer with Luenberger structure

x̂k+1 =Ax̂k + BF0uk + L0(yk − ŷk) + ω̌k, (3a)
ŷk =Cx̂k + η̌k, (3b)

is designed to monitor the system in the healthy functioning,
where the matrix L0 is the observer gain.

In the Luenberger observer structure (3), the uncertain vari-
ables ω̌k and η̌k are used to describe the effect ofωk and ηk in the
plant (1) on the state and output estimations x̂k and ŷk (i.e., the
effect on the state and output sets estimated by the correspond-
ing interval observer), respectively. The uncertain variables ω̌k

and η̌k are different from ωk and ηk but have the same sets, re-
spectively, i.e., ω̌k ∈ W and η̌k ∈ V . By substituting (3b) into
(3a), (3) can be equivalently transformed into

x̂k+1 =(A − L0C)x̂k + BF0uk + L0yk − L0η̌k + ω̌k, (4a)
ŷk =Cx̂k + η̌k. (4b)

Note that w̌k and η̌k respectively emulate ωk and ηk from (1) and
are used to cover the effect of ωk and ηk on the state and out-
put estimations from (3), while acknowledging that the actual
noises are not measurable but manipulated set-wise.

In the healthy mode, the healthy interval observer able to es-
timate the state and output sets that bound the states and outputs
of the plant (1) can be obtained as

X̂0
k+1 =(A − L0C)X̂0

k ⊕ {BF0uk} ⊕ {L0yk}

⊕ (−L0)V ⊕W, (5a)

Ŷ0
k =CX̂0

k ⊕ V (5b)

by substituting the sets W and V of w̌k and η̌k into (4), where X̂0
k

and Ŷ0
k are the estimated state and output sets at time instant k,

respectively, and L0 is chosen to ensure that A − L0C is a Schur
matrix, which is always possible under Assumption 2.2.

Remark 2.2. The interval observer is a set-based observer that
converges under the Schur-matrix hypothesis for the matrix A−
L0C independent of the topology of the sets in the construction.
Naturally, these properties are inherited in the case of zonotopic
sets used in this paper.

Since ωk and ηk are bounded by zonotopes in (2), zonotopes
to bound the estimated outputs and states can be constructed by
introducing zonotopic description of ω̌k and η̌k into the observer
mapping (4) and using zonotope arithmetic at each time instant.

Assumption 2.4. The initial state of the plant is represented as
x0 and all the interval observers are initialized by a common
zonotopic set X̂0 such that x0 ∈ X̂0 holds.

Actually, an interval observer estimates the bounds for states
and outputs starting from an initial zonotope and the initial
zonotope can be arbitrarily given. For convenience, it is as-
sumed that the initial zonotope of each observer can contain the

initial state of the plant and all interval observers use the same
initial zonotope as in Assumption 2.4. However, how to give an
initial zonotope for each observer is decided by the designer.

Remark 2.3. Under Assumption 2.4, it is guaranteed that the
current states and outputs of the plant are always bounded by
the state and output zonotopes estimated by an interval observer
whose internal model matches the current mode model.

In the proposed technique, since interval observers are based
on zonotopes, the discussion is also based on zonotopes in the
remaining of the paper and some relevant features of zonotopes
are introduced in Appendices.

2.2.2. Interval observers for actuator-fault modes
Similarly, the interval observer, used to monitor the j-th

actuator-fault mode ( j ∈ I \ {0}), is designed as

X̂ j
k+1 =(A − L jC)X̂ j

k ⊕ {BFjuk} ⊕ {L jyk}

⊕ (−L j)V ⊕W, (6a)

Ŷ j
k =CX̂ j

k ⊕ V, (6b)

where j is the index of the interval observer, X̂ j
k and Ŷ j

k are the
estimated state and output zonotopes at time instant k, respec-
tively, and the observer gain L j is chosen to ensure that A− L jC
is a Schur matrix, which is guaranteed by Assumption 2.2.

Remark 2.4. The gain matrix L j of the j-th interval observer
is independent of those of the other interval observers, i.e., the
gain matrices of interval observers are separately designed.

Remark 2.5. In Appendices, if Hk, B and uk are zero, Prop-
erty B.5 will reduce to the computation of a zonotope to bound
the multiplication of an interval matrix and a vector. In this
case, by using the reduced result of Property B.5, the term Fjuk

in (6) can be overapproximated by a zonotope whose center and
segment matrix are mid(Fj)uk and diam(Fj)

2 uk, respectively.

As per Remark 2.5, Fjuk in (6) can be replaced by its zono-
topic overapproximation. In this way, one can obtain a feasible
form of (6), i.e., an overapproximation of (6). Moreover, using
zonotope manipulations, the obtained feasible form of (6) can
be equivalently split into the center-segment matrix description

x̂ j,c
k+1 =(A − L jC)x̂ j,c

k + Bmid(Fj)uk + L jyk

− L jη
c + wc, (7a)

Ĥ j,x
k+1 =[(A − L jC)Ĥ j,x

k B
diam(Fj)

2
uk − L jHη̄ Hω̄], (7b)

ŷ j,c
k =Cx̂ j,c

k + ηc, (7c)

Ĥ j,y
k =[CĤ j,x

k Hη̄], (7d)

where x̂ j,c
k+1 and ŷ j,c

k are the centers of X̂ j
k+1 and Ŷ j

k , and Ĥ j,x
k+1 and

Ĥ j,y
k are the segment matrices of X̂ j

k+1 and Ŷ j
k , respectively.

For simplicity, one uses the same notations X̂ j
k+1 and Ŷ j

k to
denote the state and output set estimations of (6) and (7). It can
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be observed that X̂ j
k+1 and Ŷ j

k in (7) are the overapproximations
of X̂ j

k+1 and Ŷ j
k in (6), respectively, where the former is the par-

ticular implementation of interval observers while the latter is
the theoretical expression of interval observers.

Note that, since only (7) is used to estimate state and output
sets in the proposed approach, X̂ j

k+1 and Ŷ j
k in the remaining of

the paper denote the state and output sets estimated by (7).

Remark 2.6. Letting j = 0 in (7), the center x̂0,c
k+1 and segment

matrix Ĥ0,x
k+1 of X̂0

k+1, and the center ŷ0,c
k and segment matrix

Ĥ0,y
k of Ŷ0

k , corresponding to the healthy interval observer, can
be accurately obtained.

3. Residual zonotopes

3.1. Residual zonotopes

For the model-based FDI approach, it is necessary to define
the residuals for fault diagnosis. Different from the traditional
residual definition (a residual is defined as a vector), the resid-
uals are defined as sets (zonotopes) in the proposed technique.
As per (1), (5) and (7), the residual zonotope is defined as

Ri j
k = {yk} ⊕ (−Ŷ j

k )

= {Cxk + ηk} ⊕ {(−CX̂ j
k) ⊕ (−V)}

= C{{xk} ⊕ (−X̂ j
k)} ⊕ {ηk} ⊕ (−V), (8)

where Ri j
k denotes the residual zonotope estimated by the j-th

( j ∈ I) interval observer when the plant is in the i-th (i ∈ I)
mode at time instant k.

In order to obtain the set values of Ri j
k , the zonotope X̃i j

k =

{xk} ⊕ (−X̂ j
k) in (8) should be considered, which is derived as

X̃i j
k = {xk} ⊕ (−X̂ j

k) = {(xk − x̂ j,c
k )} ⊕ Ĥ j,x

k Bs j
k , (9)

where s j
k represents the order of the zonotope X̃i j

k .
According to (1) and (7), at time instant k + 1, using x̃i j,c

k+1 and
H̃i j,x

k+1 to denote xk − x̂ j,c
k+1 and Ĥ j,x

k+1 as seen in (9), the center x̃i j,c
k+1

and segment matrix H̃i j,x
k+1 of X̃i j

k+1 are computed as

x̃i j,c
k+1 =(A − L jC)x̃i j,c

k + B(Fi − mid(Fj))uk

− L j(ηk − η
c) + (ωk − ω

c), (10a)

H̃i j,x
k+1 =Ĥ j,x

k+1,

Ĥ j,x
k+1 =[(A − L jC)Ĥ j,x

k B
diam(Fj)

2
uk − L jHη̄ Hω̄]. (10b)

By substituting (9) into (8), the expression of the residual
zonotope can be restated as

Ri j
k = CX̃i j

k ⊕ {ηk} ⊕ (−V). (11)

3.2. Adaptive bounds for residual zonotopes

Substituting Fi, W and V into (10a) to respectively replace
Fi, ωk and ηk and using zonotope operations, one can obtain
a bounding zonotope X̌i j

k+1 to bound X̃i j
k+1 described by (9) and

(10). Moreover, the center x̌i j,c
k+1 and segment matrix Ȟi j,x

k+1 of
X̌i j

k+1 can be derived as

x̌i j,c
k+1 =(A − L jC)x̌i j,c

k + Bmid(Fi)uk − Bmid(Fj)uk, (12a)

Ȟi j,x
k+1 =[(A − L jC)Ȟi j,x

k B
diam(Fi)

2
uk B

diam(Fj)
2

uk

L jHη̄ − L jHη̄ Hω̄ − Hω̄]. (12b)

Using Remark 2.5 and zonotope manipulations, an equiva-
lent compact form of (12) can be derived as

X̌i j
k+1 =(A − L jC)X̌i j

k ⊕ BǓi ⊕ B(−Ǔ j) ⊕ L j(−V)
⊕W ⊕ L jV ⊕ (−W), (13)

where the sets Ǔi and Ǔ j are zonotopes computed as

Ǔi = {mid(Fi)uk} ⊕
diam(Fi)

2
ukBsǔi ,

and

Ǔ j = {mid(Fj)uk} ⊕
diam(Fj)

2
ukBsǔ j ,

where sǔ j and sǔ j are the orders of Ǔ j and Ǔ j, respectively.

Proposition 3.1. As long as X̃i j
k∗ ⊆ X̌i j

k∗ holds, X̃i j
k will be always

bounded by X̌i j
k for all time instants k > k∗.

Proof : Since (12) is obtained by substituting the bounds of Fi,
ωk and ηk into (10), it follows that if, at time instant k∗, X̃i j

k∗ ⊆

X̌i j
k∗ holds, then after k∗, the inclusion will always hold. �

As per Proposition 3.1, by introducing X̌i j
k and V into (11), a

computable bound for Ri j
k can be obtained as

Ři j
k = CX̌i j

k ⊕ V ⊕ (−V). (14)

3.3. Static bounds for residual zonotopes
In (13), the adaptive bound X̌i j

k of X̃i j
k always tracks the evo-

lution of control inputs. Since FDI conditions of the proposed
approach are established by using fixed steady sets, in order to
establish the FDI conditions, it is necessary to obtain a static
bound for X̃i j

k (not affected by the evolution of inputs). This
will be detailed in the following contents.

Assumption 3.1. The inputs uk of the plant are bounded by

U = {uk ∈ Rp : |uk − uc| ≤ ū, uc ∈ Rp, ū ∈ Rp},

where the vectors uc and ū are constant. Furthermore, the set U
can be rewritten as a zonotope U = uc⊕HūBp, where Hū ∈ Rp×p

is a diagonal matrix with the main diagonal being ū.

By replacing uk in (12) with its bound U, one can obtain a
static bound denoted as X̆i j

k+1 for both X̃i j
k+1 and X̌i j

k+1 and the
set-based dynamics of X̆i j

k+1 is expressed as

X̆i j
k+1 =(A − L jC)X̆i j

k ⊕ BŬi ⊕ B(−Ŭ j) ⊕ L j(−V)
⊕W ⊕ L jV ⊕ (−W), (15)
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where, according to Property B.4 and Property B.5 in Appen-
dices, the sets Ŭi and Ŭ j are zonotopes computed as

Ŭi = {mid(Fi)uc} ⊕ [seg(�(FiHū))
diam(Fi)

2
uc]Bsŭi ,

and

Ŭ j = {mid(Fj)uc} ⊕ [seg(�(FjHū))
diam(Fj)

2
uc]Bsŭ j ,

where sŭi and sŭ j are the orders of Ŭi and Ŭ j, respectively.
Thus, from set-theoretic point of view, one can define an

equivalent dynamics for (15) as

x̆i j
k+1 =(A − L jC)x̆i j

k + Bŭik − Bŭ jk − L jηk + ω̆k

+ L jη̆k − ωk, (16)

where ŭik ∈ Ŭi, ŭ jk ∈ Ŭ j, η̆k ∈ V and ω̆k ∈ W.
As per the notions of robust positively invariant (RPI) and

minimal robust positively invariant (mRPI) sets in Property A.1,
Property A.2 and Theorem A.1 in Appendices, an RPI set for
(16) can be computed and further be written in the zonotopic
form. Moreover, using Proposition A.1 in Appendices and the
RPI set as an initial set for (15), after a finite number of itera-
tions, an RPI approximation (denoted as S i j) with an arbitrarily
expected precision to the mRPI set of (16) can be computed.
Since the mRPI set is the limit set of (15), as long as the preci-
sion of S i j is satisfactory, S i j can reliably replace the use of the
mRPI set.

In the proposed approach, for each mode, the corresponding
interval observer is designed according to the mode model. By
substituting X̆i j

k in (15) into (8), a static bound R̆i j
k for both Ri j

k

and Ři j
k can be obtained as

R̆i j
k =CX̆i j

k ⊕ V ⊕ (−V). (17)

Remark 3.1. Two different residual-related sets Ři j
k and R̆i j

k are
considered in the proposed approach. Ři j

k and R̆i j
k as the two

different bounds of Ri j
k have different uses, i.e., Ři j

k is used for
the on-line FI during the transition while R̆i j

k is used to establish
the FDI conditions. This will be elaborated in the following.

Since the set S i j is an RPI approximation of the mRPI set
X̆i j
∞, one can obtain a suitable approximation R̊i j

∞ for R̆i j
∞, which

is expressed as

R̊i j
∞ =CS i j ⊕ V ⊕ (−V). (18)

Note that, in Section 3, when i = 0 and j = 0, the relevant
conclusions reduce to the case corresponding to the healthy in-
terval observer under the healthy mode.

4. Guaranteed FDI conditions

This section establishes the FDI conditions at steady state by
using the static bound of residual zonotpes and the notion of
invariant sets.

4.1. Theoretical FDI conditions

In the proposed approach, the theoretical FDI conditions are
established by investigating the dynamic behaviors of the sys-
tem at infinity. As k tends to infinity, a collection of guaran-
teed FDI conditions can be established using the static residual-
bounding zonotopes R̆i j

∞ as indicated in (17). The general con-
clusion is summarized in the following theorem.

Theorem 4.1. Given the plant (1) and a bank of interval ob-
servers (5) and (6), for any mode i (i ∈ I), if the static residual-
bounding zonotopes corresponding to interval observers satisfy

0 ∈ R̆ii
∞ and 0 < R̆i j

∞, j , i, i, j ∈ I, (19)

once a considered mode occurs, the detection and isolation of
the mode can be guaranteed as the system converges to the
steady state of the mode.

Proof : The proof includes three parts. The first one is to prove
that (19) is asymptotic FDI conditions for the proposed method.
The second one focuses on the dynamic behaviors of the static
residual-bounding zonotopes at infinity, i.e., R̆i j

∞ translates the
behaviors of the plant at steady state, which guarantees FDI.
The third one is to prove that (19) guarantees FDI during the
transition induced by mode switching.

1) The satisfaction of (19) implies that only residual zono-
topes estimated by the interval observer matching the current
mode contain the origin 0 at infinity while residual zonotopes,
estimated by the interval observers not matching the current
mode, exclude 0 at infinity. Thus, (19) guarantees that the con-
sidered faults satisfying the theorem are detectable and isolable.

2) Without loss of generality, the following proof is based
on the relevant set-based dynamics. Equation (15) shows that
the time-variant term is (A− L jC)X̆i j

k , which means that the dif-
ferences of X̆i j

k at different time instants, are determined by the
shape of X̆i j

0 , while the contractive factor A− L jC is determined
by the placement of the eigenvalues of the matrix A− L jC (sys-
tem matrix of the dynamics of the j-th interval observer). Thus,
after a waiting time assessed by the eigenvalues of the inter-
val observer after a mode switching, (15) enters into its steady
state. Then, the set values of X̆i j

k after entering into the steady
state can be sufficiently close2 to the set X̆i j

∞, which implies that
X̆i j
∞ can be used to approximately describe the dynamic behav-

iors of the whole process after the waiting time. Thus, as long
as Theorem 4.1 is satisfied, FDI of all the considered faults can
be guaranteed once they occur.

3) According to 1) and 2), it is known that the considered
faults can be detected and isolated at latest when the system
enters into a new steady state, which is implemented by find-
ing the interval observer that estimates residual zonotopes that
can include 0. Regarding the implementation of FI during the
transition, it will be detailed in Section 5. �

2X̆i j
k is inside the set described as the Minkowski sum of {Pi j} ⊕(1+ε){X̆i j

∞⊕

{−Pi j}}, where Pi j denotes the center of X̆i j
∞ and ε is a scalar that satisfies ε > 0.
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Remark 4.1. According to Section 3, at infinity, one has Ri j
∞ ⊆

Ři j
∞ ⊆ R̆i j

∞. Thus, if R̆i j
∞ satisfies Theorem 4.1, it implies that the

same conclusion can be drawn for Ri j
∞, which guarantees that

all the considered faults are detectable and isolable by a bank of
interval observers. Similar with Proposition 3.1, if Ri j

k∗ ⊆ Ři j
k∗ ⊆

R̆i j
k∗ holds, Ri j

k ⊆ Ři j
k ⊆ R̆i j

k will always hold for all time instants
k ≥ k∗. Since the adaptive bound Ři j

k is less conservative than
the static bound R̆i j

k , the FI task of this proposed approach is
done by using Ři j

k . This will be detailed in next contents.

4.2. Practical FDI conditions

Theoretically, R̆i j
∞ should be used to establish and check the

FDI conditions as explained in Theorem 4.1. However, since
R̆i j
∞ can not be accurately computed but only approximated,

Theorem 4.1 has only theoretical value.
To establish a collection of offline precheckable FDI condi-

tions for practical applications, one has to turn to the approx-
imation of R̆i j

∞ defined in Section 3. Based on (18) and Theo-
rem 4.1, a collection of practical FDI conditions are given as

0 ∈ R̊ii
∞ and 0 < R̊i j

∞, j , i, i, j ∈ I. (20)

If all the considered faults satisfy (20), it is assured that all
of them are detectable and isolable by the proposed FDI ap-
proach. The guaranteed FDI conditions are a collection of suf-
ficient conditions, not necessary conditions due to the series of
approximations contained in the approach. Thus, their satisfac-
tion can guarantee FDI, but their violation does not imply that
the faults are not detectable or isolable with extra effort.

5. FDI algorithm

Under the satisfaction of the FDI conditions, the proposed
FDI algorithm is elaborated in this section.

5.1. Fault detection and isolation

The proposed approach implements FD by testing if residual
zonotopes estimated by the interval observer matching the cur-
rent system mode can include the origin at each time instant.
The FD principle is summarized in the following theorem.

Theorem 5.1. If the system is in the steady-state functioning of
the m-th mode, residual zonotopes estimated by the m-th inter-
val observer can always satisfy

0 ∈ Rmm
k , m ∈ I, (21)

which implies that, whenever a violation of (21) is detected, it
is indicated that a fault has occurred in the system.

Theorem 5.1 follows the interval observer-based FD ap-
proach in [13]. Please refer to Section IV in [13] for the de-
tails. To explain the FI principle, it is assumed that the system
is in the m-th mode and that a fault is detected at time instant
kd. Thus, R f j

kd
( f , j ∈ I \ {m}) can be obtained at time instant kd,

where f denotes the index of a new but unknown mode.

Furthermore, for the j-th interval observer, an initial zono-
tope at time instant kd, denoted as X̌ j j

kd
that satisfies X̌ j j

kd
⊇ X̃ f j

kd
,

i.e., Ř j j
kd
⊇ R f j

kd
, is constructed. This initial zonotope X̌ j j

kd
is

used to initialize the dynamics X̌ j j
k+1 given by (13), which cor-

responds to the j-th interval observer. After this initialization,
one can try to isolate faults during the transition.

Proposition 5.1. After a fault is detected and the dynamics
X̌ j j

k+1 are initialized, if the j-th interval observer matches the
current and unknown mode, Ř j j

k should always fully bound R f j
k

after the FD time instant kd, i.e., Ř j j
k ⊇ R f j

k (k ≥ kd), while if
the j-th interval observer does not match the current mode, Ř j j

k

can only fully contain R f j
k at the first several steps after FD and

will finally diverge.

Proposition 5.1 states the transient FI principle proposed in
this paper, which is guaranteed by Theorem 4.1. The relevant
details will be further discussed below.

With respect to each interval observer (excluding the m-th
one), the adaptive bound Ř j j

k is obtained by initializing the cor-
responding dynamics of X̌ j j

k+1. Thus, starting from the FD time
kd, the fault can be isolated by real-time testing if

R f j
ld
⊆ Ř j j

ld
, ld > kd, f , j ∈ I \ {m} (22)

is violated for each interval observer. By iteratively testing (22)
till the time instant when one and only one interval observer
can satisfy (22), it implies that the current fault is isolated at the
time instant and the fault is indexed by the index of the interval
observer.

Because of the FDI conditions, one can ensure that the fault
can be isolated before the system reaches its new steady state.
But the particular time needed for FI is unknown, which de-
pends on the system dynamics and faults. It is proved that the
proposed FI method can isolate the faults during the transient
state and avoid waiting a period until the complete disappear-
ance of transient behaviors to make FI decisions.

Remark 5.1. For the j-th interval observer, Ř j j
kd

and Ři j
kd

(i ,
j, i, j ∈ I \ {m}) may intersect. If the intersections always
contain R f j

kd
during the transition, even though the j-th interval

observer does not match the new mode, it is still possible that
Ř j j

k ⊇ R f j
k (k ≥ kd) persistently holds. Consequently, this fact

may disturb the FI accuracy of the proposed criterion (22).

In order to solve the problem in Remark 5.1, one turns to the
FI mechanism in 3) of Theorem 4.1, i.e., testing if

0 ∈ R f j
k , (23)

once the system enters into a new steady state. If (23) holds
after entering into the steady state of a new mode, it implies
that j is the index of the new mode. Otherwise, j does not indi-
cate the new mode and should be removed from the candidate
modes. To judge if the system has entered into the steady state
of a new mode, it is necessary to define a waiting time. The
waiting time is used to describe the duration of the transient
behaviors after a fault is detected, see [13] for the details.
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Definition 1. The waiting time T is defined as, at least, the
maximum of the settling time of all the interval observers,
such that residual zonotopes estimated by the interval observer
matching the current system mode include 0 while residual
zonotopes estimated by interval observers not matching the cur-
rent system mode exclude 0 after a fault is detected.

Assumption 5.1. All the considered actuator faults are persis-
tent and the persistent time T i

s (i ∈ I) of the i-th fault is not
shorter than the waiting time T , i.e., T i

s ≥ T .

According to the previous discussions, the ultimate FI algo-
rithm proposed in this paper is a combination of the two dif-
ferent FI strategies in (22) and (23). Under the satisfaction of
Theorem 4.1, the following theorem is used to summarize the
proposed FI algorithm.

Theorem 5.2. Once a fault is detected, the FI strategy (22) is
firstly used to isolate the fault during the transition. If after
a waiting time, there are still at least two interval observers
that satisfy (22), then the FI algorithm is switched into the FI
strategy (23) for the final FI decision.

Eventually, by combining the FD strategy in Theorem 5.1
and the FI strategy in Theorem 5.2, the effectiveness of the pro-
posed FDI approach can be guaranteed by Theorem 4.1. The
FDI procedure of the proposed approach is summarized in Al-
gorithm 1. In Algorithm 1, length(·) computes the number of
the elements of a set. Finally, there will be one and only one
element in Im that indicates the new mode, for simplicity, the
notation f = Im is directly used at the end of the algorithm.

5.2. Initial zonotopes
It is assumed that a fault is detected at time instant kd. As per

Section 5.1, at the FD time kd, all the corresponding bounding
zonotope dynamics X̌ j j

k ( j ∈ I \ {m}) should be initialized by
their corresponding initial zonotope, denoted as X̌ j j

kd
, such that

X̌ j j
kd
⊇ X̃ f j

kd
(24)

implying that Ř j j
kd
⊇ R f j

kd
( f , j ∈ I\{m}) holds. This initialization

is a key precondition for the proposed approach to implement
FDI during the transition. Thus, a key point is to construct X̌ j j

kd

for all the corresponding dynamics of X̌ j j
k .

Here, the idea is to use the obtainable information R f j
kd

at

time instant kd to construct the zonotope X̌ j j
kd

satisfying (24).
By defining a zonotope V0 = Hη̄Bq, (11) can be transformed
into

R f j
k = CX̃ f j

k ⊕ {ηk − η
c} ⊕ (−V0). (25)

By adding −(ηk − η
c) to both sides of (25), (25) turns into

R f j
k ⊕ {−(ηk − η

c)} = CX̃ f j
k ⊕ (−V0). (26)

Considering −(ηk − η
c) ∈ (−V0), one can further obtain

CX̃ f j
k ⊕ (−V0) ⊂ R f j

k ⊕ (−V0). (27)

Algorithm 1 Proposed FDI algorithm

Require: T , X̂0, mode index i ∈ I;
Ensure: Fault index f ;

1: Initialization: i = m, f = m and X̂m j
0 = X̂0 (m, j ∈ I);

2: At time instant k: Switching ← FALSE, 0 ∈ Rmm
k and 0 <

Rm j
k , j ∈ I \ {m};

3: while Switching , TRUE do
4: k ← k + 1;
5: Obtain Rmm

k ;
6: if 0 < Rmm

k then
7: Switching← TRUE;
8: Construct initial zonotopes X̌ j j

kd
, j ∈ I \ {m};

9: Initialize all the dynamics X̌ j j
k described by (13);

10: end if
11: end while
12: Im=I \ {m};
13: Timer = T ;
14: while Timer , 0 do
15: k ← k + 1;
16: if length(Im), 1 then
17: Obtain all R f j

k and Ř j j
k , f , j ∈ Im;

18: for j ∈ Im do
19: if R f j

k * Ř j j
k then

20: Remove j from Im;
21: end if
22: end for
23: end if
24: if length(Im)= 1 then
25: f = Im;
26: Timer=0
27: else
28: Timer = Timer - 1;
29: end if
30: end while
31: if f = m then
32: Obtain all R f j

k , j ∈ Im;
33: for j ∈ Im do
34: if 0 < R f j

k then
35: Remove j from Im;
36: end if
37: end for
38: f = Im;
39: end if
40: return f;

Eventually, a key expression is obtained from (27) as

CX̃ f j
k ⊂ R f j

k . (28)

Since R f j
k is a zonotope, it can be written in the zonotopic

form R f j
k = r f j,c

k ⊕ H f j,r
k Bs f j,r

k . By using the zonotopic form of
R f j

k , (28) can be equivalently expressed as a group of q inequal-
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ities and the i-th inequality out of the q inequalities has the form

| C(i)x̃ f j
k − r f j,c

k (i) |≤‖ H f j,r
k (i) ‖1, i = 1, 2, . . . , q, (29)

where C(i) denotes the i-th row of C, and r f j,c
k (i) and H f j,r

k (i)
denote the i-th component of r f j,c

k and the i-th row of H f j,r
k .

According to Property B.3 in Appendices, each inequality
out of the q inequalities of (29) determines a strip. This implies
that the q strips determined by the q inequalities should form a
closed set. This closed set (denoted as X̄ f j

k ) can be computed
by using Property B.3. Note that X̄ f j

k is able to contain X̃ f j
k ,

i.e., X̄ f j
k ⊇ X̃ f j

k , which can be used as an initial zonotope that
satisfies (24) at time instant kd, i.e.,

X̌
j j
kd

= X̄ f j
kd
.

However, since Property B.3 can only produce a zonotope
approximation for the intersection of a zonotope and a strip, to
construct X̄ f j

k using Property B.3, an initial zonotope has to be
given to the approach proposed in Property B.3 as a starting set.

Remark 5.2. The initial zonotope (denoted as X̃) of the ap-
proach in Property B.3 is defined as a zonotope that contains
the physical constraint set of X̃ f j

k for any interval observer in
any considered mode. Since there always exist the physical
constraints on any system, a proper set X̃ can be easily found.

Thus, by using X̃ as an initial zonotope for Property B.3, at
the FD time instant kd, X̄ f j

kd
can be computed as the initial zono-

tope X̌
j j
kd

to initialize the dynamics of the corresponding bound-

ing zonotopes X̌
j j
k ( j ∈ I \ {m}) described by (13). Using the

generated residual-bounding zonotope sequences, FDI during
the transition can be implemented.

Note that, in the case that C is invertible, (28) can be further
transformed into

X̃ f j
k ⊂ C−1R f j

k ,

where C−1 represents the inverse of C. In this case, at the FD
time kd, C−1R f j

kd
is directly used as the initial zonotope X̌ j j

kd
.

5.3. Discussions of FDI framework
Indeed, under Theorem 4.1, this proposed FDI framework

based on a bank of interval observers implies two different FI
mechanisms. The first one, proposed in this paper, can detect
and isolate the considered faults during the transition between
different modes. The second one, proposed in [13], requires
the system to wait a specific period (a waiting time) until it
enters into steady state, to perform the FI task. Eventually, the
interval observer estimating residual zonotopes that can contain
the origin indicates a new mode. Please refer to [13] for the
details of the second mechanism.

The advantage of the first mechanism consists in its FI quick-
ness, but it requires more computational resources. Compara-
tively, the second one isolates faults after the system has already
been at steady state, which implies that more time is needed.
But the second one does not rely on the information provided

Plant model with 

actuator faults (1)

    Bank of interval

observers ((5),(6),(7))

Define residual zonotopes 

  ((8), interval observers)

Establish sufficient FDI conditions 

    (Theorem 4.1, invariant sets)

           Online fault detection 

  (Theorem 5.1, interval observers)

             Online fault isolation 

(Theorem 5.2, interval observers)

Proposed FDI scheme

           (Figure 1)

Figure 2: The design procedure of the proposed FDI approach

by residual-bounding zonotopes in real time, which means less
computational load.

These two FI strategies inside the same framework are com-
plementary to each other. In applications, the FI strategy is
chosen as per the particular requirements and considerations of
FI tasks. To summarize, a flow chart is presented in Figure 2 to
show the design procedure of the proposed approach.

6. Illustrative example

In this paper, a CSTR presented in [15] is used to illustrate
the effectiveness of this approach. The CSTR considers an
exothermic irreversible reaction A → B. Based on the reactant
mass balance and energy balance in the reactor, the process is
depicted by a non-linear dynamic model given in [15] (please
read [15] for all the details about the CSTR case study in the
present paper). As per [15], cA is the concentration of the com-
ponent A, T is the reactor temperature, qc is the input and cA is
the output, and the nominal values for the CSTR model param-
eters are given in Table 1. The operating point of the CSTR is
given as

cAo =8.235 × 10−2mol/l, (30a)
To =441.81K. (30b)

The discrete-time linear model of the system around the op-
erating point defined by (30) is obtained as

xk+1 =

[
0.8976 −0.0002
−0.4894 0.7606

]
xk +

[
0

0.0024

]
Fuk + ωi

k, (31a)

yk =
[
1 0

]
xk, (31b)

where ωi
k is a bounded signal to model the linearization and

discretization errors3 between the non-linear model and linear
discrete-time model for the i-th mode.

The proposed approach only requires the bounds of ωi
k and

does not require their real-time values. In simulation, empirical
values are given for the bounds of ωi

k as

ω0c =
[
0.001 0.001

]T
, ω̄0 =

[
0 0

]T
,

3In real situations, the errors are possible to be different for different modes,
thus, this does not conflict with (1).
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ω1c =
[
0.002 0.002

]T
, ω̄1 =

[
0.015 0.015

]T
,

ω2c =
[
0.003 0.003

]T
, ω̄2 =

[
0.03 0.03

]T
.

The faults affecting the valve position corresponding to the
coolant flow are considered, i.e., the flow rate of the coolant
is affected. Thus, the faults are modelled as F shown in (31),
where 0 and 1 denote the complete jam and healthy function-
ing of the valve, respectively, and a value inside (0, 1) denotes
that the valve loses partial performance. Here, two faults are
considered, i.e., F0 (healthy), F1 (fault 1) and F2 (fault 2).

It is known the particular magnitude of faults is unknown in
reality. Thus, one considers the bounds of F1 and F2, which are
denoted as intervals

F1 = [0.1, 0.3], F2 = [0.5, 0.7]. (32)

If F1 and F2 satisfy the proposed FDI conditions, a fault oc-
currence with any fault magnitude inside F1 or F2 is detectable
and isolable. These two operating regions F1 and F1 of the
valve are monitored by two interval observers. Whenever the
operating situation of the valve drops into either of the two re-
gions, they can be detected and isolated by the proposed ap-
proach.

Based on (31) and (32), three interval observers with the
form indicated in (5) and (6) are designed to monitor the lin-
earized continuous-time model. The gain matrices and initial
conditions for the interval observers and the waiting time for
the steady-state FI are given as

• observer gains:

L0 = L1 = L2 =

[
0.1582

11.6106

]
,

• initial conditions:

x0 =

[
0
0

]
, X̂0 =

[
0
0

]
⊕

[
0.05 0 0 0.05
0.05 0 0.05 0

]
B4,

• waiting time T :
T = 20∆t.

The actual magnitudes of actuator faults are given as

F1 = 0.15, F2 = 0.55,

which are inside the bounds indicated in (32), respectively.
In simulation, the input around the operating point is a sinu-

soidal signal that oscillates in an interval

∆qc ∈ [−20, 20].

According to Theorem A.1 and Proposition A.1 in Appen-
dices and iterating (15) thirty steps, as explained in Section 3.3,
the RPI approximations of the limit sets of the static residual-
bounding zonotpes for each interval observer are computed.
Furthermore, the interval hulls of these RPI approximations are
presented as

Table 1: Parameters of the CSTR

Variable Symbol Nominal value

Tank volume V 100 [l]

Feed flow rate q 100 [l/min]

Feed concentration cA f 1 [mol/l]

Feed temperature T f 350 [K]

Coolant flow rate qc 100 [mol/l]

Coolant temperature Tc 350 [K]

Densities ρ, ρc 1000 [g/l]

Specific heats Cp, Cpc 1 [cal/(g K)]

Pre-exponential factor k0 7.2 × 1010 [1/min]

Exponential factor E/R 9.98 × 103 [K]

Heat of reaction −∆H 2.0 × 105 [cal/mol]

Heat transfer charact. hA 7.0 × 105 [1/(min K)]

Sampling period ∆t 0.1 [min]

• for interval observer 0:

R̊10
∞ = [0.0477, 0.0719],

R̊20
∞ = [0.1035, 0.1356],

• for interval observer 1:

R̊01
∞ = [−0.0719, −0.0477],

R̊21
∞ = [0.0396, 0.0799],

• for interval observer 2:

R̊02
∞ = [−0.1356, −0.1035],

R̊12
∞ = [−0.0799, −0.0396].

As per the discussions in this paper, R̊00
∞ , R̊11

∞ and R̊22
∞ can al-

ways include 0, they are omitted here. It can be observed that
all the RPI approximations corresponding to a bank of inter-
val observers satisfy the FDI conditions as established in (18),
which implies that the proposed technique can be used for FDI.

Remark 5.2 suggests an initial zonotope X̃ determined by the
plant physical constraints. X̃ is used by Property B.3 to con-
struct initial zonotopes for the initialization of the dynamics of
the static residual-bounding zonotopes whenever a fault is de-
tected. By simulation, X̃ is empirically given as

X̃ =

[
0
0

]
⊕

[
0.15 0 0.15

0 5 5

]
B3,

which can bound X̃i j
k in any possible situation.

Besides, the parameter λ in Property B.3 (note that a selec-
tion strategy of λ can be found in [5]) is given as

λ =

[
1
1

]
.
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Figure 4: FDI of the fault 2

In this example, the fault modes 1 and 2 are simulated sep-
arately. The fault scenarios for both fault modes are set as fol-
lows: from time instants 0 to 49, the actuator is healthy, from
time instants 50 to 99 an actuator fault occurs and from time
instants 100 to 150 the actuator recovers to the healthy mode.

The simulation results of the fault 1 are presented in Figure 3.
From time instants 0 to 49, the actuator is healthy, thus, residual
zonotopes (R0 in Figure 3) estimated by the healthy interval
observer can always contain the origin. At time instant 50, the
fault 1 occurs. Then, R0 excludes the origin at time instant 52,
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which indicates the fault is detected at time instant 52.
At the same time, Ř11 and Ř22 corresponding to the interval

observers 1 and 2 are initialized to start the transient FI task. At
time instant 53, it can be observed that R1 ⊆ Ř11 but R2 * Ř22,
which implies that the fault 2 does not occur while the fault 1
has occurred in the system. The same conclusion can be drawn
when one analyzes the steady-state behaviors and it can be ob-
served that 0 ∈ R1, 0 < R0 and 0 < R2 after T , which also
indicates that the fault 1 has occurred in the system. Besides,
from time instants 100 to 150, a recovery process is introduced,
which can be understood in the same way. Regarding the fault
2, the results are given in Figure 4, which can be explained
similarly as the fault scenario 1. Thus, as per the results, the
proposed FDI technique is effective to detect the faults and fur-
ther isolate the faults during the transition between two different
modes.

Remark 6.1. It is known that there are two different FI strate-
gies in the proposed FI approach. One is for the transient-state
FI and the other is for the steady-state FI. However, one should
notice that the emphasis of the proposed FI approach consists in
the transient-state FI strategy (this is analyzed in the two previ-
ous paragraphs), while the steady-state FI strategy is used as FI
guarantees of the transient-state FI strategy when the transient-
state FI strategy loses its effectiveness.

7. Conclusions

In this paper, an FDI approach using a bank of interval ob-
servers is proposed, where invariant set-based FDI conditions
are established to guarantee FDI. Under the FDI conditions, the
approach can provide two different FI mechanisms that can be
selected according to the need of actual applications. The first
FI mechanism can isolate faults during the transition between
different modes while the second one usually needs more time
to isolate faults but with less computational load. The future
research consists in reducing the FDI conditions and extending
the approach into the system with parametric uncertainties.

Acknowledgements

The work has been supported by the DGR of Generali-
tat de Catalunya (SAC group Ref.2009/SGR/1491), the grant
SHERECS DPI2011- 26243, European Commission through
contract i-Sense (FP7-ICT-2009-6-270428) and China Schol-
arship Council (File No.2011629170).

References

[1] F. Mazenc, O. Bernard, Interval observers for linear time-invariant sys-
tems with disturbances, Automatica 47 (1) (2011) 140 – 147.

[2] P. Guerra, V. Puig, M. Witczak, Robust fault detection with unknown-
input interval observers using zonotopes, in: Proceedings of the 17th
IFAC World Congress, Seoul, South Korea, 2008.

[3] J. Meseguer, V. Puig, T. Escobet, Robust fault detection linear interval
observers avoiding the wrapping effect, in: Proceedings of the 17th World
Congress, Seoul, South Korea, 2008.

[4] P. Rosa, Multiple-model adaptive control of uncertain LPV systems,
Ph.D. thesis, Electrical and Computer Engineering, Instituto Superior
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Appendix A. Invariant Sets

In this paper, the linear discrete time-invariant dynamics

xk+1 = A◦xk + B◦δk (A.1)

are used to explain the notions of invariant sets, where A◦ and
B◦ are constant matrices and A◦ is a Schur matrix, δk belongs to
∆ = {δ : |δ − δ◦| ≤ δ̄} with δ◦ and δ̄ being constant vectors.

Definition A.1. A set X ⊂ Rn is called an RPI set for Eq.(A.1)
if and only if A◦X ⊕ B◦∆ ⊆ X.

Definition A.2. The mRPI set of Eq.(A.1) is defined as an RPI
set contained in any closed RPI set and the mRPI set is unique
and compact.

Definition A.3. Given a scalar ε > 0 and a set Ω ⊂ Rn, the set
Φ ⊂ Rn is an outer ε-approximation of Ω if Ω ⊆ Φ ⊆ Ω⊕Bn

p0
(ε)

and it is an inner ε-approximation of Ω if Φ ⊆ Ω ⊆ Φ ⊕ Bn
p0

(ε).

Theorem A.1. ([8],[16]). Considering Eq.(A.1) and letting
A◦ = VΛV−1 be the Jordan decomposition of A◦, the set

Φ(θ) ={x ∈ Rn :
∣∣∣V−1x

∣∣∣ ≤ (I − |Λ|)−1
∣∣∣V−1B◦

∣∣∣ δ̄
+ θ} ⊕ ξ◦,
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is RPI and attractive for the trajectories of Eq.(A.1), with θ
being any (arbitrarily small) vector with positive components,
where ξ◦ = (I − A◦)−1B◦δ◦.

1. For any θ, the set Φ(θ) is (positively) invariant, that is, if
x0 ∈ Φ(θ), then xk ∈ Φ(θ) for all k ≥ 0.

2. Given θ ∈ Rn, θ > 0, and x0 ∈ Rn, there exists k∗ ≥ 0 such
that xk ∈ Φ(θ) for all k ≥ k∗.

Proposition A.1. ([8]). Considering Eq.(A.1) and denoting X0
as an initial set, the set sequence

X j+1 = A◦X j ⊕ B◦∆, j = 1, 2, . . . ,

converges to the mRPI set of Eq.(A.1), where if X0 is an RPI
set of Eq.(A.1), each iteration of the set sequence is an RPI
approximation of the mRPI set.

Appendix B. Zonotopes

Definition B.4. The interval hull �X of a zonotope denoted as
X = g⊕GBr ⊂ Rn is the smallest interval box that contains X,
i.e., �X = {x : |xi − gi| ≤‖ Gi ‖1}, where Gi is the i-th row of G,
and xi and gi are the i-th components of x and g, respectively.

Property B.1. Given a zonotope X = g ⊕ GBr ⊂ Rn and a
compatible matrix K, KX = Kg ⊕ KGBr.

Property B.2. Given a zonotope X = g ⊕ GBr ⊂ Rn and an
integer s (with n < s < r), denote by Ĝ the matrix resulting
from the recording of the columns of the matrix G in decreasing
Euclidean norm. X ⊆ g ⊕ [ĜT Q]Bs where ĜT is obtained
from the first s − n columns of the matrix Ĝ and Q ∈ Rn×n is a
diagonal matrix whose elements satisfy Qii =

∑r
j=s−n+1 | Ĝi j |

, i = 1, . . . , n.

Property B.3. ([5]). Given a zonotope X = g ⊕ GBr ⊂ Rn, a
strip S = {x ∈ Rn | |cx − d| ≤ σ} and a vector λ ∈ Rn, then
X∩S ⊆ X̂(λ) = ĝ(λ)⊕Ĝ(λ)Br+1 holds where ĝ(λ) = g+λ(d−cg)
and Ĝ(λ) = [(I − λc)G σλ].

Property B.4. ([5]). Given a family of zonotopes denoted by
X = g ⊕MBm, where g ∈ Rn is a real vector and M ∈ Rn×m is
an interval matrix, a zonotope inclusion �(X) is defined by

�(X) = g ⊕ [mid(M) G]Bm+n,

where the matrix G is a diagonal matrix with

Gii =
∑m

j=1

diam(M)i j

2
, i = 1, 2, · · · , n.

Property B.5. ([2]). Given Xk+1 = AXk ⊕ Buk, where A and B
are interval matrices and uk is the input at time instant k, if Xk is
a zonotope with the center gk and segment matrix Hk, Xk+1 can
be bounded by a zonotope

Xe
k+1 = gk+1 ⊕ Hk+1Br,

where

gk+1 =mid(A)gk + mid(B))uk,

Hk+1 =[J1 J2 J3],
J1 =seg(�(AHk)),

J2 =
diam(A)

2
gk,

J3 =
diam(B)

2
uk,

and seg(·) computes the segment matrix of a zonotope.
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