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Abstract— This paper presents a novel approach for robot
navigation in crowded urban environments where people and
objects are moving simultaneously while a robot is navigat-
ing. Avoiding moving obstacles at their corresponding precise
moment motivates the use of a robotic planner satisfying
both dynamic and nonholonomic constraints, also referred as
kynodynamic constraints. We present a proactive navigation ap-
proach with respect its environment, in the sense that the robot
calculates the reaction produced by its actions and provides the
minimum impact on nearby pedestrians. As a consequence, the
proposed planner integrates seamlessly planning and prediction
and calculates a complete motion prediction of the scene for
each robot propagation. Making use of the Extended Social
Force Model (ESFM) allows an enormous simplification for
both the prediction model and the planning system under
differential constraints. Simulations and real experiments have
been carried out to demonstrate the success of the proactive
kinodynamic planner.

. INTRODUCTION Fig. 1.  Simulation environment in apace x time, where people are

. . lotted as green cylinders and their predictions are drawthe z axis,
The impact produced by the deployment of service IDbo{l%hich corresponds to time. The tree of paths calculated bydabet appears

is of vital importance for the acceptance of robots in crogvdein blue and the best path is a red line.

urban environments, specifically among humans in its natura . .
habitat. proposed to model people as a summation of a Potential

In the present work, we propose a planner that predic{:s'e'd (PF), so it is not a novel idea.

human motion and minimizes its impact on all those nearb In a_ddltlon, F.>F .naV|ga.t|on algorlthm§ [10]. have been
pedestrians. Time restrictions are significant in social er%/xtenswgly studied in the I|tergture. _Desplte their adiatges,.
vironments: people walk and change their positions durin ere exist many well known limitations, such as local min-
time. A cost-based navigation path is calculated while sal- a_\or_oscnlatlons. Several approaches try to overco_msaethe
isfying both dynamic and nonholonomic constraints, als mitations, SUCh. as [11]’. by using a randomized walkingipat
referred as kinodynamic constraints. when a local ’_“'”"T‘“m is reached. .

Prediction methods are of great importance. Most ap- The ‘?'y”am'c window approach_[12] and other velocity
proaches separate planning and prediction and aIthoughC%nStra',n?d approaches [13] permitted to consider otggacl
joint approach may seem to boost the problem complexitﬁnd collisions. Unfortunately, they suffer_from local nmira
we will present a simple method to jointly account |oredic-"?lS well. Approaches combmlng a DWA. with a global p'af‘”er
tions and planning by considering a union state of peopllg<e [14] solve the proplem by introducing a global function
and robots. Our approach also relies on a global planner.

Human motion prediction can be achieved through learn- In [15] they obtain a k_inodynamic CF’mp"am trajectory by.
ing techniques, like in the works of [1], [2] and [3], Wheredegou_plmg the problem into a.sea'rch in space a}nq a posterior
they make use of maximum entropy learning methods usinc@nhmlzatl(_)n of the path satisfying the re_st_rlctlons. Our
a linear combination of different kinds of features. approach integrates the search of a path avoiding obstaeles

In this work, we apply geometrical based predictors suche! as p.rovid_es the inp.uts requirt_ad to execute that trajgct
as the works of [4] and [5] that infer human motion intentionscons'qe”ng kinodynamic constrallnts. )
and afterwards predict human motion in a continuous space,Puring the last decade sampling based techniques have
according to the Social Force Model (SFM) [6], and théJecome qu_lte popular. Fu_rthermqre, sampling pased methods
Extended SFM [7]. Works such as [8] and [9] already™® take into account kinematic and dynamic constraints

such as [16] and [17].
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IIl. STATE-SPACE FORMULATION

Goal Localization ‘

Navigation scheme } For planning purposes in the present work, we consider
. that both robots and people move in a two-dimensional space
which represents the urban environment. Bétdenote the
workspace and € X describes the positior = [z,%] " in
a two dimensional space, as for moving objects (including
people) and as robots. The configuration spacés defined
as a configurationg, € C,, where z denotes different
" Local habvigétibbn' scheme configuration spaces for people and robots.
Since we take into account a kinodynamic treatment of
. _ the planning scheme, we define the phase spadbat only
considers the first order derivative, whefec S, is defined
by s. = [g.,¢.]". In addition, we deal with strong time
i i constraints, where object movements alter the outcomeeof th
R LS “="  planning calculations, and we should consider the augrdente
{u(t), ..., u(t+h)} Perception phase space&7, = S, x time, wheretime € RT, and
s, € ST.is astates, = [q.,q.,t] " attimet. In general, we
will address the planning problem using the statec S7,.
Finally, an action:, € U, modifies the states., as it will
be discussed below.

Environment
Map
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Planner

Path

Fig. 2. Overview of the proposed planning scheme.

Il. PLANNING OVERVIEW
A. People in the state-space

On the one hand, people typically move on the scene People are treated as free moving particles, and therefore,

changing thdew p_osmons_ during Some t|n(1)e, ar?d thﬁrefﬁm'd\’\ﬁo orientation is required. Accordingly, the configuration
must consider time-variant scenarios. On the other han ’sﬁace is equal to the workspa@p — X' and the person’s

robpt trajec_tory mus_t satisfy t_hose strong time restriwtio phase spac&7 p is described as, € STp, wheres, =
while considering kinodynamic constraints. A state—spac& Yy Uy Vg, 1] T
y Jy Vs Yy

formulation is expla|r?ed in Sec. lil. . . ) The input spacé{p for the person’s action is, € Up
The Extended Social Force Model is explained in Sec. I\yhich are linear accelerations, = [a,,a,]T. The kinody-

and how we calculate the fqrce_s affecting people and fo_bo'ﬁamic model describing the person’s motion is constrained
The use of the ESFM will simplify enormously the plannlngby the following differential equations:

under differential constraints since there is no need teesol

the boundary value problem (BVP) to link poses. Va

In Sec. V we propose to integrate the prediction algorithm 4 B Yy 1
with the planning algorithm and solve the problem in a sp = de(sp,up) = | Az |- @)
holistic way. The prediction is carried out seamlessly and aly

simultaneously while the planning is being calculated, as
explained in Sec. V-E. Every new robot propagation entails |t will be discussed later how the input variables are
an estimation of the motion prediction of nearby people. Ag;|culated.

a result, our planner presereoactive characteristics since

we tend to initiate a change rather than a reaction to events, Robot in the state-space

An important assumption is done: a global planner pro- We consider the robot model to be characterized by a

Xdes avalllldl path to thi goal unobbstructed 'byFs'tatlg obesacl unicycle robot model. Thereby, there appear nonholonomic
general planning scheéme can be seen in Fig. 2. constraints in the robotic dynamic model due to the rolling

Our algorithm calculates for each iteration a path tQgntacts between the rigid bodies. The phase state of the
a goal avoiding moving obstacles like pedestrians on thg, ot ST is described ass, € STg, wheres, —
scene. The first output action {mu(t;y;), - - -, w(thorizon) } 1S [z, y,0,v,w,1T. The robot action space is defined ase
executed, and in the next iteration, a new plan is caIquateg,R where u, = [a,,a,]T are the translation acceleration

and a new action is executed. This approach permits £ 4 the rotation acceleration. Then, the resultant difféme
fast adaptation to changing environments, especially &f th.gnstraints are:

prediction estimation changes drastically. As we will see i UCQS(G)

Sec. VI and VI, our algorithm is implemented in real time vsin(6)

to provide an adaptable local planning. 4 = de(sy,uy) = w . )
The computed plan takes into account the reaction pro- @y

duced by its actions and produces the minimum disturbances w

to other nearby pedestrians. 1



C. Joint state-space Algorithm 1 Proactive planning@°®, s;:, thorizon, K)

The joint state space&7 consists of ST = STy x L Initialize 7(V, &) «+ {o}
U ST p,, which considers the robot phase sp&Ger and the 22 V <= Sini
union of every person’s phase spa&€ p. Correspondingly,  3: Sparent = Sini
the joint states € ST is defined as = [s,., sp,,...,spy] . 4 {gg°*'} = intentionality peoplepredictior()
Note that the variable time = t(s) is equal to all the 5 for j=1to K do
states thats consists of. We will refer to the robot state it t(Sparent) > thorizon then
s.(s) € ST r and the persorith states,, (s) € ST p. q¢ = sampléCr, ¢2°*')
Sparent = Nearesivertexq?, T)
IV. EXTENDED SOCIAL FORCEMODEL end if
We employ the Extended Social Force Model (ESFM)0: u, = calculateedgésparent, q7)
[7], based on [6], for navigation purposes since it providegl:  Spew = propagatevertexu,, sparent)
a realistic model describing interactions among humans i Jnew = calculatecosts,ew, ur, ¢2°*)
typical social environments [5]. The ESFM considers humans3: V< V U {[snew, Jnew] }
and robots as free particles in a 2D space abiding the lawg: & < U {u,}
of Newtonian mechanics. The ESFM uses attractors antp: end for
repulsors in the continuous space. 16: return minimum.costbranch7)
The attraction forces assume that the pedestiisies to
adapt his or her velocity within eelaxation time k=1,

fzoal(q;qloal) — k.( v?l(qzoal) — Vn)7 (3)

© o N2

V. PROACTIVE KINODYNAMIC PLANNING

. . . z All the main features of our proposed planner have been
where Vi, (¢7°*') is the desired velocity vector to reagff',  discussed in Sec. Il, and can be summarized as:
and v, is thg cu.rrent ve]omty. ! _ e Akinodynamic solution is calculated.
The repulsive interaction forces are defined as follows: « Proactive planning in which planning uses prediction
fint = g eld=—dn:)/bg (4) information, and prediction is dependent on the plath
_ o calculated.
wherez € Z, beingZ = P U O U R is either a person, or . Prior requirement: a global planner provides a valid
a static object of the environment, or a robot. For each kind  global path.

of interaction force corresponds a set of force parameters, At each iteration, the planner provides a locally valid

{k,az,bz,)\z,dz}; The distancel,, ., from the persom to path.
the targetz andd,, . is the unity vector: — n. For further « The path computed minimizes the perturbations on the
details, see [7], [5]. scene, according to a cost function.

Accordingly, the resultant force is calculated as the sum- aqgitionally, the proactive planner is fast enough for d rea
mation: time implementation, as demonstrated in Sec. VII.

f = fgoal(ggoalyy fint g §int fint (5 Algorithm 1 has four inputs: the goal?°*, the initial

" o (@) Z " Z e Z mrs () state s;,,;, the horizon timet,ori-on, and the number of
) vertices K. The ¢9°% provides the position and orientation
where each target on the scene, either a person, or gfithe final robot configuration. The initial state,; € ST
obstacle, or a robot, contributes tf),. contains the information of the robot state plus all peaple’
A. SEM applied to the robot states considered on the scene. The horizon R .on

T ] _ specifies the temporal window used to forecast the plan and
The objective is to treat a robot as a free moving particlg,o predictions.

in the space, similarly to people as explained above. Unfort 110 algorithm builds a tree7 (V, &) and returns the
nately, nonholonomic constraints reduce the robotic ptetf - inimum cost branch. The edges are the robot control
mobility, although it has full reachability i€r. We need inputs, € Ug, and the verticed’ consist of the joint state
to bridge the gap and provide an adjustment that permiS 7 and the accumulated cogte R to reach that vertex.
the robot being compatible with the ESFM. The resul'gant With all those requirements in mind, we propose Alg. 1
robot force f, = f,y + f, o consists of a component in yhich is inspired in a randomized kinodynamic planner [16],

the translation directiort, 5, which directly transforms into gy cept for some particularities that will be discussed welo
a translational acceleration and an orthogonal forfce ,

that does not contribute to the robot translation. The robdt. Horizon time and depth exploration

rotation acceleration is computed in the following way: The horizon time parameter sets the amount of time that
the planner forecasts in order to obtain a path similar to a
model predictive control (MPC). Although the set of inputs
wherer is the vector radii of our platform, oriented oand  {u, (tin:), - - -, ur(trorizon) } IS calculated, only the first input

k, is a damping factor in order to avoid oscillations. command is executed and a new set of inputs is calculated

JEP\n 0€O reR

Tr = r x f'r‘J_0 =+ ]f—,—w, (6)



in the next iteration. The horizon time bounds the region ¢ 7
explorationCg to a circle radii equal tGoriz0n * Vmaz @S
depicted in Fig. 3.

Usually ¢g9°¢! ¢ Cr due to the horizon time limit, and
accordingly, our approach obeys a depth search strategy
develop branches of the trég until the horizon time is
reached (Line 6 in Alg. 1).

B. Space exploration

The space exploration is donedi where a set of random
goalsq? are randomly calculated in order to extend the tre P
T. These random goalg’ are attractors that generate validrig 4. TreeT of paths in the spaca” x time. On theleft, the = axis
robotic paths inS7 until ¢5,-i.0n iS reached, as explained represents time. On théght projection of 7 in X.
below. Since there is a strong time restrictighare sampled
in the boundary of’g, to avoid bias and to ensure that th

eAIgorithm 2 Vertex propagatiofi,, sparent)

paths generated indeed expand L ST = 8. (Sparent) + de(Sp(Sparent ), ur) - At
The random goalg? can be seen in Fig. 3. The sampling 2: for i=1,..., N do
is done using a Gaussian distribution centered at the rteares:  if sp, (Sparent) € qgf“l then
q € Cr 10 ¢2°*! and the variance values depend on the density4: Up, = f(qgfal, Sparents SP) /my;
of nearby people: when the density grows, the variance alsa: SPEY = sp, (Sparent) + dc(sp, (Sparent); Up, ) - At
augments. 6: end if
) 7. end for
C. Find nearest vertex 8: etUrn Spey = 51, sne, ... snew] T

Once a new random goa{ is generated, the planner finds
the nearest verteX in 7 to be the parent vertex for the new
branch to be calculated. If only pure distances are caledlat

in Cgr, there would exist a strong bias to select “old” vertice%‘,(;fcount thehstates of the r:jesrb.y pedopll_g, o SPN'fThed
that are neaty,,i.on. The calculation of the new weighted literent paths are computed by Introducing a set of random

distance is done as follows: goalsg? that steer the robot to rapidly explofg, x time.

d(sr,qf) = Xy =XT|[+col|0r — O]+ timel[tr —tinil|. (7) E. Vertex propagation
D. Edge calculation Since the action calculate@ (_)nly propagates the robot
) ) states,., we must update the joint statefor every person
Edgese are robot control inputs:,. € Ug. Despite that  congidered. We propose a proactive approach in which the

the joint state takes into account all people, we can only,mnted planning actiom, is integrated with the prediction
select the input actions for the robot platform. We Cala"atalgorithm.

the_ resulta_nt robot forcd, F’y making use Of_ the E_SFM () First of all, we need to infer human intentions. As pro-
This force is transformed into an acceleration using (6! aMyosed in [4], we calculate the most expectajgl@l for every
thus, a robot actiom, = f./m. that takes info account the person on the scene. This calculation is carried out onlgpnc

mass of thle ;Oﬁm% < the rand and at at the initialization of the algorithm (line 4 in Alg. 1).
. The goal o the robot is the ranbom ?@ﬁ a;: atthe same adapt the human prediction algorithm [5] to obtain a
time reacts to the environment obstacles, that is, it takes i single propagation,..., from a given initial States,aren: €

ST.
v Algorithm 2 first propagates the robot stateaccordingly
s TN /ﬂ@'s\ to u, and integrates the differential equation (2) by using
/'14 e o >, Euler integration. Then, for every person on the scene, and
F ] E, \ if the person has not reached its inferred ggal" (line 3 in
H "‘ 4 p Alg. 2), an actionu,,, is calculated depending on the people
! ﬂ * ! E - on the scene and the new robot st&té” (line 4 in Alg. 2).
8
L) U ? \ 1
3 , 4 \ / F. Cost function and path selection
S 12 ¢ % L’
13 \\ N4 X - We propose a metric that measures social disturbances
Ao 4 while navigating: thesocial work [18]. The amount oBocial
work carried out by the robot fromy;,,; t0 trorizon:
Fig. 3. Random goalg? distribution, on theright there are no people than
in Cr and search is concentrated on the goal direction. Onléfiethe o .
density of nearby people on the scene is higher, and thugitlsampling Wg = Z fT'(t> AXT(t)’ (®)

distribution is widespread. t=tini



Social work w.r.t. horizon time

where f, takes into account both the steering force (3) an

the summation of social-forces due to nearby people or oth
obstacles (5) and it is multiplied by the variation of pasiti 2 ij
Ax, at eacht. Similarly, we can define the summation of | |

social work carried out by the people on the scene induces ;s

= = = Robot work
Persons work
Average work

by the robot movement: £ /
13 —o=="
than I LT L. e | |
2 3 4 5 6 7 8 9
WP = Z Z fr,z' (t) . AXZ' (t) (9) time horizon [s]

Fig. 5. Learning results in the simulated environment for thg.i-on
parameter, showing a minimum g ,.-; ... = bs for the average function.

We have measured thecial work of the peoplelV» due These functions are normalized for comparing purposes.
to the robot plan, and theocial work carried out by the
robot Wg. A shortty.rizon results on a straight trajectory, where the
For every new vertex the total cost is: robot accelerates and stops if an obstacle appears, which
is not an efficient behavior. Intuitively, the highér,.;.on
the better. However, as can be seen in Fig. 5 there is a
J = [[%r = Xgoatl| + ko |[6r — Ogoar|| + degradation of the performance of batitial works, As we
krobot WR + Epeopte Wp. (10) observed for high horizons, there were a short number of
) ) . branches in the tree to explore good solutions, and thus, a
Most of the time, reaching** may not be possible. higher number of vertices would be required.

t=tini i€EP

Nevertheless, the algorithm calculates several branchéé®i  The results,ky = 1, kropor = 2, Epeople = 8 and
tree7" and returns the branch with minimum cost functiory, . = _ 5. These parameters are highly dependent on
J attimetnorizon. the learning scenario and the number of vertiéés

VI. SIMULATIONS B. Smulations testing

Real experimentation is a delicate matter when there areWe have tested the algorithm in the same simulated
people involved. For this reason, we validate our plannéfvironment using the parameters obtained above. We have
in a simulated environment before any real interaction wit§ompared our approach withreactive planner proposed in
people takes place. The simulated environment [7] considis8]l, which takes into account people on the scene.
of static obstacles and multiple people modeled as dynamir Simulation resuts
obstacles following the ESFM, quite similar to a real urbarns — w
environment. 16 5 Ere;acct;\i/\ie planning T

The number of verticeg{ = 500 in the planner is fixed 14} g
throughout all simulations and experiments. The procegssir, ,| T T |
time highly depends on the number of people evaluated sin

WL ,
we are considering the propagation of the state for eve | |
person on each vertex calculated. The average process

time, if an average of 8 people is considered to appear on t™°| i

scene, is around 0.49processed in a Intel Core2 Quad CPU*|
Q9650 @ 3.00GHz and memory 3.8 GiB. The simulate®?f

Scenario iS as fOHOWS: the rObOt receives a query to a gO 0 Execution time Robot social work Persons s‘ocial work
while a group of pedestrians walk in the area in differentFig. 6. Simulation results, normalized to theactive approach results.
situations.

We have compared three different values as can be seen
in Fig. 6. The execution time refers to the average time for
the robot to get to its goal under the presence of people. Our

Before evaluating the method performance, we shoulgpproach shows a better performance for theial work
provide an .initial estimation of the planner parametersproduced by the people and the robot. These magnitudes
Parameters in (7) were manually chosep 1.0 , ciime = are clearly correlated since we have observed that in genera
0.25) to build a tree without bias as explained in Sec. V-Cine proactive planner tries to describe trajectories thaida
For the parameters in (10) ang,,i-.n, We have performed jnteractions if possible, while theeactive approach is not

over 7000 experiments using a Monte Carlo approach tgyelligent” enough to avoid unnecessary interactions on
sample the cost parameters, and then, we averaged {{}fe.

experiment performances to find the optimal values. We

provide statical robustness to the method by doing a large VII. EXPERIMENTS

number of experiments and then calculate the expectation ofFinally, we have implemented the algorithm to run in a
the performance depending on the parameters. In Fig. 5nsal robot, the Tibi&Dabo robots [7] in a controlled real
depicted the learning results for thg,.;.., parameter. environment.

A. Learning parameters in simulations



Fig. 7.
figure appears an interface, where people are plotted as gydieders and their predictions are drawn in thexis, which corresponds to time. The tree
of paths calculated by the robot appear in blue and the béistipa red line.

In Fig. 7 is depicted a series of experiments with people|s]
We observed a better behavior of the proactive kinodynamic
planner with respect to our previousactive approach, al-
though more experiments are required, in different scemari [6]
and more people on the scene. For more details, check

. , , . (71
the videos at the author’'s webpag@ p: /7 ww. i ri . upc. edu/
peopl e/ gf errer

VIII. CONCLUSION AND FUTURE WORK [8]

In this paper we have presented a proactive kinodynamic
planner for urban environments that calculates in real #ime [g]
local path that minimizes the disturbances to other pedestr
ans. The solution trajectories take into account kinodyinam
and nonholonomic restrictions which are mandatory consigto]
erations for a realistic navigation in such highly timeigat
scenarios like urban environments. [11]

Additionally, our approach shows proactive traits sinae th
robot tends to initiate change rather than reacting to svent
The cost for being proactive is a more intensive processi
since we must propagate the state of moving pedestrians
accordingly to the robot propagation. [13]

The trajectory calculated minimizes the amountsogial
work produced by the robot navigation at the same time thaiy)
minimizes its navigation work and distance to goal.

For future works we need to extensively test the aIgorithrHs]
in different environments and with more people.
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