
 

 

1 
 

 

Leakage	Localization	

in	Water	Networks	

A	model‐based	methodology	using	

pressure	sensors	applied	

to	a	real	case	in	Barcelona	network	

Ramon Pérez*, Gerard Sanz, Vicenç Puig, Joseba Quevedo, Miquel À. Cugueró, Fatiha 

Nejjari, Jordi Meseguer, Gabriela Cembrano, Josep M. Mirats, and Ramon Sarrate 

*ramon.perez@upc.edu +34937398620 

September 18, 2013 

The efficient use of water resources is a subject of major concern for water utilities and 

authorities. One of the main challenges in improving the efficiency of drinking water networks 

is to minimize water loss in pipes due to leakage. Water leaks in water distribution networks 

(WDN) are unavoidable. They can cause significant economic losses in fluid transportation and 

an increase on reparation costs that finally generate an extra cost for the final consumer due to 

the waste of energy and chemicals in water treatment plants. It may also damage infrastructure 

and cause third party damage and health risks. In many WDN, losses due to leakage are 

estimated to account up to 30% of the total amount of extracted water; a very important issue in 

a world struggling to satisfy water demands of a growing population. 

Telemetry systems have long been used in large water distribution systems for 

improving real-time monitoring of quantity and quality parameters. As monitoring technologies 
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evolve, new possibilities of controlling and managing complex infrastructures are provided. 

This is the case for water networks. Sectorization of distribution networks into smaller 

subnetworks, such as District Metered Areas (DMAs), contributes to achieving, in real-time, an 

accurate estimation of the amount of water that is being consumed in each subnetwork. It is an 

efficient measure to control water loss, since flow and pressure meters bring a huge amount of 

data with information about the network behavior. Over the last decade, the concepts and 

methods developed for system-wide water balance calculations have been based upon water 

assets’ physical data and the statistics of pipe bursts, service connections and underground 

conditions [1]. Performance measures and indicators are used to support the managerial 

approaches to minimize different components of water losses.  

Real-time monitoring of water networks is based on the use of sensor data from 

telemetry and mathematical models to detect and diagnose possible abnormal situations, such as 

leakage or water quality deterioration events. It links the real sensor data gathered from the 

network to the decision making procedure, by detecting possible faults as well as their probable 

location within the network. The main idea behind real-time monitoring, both for water balance 

and for water quality problems, is to use real-time sensor data and to compare them with those 

generated by a well-calibrated hydraulic model of the network in absence of faults. By 

analyzing the difference between these two sets of data, a detection of abnormal events can be 

performed. 

Several works have been published on leak detection and isolation methods for WDN. 

For example, a review of transient-based leak detection methods is offered in [2] as a summary 

of current and past work. In [3], a method has been proposed to identify leaks using blind spots 

based on previously leak detection researches that use the analysis of acoustic and vibrations 

signals [4], and models of buried pipelines to predict wave velocities [5]. More recently, a 

method to locate leaks using Support Vector Machines (SVM) has been developed in [6]. The 
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approach analyses data obtained by a set of pressure control sensors of a pipeline network to 

locate and calculate the size of the leak.  

Another set of methods is based on the inverse transient analysis [7, 8]. The main idea 

of this methodology is to analyze the pressure data collected during the occurrence of transitory 

events by means of the minimization of the difference between the observed and the calculated 

parameters. It is shown in [9, 10] that unsteady-state tests can be used for pipe diagnosis and 

leak detection. The transient-test based methodologies are used exploiting the equations for 

transient flow in pressurized pipes in frequency domain and in the second part, information 

about pressure waves is taken into account. 

Model based leak detection and isolation techniques have also been studied. In [11], the 

leak detection and location problem is formulated as a least-squares estimation problem. 

However, the parameter estimation of non-linear models of water networks is not an easy task 

due to the fact that in most of the cases the problem is underdetermined because of the quantity 

of pressure measurements. Alternatively, in [12, 13], a method based on pressure measurements 

and leak sensitivity analysis is proposed. This methodology consists in analyzing the residuals 

(difference between the measurements and their estimation using the network hydraulic model) 

on-line regarding a given threshold that takes into account modeling uncertainty and noise. 

When some of the residuals exceed their threshold, they are compared against the leak 

sensitivity matrix in order to discover which possible leak is present. Although this approach 

has good efficiency under ideal conditions, its performance decreases due to the nodal demand 

uncertainty and noise in the measurements. In case that flow measurements are available, leaks 

could be more easily detected since simple mass balance in the pipes can be established. See for 

example [14] where a methodology to isolate leaks is proposed using fuzzy analysis of the 

residuals. This method computes the residuals between the nominal measurements (that is, 

without leak) and the measurements with leaks. However, although the use of flow 

measurements is viable in large water transport networks this is not the case in water 
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distribution networks where there is a dense mesh of pipes with only flow measurements at the 

entrance of each DMA. In this situation, water companies suggest as a feasible solution to 

install some pressure sensors inside the DMA. Pressure sensors in this situation are preferred 

because they are cheaper and easy to install and maintain.  

The article describes a model-based methodology for leakage detection and localisation 

in DMAs of water distribution networks, based on the use of pressure sensors. This 

methodology is founded in the principles of model-based diagnosis [15, 16], but enhancing fault 

isolation using residual fault sensitivity analysis instead of using the standard binary fault 

signature approach extending the preliminary results presented in [12, 13]. This methodology 

has been developed as a part of a cooperative project between the Advanced Control Systems 

Group of the Technical University of Catalonia (SAC-UPC), Cetaqua (Water Technology 

Centre, Barcelona, Spain), Ondéo Systems S.A. (Le Pecq, Region Parisienne, France) and 

SAFEGE (Paris, France). The methodology has been implemented in a general software tool 

that interfaces with a GIS system being useful for a large class of water distribution systems and 

has been successfully tested in a real implementation in a DMA of Barcelona, Spain. 

The main concepts of the methodology are described first. The software tool is 

presented followed by the results of the real application. Finally, conclusions and an outline of 

on-going and future further research are provided. 

Methodology 

The standard theory of model based diagnosis includes two steps [15]. First of all, fault 

detection uses consistency checking for signaling the existence of a fault. Once the fault is 

detected, isolation is carried out based on observed fault signatures, generated by the detection 

module, and its relation with the theoretical fault signature matrix obtained from the structural 

analysis of the model [16]. Leak localization techniques based on analytical models [13] can be 

seen as an application of fault detection and isolation techniques developed by complex 
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industrial systems. In this case, the analyzed system is a DMA water network and, the potential 

faults are those leaks affecting the network components (that is, pipes). However, standard tools 

used in model based fault diagnosis should be adapted because the model of a DMA is given by 

a set of non-linear equations highly coupled and without an explicit solution. 

This application is developed thinking on real water distribution networks with 

kilometers of pipes. The consistency between measurements and model prediction is always 

difficult to achieve because of model uncertainty, especially in the nodal demands that usually 

are estimated. Thus, the detection phase is usually treated in another level of supervision using 

DMA information regarding night flows and water balance performance (see [17] for further 

details). 

Leakage monitoring may be performed on a routine basis or when major losses are 

suspected [18]. Technologies for locating leaks range from ground-penetrating radar to acoustic 

listening devices [19]. Some of these techniques require isolating and shutting down part of the 

network. Techniques based on locating leaks from pressure monitoring devices allow a more 

effective and less costly search in situ.  This article proposes a leak localization method based 

on the pressure measurements and pressure sensitivity analysis of nodes in a network when a 

leak is present. 

When leaks are sought, the number of possible places where they can be located is 

infinite. However, it is a common practice to assume that leaks are in any of the network 

junctions so the number of possible faults remains huge but becomes finite and the 

approximation is irrelevant taking into account the size of the system [11].  

The development of the methodology started with the work presented in [13]. In this 

methodology, the sensor placement is a previous step that allows selecting the places for 

pressure sensors so that the cardinal of the biggest group of discriminated leaks is minimal [12]. 

The main drawback of this first version of the methodology lies on the threshold selection for 

the binarization of the leak sensitivity matrix in order to apply the standard fault isolation theory 
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[15, 16]. The comparison of residuals with the sensitivity to a leak using correlation improves 

the results [20], since correlation avoids binarization. First simulation results based on this 

methodology are presented in [21]. The improved results obtained using correlation justify the 

use of this approach for the real pilot tests, as will be shown in this work. 

Methodology step by step 

The zone with the highest leak probability can be determined online in the following six 

step iterative procedure: 

1. Simulation of possible faults in the different nodes of the network using 

a hydraulic simulation (EPANET in this work) 

2. Generation of the sensitivity-to-leak matrix containing the theoretical 

Fault Signature Matrix (FSM) [15] of all considered potential leaks. 

3. Collecting pressure measurements from sensors installed in the 

network.  

4. Generation of residuals comparing pressure measurements with  

estimations provided by the hydraulic simulator, considering a model without leakage. 

5. Comparison of residuals with the FSM contained in the sensitivity-to-

leak matrix using the correlation function. 

6. Results aggregation and representation. 

Figure 1 shows the iterative process searching nodes whose leakage signature has 

maximal likelihood with the residual obtained from measurements. 

Simulation of possible faults 

The first step is to generate the model of all the possible leaks that may exist in the 

network. A size of leakage has to be assumed or estimated. The residual sensitivity-to-leak 

matrix (FSM) and the observed signatures (residuals) depend on the leakage size; nevertheless 

the correlation method is robust to bad estimations of the leakage size [21]. The model is 
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simulated with the boundary conditions (global demand and boundary pressures) at any time-

step and the pressures obtained at the nodes where sensors are present are saved ( ̂ ). Then, 

placing a leak at a certain node and running as many simulations as considered potential leaks 

(number of nodes), pressures for each scenario are saved ( ̂ ). 

Generation of Sensitivity Matrix (FSM) 

The difference between the pressure simulated without leakage and the pressure 

simulated with each leak gives the theoretical signature for each possible leak and for a given 

size. It is an approximation of the residual sensitivity-to-leak matrix [11] 

.
. . .

.

.
. . .

.
, 

where m is the number of possible leak locations, f is the assumed leak size, and n is the number 

of sensors. Figure 2 shows the result for a small network with only 15 nodes and with a sensor 

in each node for illustrative purposes. 

Notice that this Sensitivity Matrix depends on the magnitude of the leakage because the 

equations of the network are nonlinear. In particular, the non-linearity appears because pressure 

and flow in a pipe are related through the Hanzen-Williams equation 

∆ . , 

where R is the pipe roughness. 

Measurement at the network 

Pressure measurements within the network are used. This kind of sensor is 

recommended by the company because of its reliability and cost compared with flow sensors. 

Nevertheless, the accuracy of the installed sensors is 10 cm and in simulation, leaks of interest, 
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smaller than 10 l/s, produced pressure differences often smaller than 10 cm. Besides, sensor 

noise requires filtering.  

Resolution may be enhanced using oversampling [22]. The idea is to use the mean of t 

measurements provided in an iteration time T (in this work the iterations are each hour and 

sampling time is 10 minutes thus the mean is over 6 values). This mean operation filters the 

noise of high frequency and leads to a better resolution than the sensors (10 cm in this network). 

Pressures generated by simulation are truncated to the first decimal and the mean is calculated 

so that the information containing is equivalent to that provided by the measurements. 

Generation of the residuals 

Estimated pressures without leakage are subtracted from the mean of pressure 

measurements in T obtaining the residuals 

∑ ̂
⋮

∑ ̂
, 

where index j indicates the ordinal of measurements in an hour and k the index related to a given 

hour. 

 Comparison of residuals with the theoretical fault signatures (FSM) 

Residuals at time k are compared with all columns ( 	of the leak sensitivity matrix S 

that correspond with the potential leaks to be isolated. This comparison is obtained applying the 

Pearson’s correlation coefficient ,  between two variables ,  that is defined as 

, cov , r cov , cov r, r⁄ , 

where cov ,  is the covariance function between two variables a and 

b, being 	and	 ,	respectively. The columns of S (possible node leaks) having 

bigger correlation values with the residual vector at time k are the most probable nodes to have a 
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leak. The correlation between the observed residual fault signature (that is r(k)) and each 

column of the matrix S(k) (that is  for fault , considering I possible faults) is a measure of 

the similarity between the leak residual effect (with unknown magnitude) and the leaks 

considered in the matrix S (with known magnitude) that allows discovering which is the column 

of this matrix (fault) having the same behavior. 

For linear systems the correlation function obtains the maximum similarity, that is ρ=1, 

in the node having the leak for any magnitude of this leakage. Because of the non-linearity of 

the water network system, if the magnitude of the leakage is far from the one used to compute  

the sensitivity matrix S, the similarity of the correlation function decreases but a high 

correlation between the residuals corresponding to a particular leak and the corresponding 

column of this matrix still exists. 

Results aggregation and representation 

The simulation model of the studied DMA mainly contains pipes and junctions. If tanks 

were considered the methodology would not be much affected as the level of tanks is usually 

monitored. Length, diameter and roughness of pipes are parameters with rather confidence. 

Nevertheless demands are a very uncertain parameter. A study of the effect of a bad calibration 

in demands on the leakage localization [23] showed that these parameters are critical since 

demands and leakages behave exactly the same. The spatial distribution of demands was revised 

using the registered water of last months. Once real pressure is used another critical point is a 

good determination of the topographical head associated with every monitored node. Before the 

real test was carried out the topographical heads had to be revised because the approximate data 

were not accurate enough taking into account the pressure differences that leakages produce. 

Figure 3 shows an example of these results after computing the theoretical leak 

signatures and the observed residuals concatenated in a time-window τ  (in this work, τ =10 

hours) and applying the above correlation procedure to these extended vectors. Finally, the 
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representation is done by means of a grey scale for each node, being those with a higher score a 

darker representation  

Software 

The leakage localization methodology presented in the previous section has been 

integrated in a web-based tool, making it possible to easily deploy the developed models in any 

Business Unit. A snapshot of the tool is shown in Figure 4, where an example of the leakage 

analysis results corresponding to a certain date off-line simulation is shown. In the latter, nodes 

with higher leakage probability are highlighted with colored flags.  

This tool requires a hydraulic simulator and a well-calibrated model of the sector or 

DMA in order to generate the simulation results required by the analysis. In this work, 

simulations have been performed using EPANET software [24], a free-use software package 

developed by the US Environmental Protection Agency (EPA), which is used to model and 

simulate the hydraulic and water quality behavior in water distribution piping systems. Also, 

this software comes with a Programmer’s Toolkit included in a Dynamic Link Library (DLL) 

which allows the developer to incorporate its functions into 32-bit Windows applications 

allowing Windows DLL function call (such as C/C++, Delphi, Matlab). In order to perform the 

simulations, the hydraulic network is modeled in EPANET compatible format (both .net or .inp 

file, the latter text editable) which has been generated previously.  

The structure of the developed solution is as follows. First, on-line measurements 

gathered by the DMA instrumentation are collected. These include pressure and flow sensors at 

DMA inlets and pressure sensors at certain DMA inner nodes. These data are transmitted from 

sensors data-loggers to an operational database of the water company SCADA system. Sensor 

measurements are first stored in a raw data database and, after fulfilling a data validation 

process (including for instance outliers and missing data check), are stored in a validated 

database, providing the information needed to the leak localization tool. Information required to 
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construct the EPANET model of the DMA network (for instance topological structure, 

roughness, length and diameter for pipes, location of sensors, demand patterns) is obtained from 

a parameters database. Finally, either on-line or manually (that is, specifying a range of dates) 

leak localization analysis is performed and results are presented to the network operator as 

depicted in Figure 4. Figure 5 provides a general scheme of the presented structure. 

Moreover, a conceptual diagram showing the leakage localization analysis procedure at 

a certain time instant k is provided in Figure 6. 

The several steps involved in the method in Figure 6 are described next 

Step 1 - Calibration of the DMA hydraulic model. The process involved in step 1 needs 

the following inputs: the DMA hydraulic model (in EPANET format), the pressure and flow 

measurements in the DMA inlets between k and k-1 time instants, the base demand values of the 

DMA inner nodes and the value of the demand patterns at time instant k. The output is a 

calibrated model of the DMA hydraulic network at time instant k, the latter used to predict 

pressure and flow values at the DMA inlets and pressure in monitored inner nodes. 

Step 2 - DMA hydraulic model simulation considering potential DMA leakages. This 

process needs the calibrated DMA hydraulic model at time instant k obtained in Step 1 and the 

locations of the potential leakages that may appear in the DMA. Step 2 follows an iterative 

process running as many iterations as considered potential leakages. For every potential leak, its 

effect on the pressure values of the monitored DMA inner nodes is estimated. 

Step 3 – Computing the fault signal vector (k) (i.e. residuals r(k)). To proceed with 

step 3, the pressure sensor measurements between time instant k and k-1 at the monitored DMA 

inner nodes as well as the estimated pressure using the calibrated DMA hydraulic model, 

assuming a faultless (that is, leakage-free) scenario, are needed. The output is the residual vector 

r(k) (or fault signal vector (k)), that is, a vector of pressure differences between the pressure 
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measured by ith sensor and the predicted pressure value associated with ith pressure sensor in a 

faultless scenario. 

 

Step 4 – Computing the theoretical fault signature matrix FSM(k) (i.e. sensitivity 

matrix S(k)). To perform this step, the pressure estimation at time instant k in all the monitored 

nodes considering all DMA potential leaks (Step 2), as well as its pressure estimation at time 

instant k using the calibrated DMA faultless hydraulic model (Step 1), is needed. The pressure 

differences in the monitored DMA nodes between the faultless scenario and each leakage 

scenario is obtained in order to compute the matrix FSM(k) (S(k)). 

Step 5 – Leak localization result. This last step provides the most probable localizations 

of the potential existing leakages. This result is obtained for k ≥ τ (time accumulation window), 

considering the τ-past values of r(k) ((k)) (obtained in Step 3) and S(k) (FSM(k)) (obtained in 

Step 4). 

See [25] for further details on the software implementation. 

Results 

Description of Nova Icaria District Metered Area (DMA) 

This model-based leakage localization methodology has been tested in one DMA of 

Barcelona under a real leakage scenario. The water network which contains this DMA supplies 

both Barcelona and its metropolitan area covering around 3 million of inhabitants and is 

managed by the water company SGAB. The whole water network is composed by 4.574 km of 

pipes, 65 pumping stations and 72 water tanks with a water storage capacity up to 250.542 m3. 

This network is segmented into 117 pressure levels and 214 District Metered Areas (DMAs). In 

this pilot implementation, the Barcelona’s DMA of Nova Icaria has been used. It is included in 

level 55 within the city network, and has two inlets (Alaba and Llull), 3377 nodes and 3442 
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pipes. In Figure 7, the water network of Nova Icaria DMA can be seen from the EPANET file, 

which contains the hydraulic model of this network. In this figure, the two DMA inlets have 

been highlighted using red star symbols. Regarding the instrumentation, the Nova Icaria DMA 

is provided by flow and pressure sensors at every inlet and by 6 inner pressure sensors whose 

placement is also marked in Figure 7 using green star symbols. The sample time associated with 

all these sensors is set to 10 min. 

In order to apply the proposed model-based leak localization methodology, the data 

measured by the above mentioned instrumentation existing in Nova Icaria DMA must be used 

(Figure 7). In general, flow and pressure sensors existing in the DMA networks are integrated 

with the SCADA system used to supervise these complex systems. Using this SCADA system, 

the pressure and flow at the inlets of every DMA are monitored. This monitoring process is 

carried out by a multi-log datalogger linked to every inlet which, on one hand, registers these 

measurements every 10 min and on the other, is integrated with the DMA SCADA through a 

GSM network. Thereby, every day at 7 a.m., the SCADA system retrieves the inlet 

measurements of all DMAs from 00:00 h to 23:50 h of the day before. Once these data are 

retrieved, a data validation process fills the validated database. In the case of Nova Icaria, six 

inner pressure sensors are also available, whose measurements have a capital importance to 

carry out the DMA network leakage localization process. These sensors are linked to GSM 

dataloggers which allows metering pressure data every 10 min, retrieved by the SCADA system 

following the same procedure than the one used for the DMA inlets.  

In order to ease the access to the DMA measurements stored in the SCADA validated 

database, once the DMA measurements of the day before are available, these data are packed in 

a XLS file and sent using an e-mail process to those workstations where the leakage localization 

models are available. In Figure 5, the conceptual scheme of the integration between the Nova 

Icaria instrumentation data and the model-based leakage localization methodology can be seen. 
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Leakage Scenario in Nova Icaria 

In order to assess the leakage localization methodology, a leak was forced in the Nova 

Icaria DMA using a discharge component. The experiment took place the 20th December 2012 

at 00:30 h and lasted around 30 h, its exact location being as pointed by the arrow in Figure 8. 

The leak effect can be observed in Figure 9(a), where the time evolution of the DMA total 

inflow during the 20th December 2012, affected by the leakage event, and during the 19th 

December 2012, unaffected by the leakage event, has been plotted, showing the meaningful 

flow increase caused by the leakage.  

Data analysis 

Previous to the application of the leak localization methodology, certain data analyses 

have to be performed in order to observe the effect of the leakage in the DMA inflows and 

obtain an estimation of its size. This pre-processing would be automated in a final application, 

divided in two stages: (1) Detection stage and (2) leakage size estimation. In the current 

situation the two stages are performed manually as explained in this section. 

Leak detection and leakage size 

The first stage previous to the methodology application is to detect the occurrence of a 

new leakage scenario in the DMA. In general, a detection procedure followed by water utilities 

is based on the analysis of the difference between night flows. Although leakage is pressure 

dependant, and at night-time pressure is lower, the reduction of the demand uncertainty makes 

more reliable to analyze the night flows instead of the day flows. As shown in Figure 9(a), the 

total DMA inflow suffered a meaningful increase on December 20th when the leak was 

provoked in regard to the previous day. The difference between these two flows (Figure 9(b)) 

and its average value allows estimating the size of the leakage. In this case, the estimated value 

of this increase (the leak size) is 5.6 l/s on average.  
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Regarding the leakage simulation in water network models, in general leaks are not 

simulated as constant consumptions. It is more realistic to set an emitter coefficient in a node 

which will generate a leakage size depending on the pressure of that node [24] 

q Cp ,     (0)  

where q is the leak size; C is the emitter coefficient provided; p is the pressure at the node; and γ 

is an exponent in the range of 0.5 (Hazen-Williams, Darcy-Weisbach, Chezy-Manning 

formulas). 

The model-based leakage localization methodology requires the estimation of the 

emitter coefficient C which according to Equation (0) can be obtained using the estimated 

average size of the leakage (5.6 l/s, Figure 9(b)) and an estimation of the average pressure in the 

leakage localization. This average pressure has been estimated averaging the measurements of 

the DMA inner pressure sensors for the 20th December (leakage scenario shown in Figure 11) 

which is around 50 m.w.c. (meter of water column). As a result, and using γ=0.5 (Darcy-

Weisbach formula), the estimated emitter coefficient is 0.8. The peaks in the leakage observed 

in Figure 9 will be modulated by the network pressure.   

Calibration: DMA hydraulic model and inner pressure sensor 

The last stage before launching the leak isolation methodology is to verify the 

calibration of the DMA hydraulic model and the inner pressure sensors since existing model 

errors or poor calibrations may lead to a low-confident performance of the leakage isolation 

methodology. In order to carry out this process, the data of December 19th have been used since 

no major leaks were present that day. The general procedure to calibrate the DMA hydraulic 

model derives from the one proposed in [21] where the pressure in the DMA inlets at time 

instant k is set while the flow value in the inlets at this time instant is distributed among all the 

DMA inner nodes according to the values of their base demand and related demand patterns. As 

pointed out in [26], the DMA water demand model (that is, base demand of nodes and their 

demand patterns) is one of the main sources of uncertainty which may lead to inaccurate 
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performances and consequently, a special attention should be paid in their calibration. In the 

application considered in this article, the base demand of the network nodes and their demand 

pattern (water demand model) have been obtained through a basic process using the billing 

information of this DMA offered by SGAB. As an output of the whole model calibration 

process, a calibrated model of the DMA hydraulic network at every time instant k is obtained 

which can be used to predict the pressure and flow values in the DMA inlets and the pressure in 

those monitored DMA inner nodes. In Figure 10, the time evolution of the measured and 

predicted inflows in Alaba (a) and Llull (b) inlets for December 19th can be seen showing the 

degree of accurateness achieved once the hydraulic model has been calibrated. According to the 

obtained results (Figure 10), certain bounded modeling errors still exist which may be due to the 

existing uncertainty in the hydraulic network parameters and the considered demand model 

[23]. Nonetheless, they may be acceptable in order to obtain a reliable performance of the 

leakage localization methodology.  

Regarding the DMA inner pressure sensors, divergence between real measurements and 

the model simulated values may appear (that is, poor calibration, uncertainty about their depth 

regarding the ground level). Indeed, before carrying out the leakage scenario considered in this 

article, the inner pressure sensor ‘RE00008615’ was presenting an abnormal behavior and 

consequently, was considered as a faulty sensor avoiding its use in this analysis. Thereby, 

assuming that in December 19th no major leaks were present, and that the rest of pressure 

sensors were not faulty, the differences between real and model simulated pressures have been 

adjusted in order to correct the uncertainty associated with the sensor calibration (that is, 

offsets) and the depths of the sensors. In Figure 11, the time evolution of the measurements of 

the six inner pressure sensors, their model simulated values and their resulting corrected values 

have been plotted using the data of December 19th. This figure shows that there is a mismatch 

between the sensor real measurements and the prediction given by the model. Thereby, 

estimating for every sensor the average value of this mismatch and using this value to correct 

the sensor measurements, it can be seen that the corrected measurements accurately describe the 
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model predictions. The correction factor used to adjust the sensor measurements and the model 

predictions have been used to update the known but inaccurate sensor depths when the leakage 

localization methodology has been applied in the December 20th to determine the localization of 

the existing leakage.  

Leakage localization methodology application 

Applying the data analysis described in previous subsection the occurrence of leakage 

in December 20th was detected and the goodness of the calibrated DMA hydraulic model was 

stated using sensor measurements of December 19th. The leakage localization methodology was 

applied to analyze the sensor data of December 20th in order to obtain the most probable 

locations of the detected leak. This methodology has been packed in a model-driven tool in 

order to ease its use when applied to a certain scenario. The tool was used for providing an 

hourly result on December 20th Nova Icaria leakage scenario. 

When applying this procedure for obtaining the result of a certain hour, it must be taken 

into account that the used inner pressure sensors have a constrained resolution of 10 cm. This 

low resolution together with existing noise in the measurements may be a source of errors in the 

computed results. In order to overcome these negative effects derived from the sensor 

constrained resolution, two main strategies have been considered: first, the sensor measurement 

considered in a certain hour is the result of applying an average filter to the measured values 

during the last hour (6 10-minutal measurements) and second, pressure measurements and 

model predictions from consecutive hours can be accumulated along a cumulative time window 

of a given length allowing to obtain an accumulated observed residual and an accumulated 

sensitivity matrix. In the present case, a 10 hour-length cumulative window has been used so the 

observed residuals and the sensitivity matrices from the last ten hours are used to generate the 

resulting correlation vector at each step which let determines those nodes with the highest 

probability to contain the leakage. Thereby, in order to analyze the leakage scenario, data from 
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December 20th to December 21st have been used obtaining one resulting correlation vector at 

each time instant (one hour). 

The leakage localization methodology output is a correlation vector with as many 

components as potential locations of the leakage. Thereby, the value of the jth-component 

determines the correlation between the observed residual and the theoretical residual predicted 

by the model which would be obtained if the leakage were placed in the jth-node of the network. 

So, the correlation vector can be represented graphically on the top of cartography layer of the 

DMA using a grey map where the highest correlations are darker than lower ones. The level of 

grey depends on the highest correlation obtained at every time instant. This means that the 

graphical representation associated with a certain time instant cannot be directly compared with 

the one of another time instant since the associated highest correlation value may be different. In 

this graphical representation, those nodes with the highest correlation value are depicted with a 

black star. Besides, a red cross points the gravity centre of those nodes whose correlation value 

is bigger or equal than the 99% of the highest correlation set according to the coordinates of 

every node. 

Figure 12 shows four graphical representations of the correlation vector obtained with 

leakage isolation methodology for December 20th at 14 h (a), 15 h (b) and 22 h (c); and 

December 21st at 20 h (d). In the first three time instants, the leakage was not repaired yet while 

in the last one, the leakage was already fixed. Thus, the first three subfigures (a, b and c) signal 

a potential leak moving around a little zone of the network with correlations oscillating between 

0.6 and 0.75 (maximum correlation value is 1). The last subfigure (d) depicts the correlation 

vector once the leakage has been fixed pointing out the meaningful decrease of the resulting 

highest correlation value regarding the cases when the leakage still existed. 

In Figure 13, the resulting correlation vectors obtained at every time instant during 

December 20th and 21st have been accumulated in order to determine the nodes with the highest 

correlation. Consequently, the most probable localizations of the leak according to this 48 hour 
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– time window are determined (only those correlation values higher than 0.5 are considered). In 

this manner, the star size has been plotted according to the resulting value of the accumulated 

correlation: the bigger the size is, the bigger are the corresponding accumulated correlations. 

Additionally, in this figure the real location of the leak has also been signaled using a red star 

and that area containing the nodes with the higher accumulated correlation values has been 

marked using an ellipsoid with a red outline. Comparing the leakage localization indications 

given by the proposed methodology with the real localization of the leakage, the resulting error 

is considered acceptable in the sense that the leak localization predicted area has an acceptable 

size containing the real localization of the leak. It must be considered that mainly the resulting 

error is due to the errors / uncertainty that may exist in the hydraulic and demand models and in 

sensor measurements. Moreover, it is also valuable to consider that a nodal leak localization 

using a small set of sensors tends to determine potential network areas where the leak could be 

rather than the exact node where the leakage could be. Mainly, this is because when using few 

sensors, there could be certain leaks causing the same pressure disturbance from the point of 

view of the used sensor and consequently, isolation among them cannot be carried out.  

Conclusions 

 

This article has presented a model based methodology for leakage detection and 

isolation in water distribution networks (WDN) using pressure measurements. The method is 

based on generating residuals between the pressure measurements and their estimation using the 

network model that characterizes its behavior without leaks. Those residuals are compared with 

the leak sensitivity matrix that contains the effect of each potential node leak in each 

measurement. Leak isolation relies on correlating the residuals with the fault sensitivity matrix.  

The proposed methodology has been implemented in software tool that interfaces with a GIS 

system and allows the easy use by the engineers responsible of the network monitoring. 

Simulation results obtained applying the proposed approach to a District Metered Area (DMA) 
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of Barcelona water distribution network have shown the effectiveness and robustness of the 

proposed approach. Finally, a real application of the correlation-based method on the pilot tests 

has been presented showing satisfactory results in real fault scenarios.  
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Figure 1. Steps of the proposed leak localization methodology. (1) generate residuals from 

model with and without leakage (2) generate the signature matrix (3) generate residuals from 

model without leakage and measurements (4) generate the signature (5) compare signatures (6) 

aggregate and present results. 
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Figure 2. Example of Sensitivity matrix for a simplification of the Icaria Network where 15 

nodes have been chosen. Pressure residuals are calculated in the 15 nodes when the leak is in 

any of these 15 nodes. 

  

1
2

3 4
5

6 7
8

9 10
11

12 13
14

15

1 2 3 4
5 6 7 8 9

1011121314
15

0

1

2

3

4

5

6

7

Nodos con fuga

Matriz de sensibilidad

Nodos con sensor

Leaky nodes
measured nodes



 

 

27 
 

 

 

 

Figure 3. Results obtained with the correlation method. Maximum correlation (that is 1) 

corresponds to the real leak signaled by star and romb. The grey scale represents the correlation 

of each node. 

  

3.22 3.24 3.26 3.28 3.3 3.32 3.34 3.36 3.38

x 10
4

8.15

8.2

8.25

8.3

8.35

8.4

8.45
x 10

4

X coordinate [m]

Y
 c

oo
rd

in
at

e 
[m

]

Fault Isolation, 16 hour data

 

 

Error distance: Average = 0m

Nodes
Unfaulty (c<0.8)

c>=0.8

c>=0.98

c>=0.99

Potential Fault (c=1)
Real Fault



 

 

28 
 

 

 

Figure 4. Leakage analysis results visualization corresponding to an off-line simulation. 
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Figure 5. Conceptual scheme of the DSS for leakage localization. 
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Figure 6. Conceptual scheme of a leakage localization analysis at time instant k. 

  

DMA inlets:
Pressure / Inflow
Measurements

(k≥time instant>k‐1)

DMA 
EPANET 
Hydraulic
Model

DMA 
Demand
Patterns

Step 1 ‐ DMA hydraulic model
calibration

(time instant k)

DMA 
Potential
Leakages

Step 2 ‐ DMA hydraulic model 
simulation considering potential 

DMA leakages
(time instant k)

DMA  Inner Pressure
Sensor

Measurements
(k≥time instant>k‐1)

DMA  Pressure
Sensor

Prediction
(time instant k)

DMA  Pressure
Sensor

Prediction
(time instant k)

Free‐Leakage Scenario All Potential Leakages

Step 3 – Computing the fault signal 
vector  Φ

(time instant k)

Step 4 – Computing the theoretical 
fault signature matrix FSM

(time instant k)

Step 5 – Leakage localization result
(time instant k)

Leakage
Localization

(time instant k)



 

 

31 
 

 

 

Figure 7. Water network of Nova Icaria DMA (EPANET model) highlighting inner pressure 

sensors (green stars) and DMA inlets (red stars).  
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Figure 8. Water network of Nova Icaria DMA (EPANET model) highlighting inner pressure 

sensors (green stars), DMA inlets (red stars) and the exact location of the forced leak (red 

arrow). 
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Figure 9. Leak size estimation. (a) Time evolution of the Nova Icaria DMA total inflow during 

the 20th December 2012 affected by the leakage event and during the 19th December 2012 

unaffected by the leakage. (b) Time evolution of the difference between these two previous 

flows (a) and its average value (leakage size estimation). 
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Figure 10. Time evolution of the measured (green) and predicted (blue) inflows in Alaba (a) and 

Llull (b) inlets for December 19th showing the degree of accurateness achieved once the 

hydraulic model has been calibrated.  
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Figure 11. Time evolution of the measurements of the inner pressure sensors (black), their 

model simulated values (red) and the resulting corrected values (green). As it can be seen in this 

figure, the inner pressure sensor ‘RE00008615’ was presenting an abnormal behavior and 

consequently, was considered as a faulty sensor avoiding its use in the further leakage 

localization analyses. 
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Figure 12. Graphical representations of the correlation vector obtained with leakage isolation 

methodology for December 20th at 14h (a), 15h (b) and 22h (c); and December 21st at 20h (d). 

In the first three time instants the leakage was not repaired yet while in the last one, the leakage 

was already fixed. Subfigures (a), (b) and (c) signal a potential fault moving around a little zone 

of the network with correlations oscillating between 0.6 and 0.75 (maximum correlation value is 

1) while (d) shows a meaningful decrease of the resulting highest correlation value regarding the 

cases when the leakage still existed. 
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Figure 13. Graphical representation (black stars) of the most probable localizations of the leak 

according to the accumulation of the resulting correlation vectors related to every node through 

a 48 hour – time window (December 20th and 21th): the bigger the star size is the bigger are the 

corresponding accumulated correlations. Additionally, the real location of the leak (red star) and 

the area containing those nodes with the highest correlations values (red outline ellipsoid) are 

also shown.  
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