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Abstract: In this paper, a set-membership parity space approach for linear uncertain dynamic systems is 

proposed. First, a set of parity relations derived from the parity space approach is obtained by means of a 

transformation derived from the system characteristic polynomial. As a result of this transformation, parity 

relations can be expressed in regressor form. On the one hand, this facilitates the parameter estimation of 

those relations using a zonotopic set-membership algorithm. On the other hand, fault detection is then 

based on checking, at every sample time, the non existence of a parameter value in the parameter 

uncertainty set such that the model is consistent with all the system measurements. The proposed approach 

is applied to two examples: a first illustrative case study based on a two-tank system and a more realistic 

case study based on the wind turbine FDI benchmark in order to evaluate its effectiveness.  
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1. INTRODUCTION 

 

Model-based fault diagnosis relies on analytical redundancy obtained by the use of mathematical models of the monitored 

system. Many approaches have been investigated and developed over the last few years (Gertler, 1998; Chen and Patton, 1999; 

Isermann, 2006; Blanke et al., 2006a). Reliability and performance of fault diagnosis algorithms depend on the quality of the 

model used. However, since modeling errors introduce uncertainty in the model, they interfere with the fault detection.  A fault 

detection algorithm able to handle uncertainty is called robust and its robustness is the sensitivity to faults compared to the 

sensitivity to uncertainty (Chen and Patton, 1999). The effect of noise on the model-based fault detection is well understood 

using statistical approaches (Basseville and Nikiforov, 1993). However, in many situations the random nature of noise is 



 
 

     

 

unknown which makes the use of statistical methods difficult. This difficulty has led to develop an alternative description of 

the noise based on what is known as “unknown but bounded noise” description (Milanese et al., 1996). Moreover, not only 

noise but also modeling errors should be taken into account. Modeling error inclusion in statistical methods is far from being 

trivial. For all these reasons, these last years, research on robust fault detection methods that require only knowledge about 

bounds in noise and parameters (modelling errors) has been very active in the FDI community (Puig, 2010). These methods, 

known as set-membership, follow the passive robust approach (Chen and Patton, 1999) by enhancing the fault detection 

robustness at the decision-making stage using an adaptive threshold. This adaptive threshold is typically generated by 

considering the set of model trajectories that can be obtained by varying the uncertain parameters within their intervals (Puig, 

2010).  

 

This paper presents a set-membership parity space approach for uncertain linear dynamic systems as an alternative to the 

method proposed in Ploix and Adrot (2006). The proposed approach is based on a set of parity relations derived from the parity 

space approach using the Chow and Willsky scheme (Chow and Willsky, 1984). However, since the system is uncertain, the 

decoupling from initial conditions is done using a symbolic approach in a similar way as Ploix and Adrot (2006). The main 

difference here is that the transformation is derived from the characteristic polynomial of the system state space representation. 

Using this idea, as discussed in (Ding, 2008), the set of residuals obtained are equivalent to primary parity equations approach 

proposed by Gertler (1998). Once the set of parity relations have been derived, they can be expressed in regressor form making 

easier the parameter estimation and the fault detection test implementation. Parameters are estimated by means of the 

zonotope-based set-membership identification approach proposed by (Bravo et al., 2006). This enhances the results presented 

in Ploix and Adrot (2006) since no method for estimating parameter uncertainty is provided. On the other hand, after the model 

and its uncertainty has been calibrated using fault free data, fault detection is based on checking, at every sampling time, the 

non existence of a parameter value in the parameter uncertainty set such that the model  is consistent with all the system 

measurements using the so-called inverse test (Puig, 2006). This is another difference from the method proposed by Ploix and 

Adrot (2006) since the fault detection test was based on a linear approximation of the parity relations and checking whether 

zero is contained in the residual set (direct test). 

 

A first academic example is used to illustrate in detail how the proposed approach works. Finally, a more realistic case study, 

based on a known FDI wind turbine benchmark, is used to assess its performance.  

 



 
 

     

 

The structure of this paper is the following: In Section 2, the problem statement is introduced. In Section 3, the residual 

transformation used to cancel the effect of initial conditions is introduced. Section 4 presents the fault detection methodology. 

Section 5 presents the model and uncertainty calibration approach.  In Section 6, a two-tank system is used to illustrate in detail 

the presented methodology. Then, in Section 7, a more realistic case study based on the wind turbine FDI benchmark is used to 

assess the validity of the proposed approach. Finally, in Section 8, the main conclusions are drawn. 

 

2. PROBLEM STATEMENT  

2.1 Problem set-up 

Let us consider that the system to be monitored can be described by the following uncertain state space model in discrete-time 
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where 
 
-  kx  is the state vector of dimension 1xn  . It is assumed that the initial state  0x  belongs to a known set   00 x  . 

-  ky  is the output vector of dimension 1yn  . 

-  ku  is the input vector of dimension 1un  . 

- θ Θ  is the unknown time invariant real system parameter vector of dimension 1n   that belongs to a known set Θ . 

- Matrices   x xn nA   ,   x un nB   ,   y xn nC   , and   y un nD    are the system matrices and matrix y en nE   

is the output noise matrix. 
 
- ( )k  e  is a vector of dimension 1en   corresponding to the additive error that is unknown but is assumed to be bounded by 

a set  . 

  
It is also assumed that the system defined by (1) is state observable. 
 
Fault detection will be based on using an uncertain model of the system (1) that considers:  

 model parameters θ  bounded by the known set Θ ( i.e. θ Θ ) that represents the uncertainty about the exact 

knowledge of the real system parameters θ . 

 additive noise  ( )ke  bounded by the known set   ( i.e. ( )k e ) that represents the uncertainty about the exact 

knowledge of the real noise ( )ke . 

 
 



 
 

     

 

Using this model, fault detection relies on generating a residual as a difference between the real and the model outputs defined 

as 

        ˆ= ,k k k k + Er y y e                        (2)  

 
where the model consists of an output estimation  ˆ ,k y that  can be expressed in terms of the system initial condition  0x  

as follows 
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and a bounded error term  kEe . For the sake of simplicity in notation the term  ˆ ,k y  will be denoted  ˆ ky  from now on.  

 
Notice that in order to know about the existence of a fault, this residual should be evaluated in a robust way, i.e. considering 

the model uncertainty and noise, as well the unknown initial conditions. Here, a passive robust approach will be used based on 

checking the consistency between the measurements and the model considering the uncertainty bounds. 

2.2  Consistency tests 

According to (Puig et al, 2006), there are two ways of checking consistency between the model (1) and the measurements: the 

direct and the inverse test. In the literature, most of the works dealing with uncertain models as (1) consider the direct test 

(Puig, 2010)  following the seminal work of (Horak, 1998). Here, after revising the direct test, the inverse test will be proposed 

as more suitable for the suggested fault detection strategy proposed in later sections of the paper.  

2.2.1 Direct test 

Given a state space model (1) whose vector parameter θ  is considered invariant and unknown but bounded, the output 

measurement vector  ky  will be consistent at instant k with the output predicted by the model, i.e.,      ˆ ˆ,k k k   y y y ,  

when  

 

 i0 G ,   1, ...,i k                     (4) 

where  

    0( ) | ( ) ,  0 ,i i i   θ Θr e x                     (5)         

 

and ( )ir  is given by (2)-(3) and 0  is a vector ( 1yn  ) of zeros  = 0 0
t

0  . The evaluation of the set (5) implies simulating 

the model (1) considering the uncertainty. This is in general a difficult task as discussed for example in (Puig, 2005) since if a 

recursive scheme is used based on approximating the output set with some approximating set as interval boxes or even 

zonotopes, it can lead to an explosion of uncertainty named as wrapping effect. Alternatively, if the computations are referred 



 
 

     

 

to the initial state as in (3) the computation of output set implies a complex optimization problem (Puig, 2003). Moreover as 

discussed in Puig (2006), since the residual parameter dependency is lost when evaluating (5), although (3) assumes invariant 

parameters, an artificially parameter variation is introduced. For this reason, a second test is proposed to be used in this paper. 

 

2.2.2 Inverse test 

Given a state space model (1) whose vector parameter θ  is considered invariant unknown but bounded, the output 

measurement vector  ky  will be consistent at instant k with the output predicted by the model when  

 

 | ,i  θ Θ 0 θG ,   1, ...,i k                     (6) 

where  

    0, ( , ) | ( ) ,  0i i i  θ θ   r e x                   (7)         

and 0 is a vector ( 1yn  ) of zeros  = 0 0
t

0  . 

 
At every instant k, the set of parameters consistent with the model and measurements is given by 
 

  | ,k k  θ Θ 0 Γ θ                                                                            (8) 

 
Then, the consistency test (6) can be formulated as 
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where 1kFPS  (Feasible Parameter Set at instant k+1)  contains all the vector parameters consistent at instant k+1 with 

previous data and can be computed in a recursive way as follows  

 

1k k k  FPS FPS                                

 
The computation of sets k  and 1kFPS  is very complicated because the non linear dependence between residual and 

parameters (Jaulin et al., 2001). The aim of this paper is to arrive to a transformation of the residual (2) into one that allows to 

evaluate the consistent test (6) in an easy way. 

 

3. RESIDUAL TRANSFORMATION 

 

3.1 Parity space approach 

The ny components of the residual  kr  defined in (2) can be computed separately as follows 

       ˆ= -i i i ir k y k y k k- E e            ,    1 yi n            (10) 

 

with 
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where superscript i  in vectors  kr and  ky  denotes the ith component of the vector and in matrices  C  ,  D   and E  

denotes the ith row of the matrix.  

 

Notice that residual components of  kr depends on the unknown initial condition that introduces some additional uncertainty.  

A way to remove such a dependence is by means of a transformation as suggested in the parity space approach introduced by 

Chow and Willsky (1984). However, in this case, the model (1) includes uncertainty in the parameters and such method does 

not apply directly. In (Ploix, 2006), a possible extended approach is proposed in the case the model is uncertain, but the 

computations needed are quite involved. Here, a different approach based on the equivalence that there exists between parity 

space approach and input/output models (Ding, 2008) is proposed. 

 
Proposition 1 
 

A transformed residual  w kr , independent of the internal state  kx , can be found by using a transformation vector defined 

as follows 

      -1 10 p=  w                       (11) 

 
where    1, , ,10 p    are the coefficients of the characteristic polynomial of the system (1):  
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with p nx  and applied to the  residual components of  kr  (10) as follows 
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Proof 

Measurement output vector  i kY  in (14) can be computed using model (1) and p+1 step-ahead predictions, leading to  
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 iT  ,  kU  and  i kV defined as in (15)-(17).  Then, if the left and right parts of (17) are multiplied by the vector  w   

defined as in (15) yields 

                =i i i ik k k kw Y w O + T U V   x       (19) 
 

 
and by applying the Cayley-Hamilton theorem to Eq. (19) follows that 
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Thus, Eq. (19) results in 
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that allows to derive the residual defined in (10). This completes the proof                
 

The system model (1) can also be expressed in input/output form as follows: 
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where         11( , )q q
   M θ C θ I A θ B θ D θ  is the transfer function matrix, and 1( , )yu qN θ  and 1( , )yuD q θ  contain the 

numerator and denominator polynomials, respectively. For ith output and jth input, (22) reduces so a single transfer function 

whose denominator is the characteristic polynomial (12):    1 1
p-1 0( , ) 1 p

yuD q q q      θ  . Thus, equivalently, the 

residual given by Eq. (13) can also be expressed in transfer function form using the shift operator q-1 as follows: 
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Remark 1: Notice that  1,i qG  and  1,i qΗ   can be straightforwardly related with polynomials 1( , )yu qN θ  and 

1D ( , )yu q θ  of the input-output model of the system (18) taking into account that (23) can be generated directly from (18) 

following the parity equation approach in MA (Moving Average) form (Gertler, 1998). Thus  
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3.2 Relation with the interval observer approach 

Given the uncertain system (1), an interval observer with Luenberger structure to monitor can be written as  (Puig, 2005):  
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where      o  A θ A θ LC θ ,      o  B θ B θ LD θ  and  ˆ ,k x  is the estimated system space-state vector and for a 

given value of   . 

The observer gain matrix nx nyL   is designed to stabilise the matrix ( ) ( ) ( )o  A θ A θ LC θ  and to guarantee a desired 

performance regarding fault detection for all    using LMI pole placement (Chilali et al., 1996). The effect of the uncertain 

parameters   on the observer temporal response ˆ ( )ky  will be bounded using an interval as in Section 2.2. 

 
Remark 2: Notice that according to Meseguer et al.  (2010), two particular cases could be distinguished in the interval 

observer according to the observer gain L. First, the observer becomes a simulator when L=0 since the observer eigenvalues 

are those ones of the plant, but it can only be used when the system is stable. This corresponds to the model expressed as in (1). 

Second, the observer becomes a predictor when the observer gain  (L= Lp) * is selected such that all the observer eigenvalues 

are at the origin (“deadbeat observer”)  and corresponds to the parity space approach expressed as in  (10) (Chow and Willsky, 

1984).  

 

                                                 
* When C has an inverse, the observer structure forces the predictor approach to satisfy Lp C=A. 



 
 

     

 

Remark 3: Notice that following Ding (2008), the residual generated by the observer scheme (24) can be expressed in parity 

space approach form by expressing the observer (24) in canonical observable form and by selecting the observer gain as 

follows 
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where    -1, ,0 p    are the coefficients of the system characteristic polynomial (12), while    0 1, ,o o
p    are those 

of the observer characteristic polynomial fixed by the observer poles (dynamics). Then, the vector transformation equivalent to 

(12) that allows obtaining a transformed residual (10) when the observer (24) is used is given by:   

      1
0 0 1po=   w            (26) 

Thus, only in the special case that the observer poles are placed in the origin (dead-beat observer), the residuals provided by 

parity space approach provided by the system transformation (12) will the same as the ones using the observer  in input/output 

form (Puig et al., 2008) 

            1 1
w,i i i i ir k q , k q , y k k   G Η - E u e                            (27) 

where 

   ( )
11

i i i oq , q
   Η I C I A θ L      (28) 

      11
i i o o iq , q

   G C I A θ B θ D      (29) 

 

 

In this case  

 

 -1

0

p

=





 
 

  
 
 





L        (30) 

and according to Remark 2, this corresponds to the case that L= Lp, i.e., the observer leads to a residual equal to the parity 

space approach (23) and to the MA parity equations obtained from the input-output model (22) as shown by Gertler (1998). 

Remark 4: According to (Ding, 2008), the predictor obtained forcing L= Lp is the predictor of minimum order (i.e. , the dead-

beat observer) which can only indicate a fault for a minimum time period given by the system order.  

 
 
 



 
 

     

 

4. FAULT DETECTION 

4.1 Parity space in regressor form 

From (21), a model in regressor form for every output can be extracted  

 

( ) ( ) ( )i i iy k k n k φ          1 yi n                  (31) 

where 

 
- ( )i kφ  is the regressor vector of dimension 1 n  which can contain any function of inputs ( )ku  and outputs ( )iy k . 

-    is the parameter vector of dimension 1n  .  

-   is the set that bounds the parameter   values. 

- ( )in k  is the additive error bounded by a constant ( )i in k   . 

 
Remark 5: The dependence of parameter vector   and additive error ( )in k  in (31) with respect to the parameter vector   and 

additive error ( )ie k  in (1) can be obtained analytically from (21). 

 

Remark 6: In the same way, set   and bounds i  can be related to sets Θ  and  . 

 

The yn  individual models (31) can be expressed in a compact form as a Multiple Input and Multiple Output (MIMO) model 

 

( ) ( ) ( )k k k Φy n                           (32) 

where 

 

- ( )kΦ  is the regressor matrix of dimension yn n  that contains the regressor vectors. 

- ( )kn  is a vector of dimension 1yn   that contains the additive errors. 

4.2 Consistency test 

Now considering model (31), k  defined in (8) can be expressed as the intersection of ny strips 

 

1, ,yk k n k  F F                                (33) 

where 

 i, | ( ) ( ) ( )n
k i i i i iy k k y k       F φ           (34) 



 
 

     

 

 
Then, the 1kFPS  that contains all the vector parameters   consistent with previous data at instant k+1 is a polytope that can 

be defined as 

1 1 1 1 1

1

( ) ( ) ( )

, 1,...,

( ) ( ) ( )
y y y y y

n
k

n n n n n

y i i y i

i k

y i i y i









    
      
       


φ

FPS

φ

   (35) 

 
And, consistency test (9) consists in determining the feasibility of the following linear problem. 

 

k kP b                                     (36) 

with 

 t

1 1 1(1) (1) (1) (2) ( )k ny ny k P = φ φ φ φ φ       

 t

1 1 1 1 1 1(1) (1) (1) (2) ( )k ny ny ny nyy y y y y k           b =        

 
If the linear consistency problem (36) is unfeasible, then condition (9) is not fulfilled and a fault is detected.   
 
The main drawback of this fault detection test is that the number of constraints (given by 2kny) in the linear problem (36) 

grows with the number of data samples (Blesa et al. 2012). In order to avoid dealing with the exact description of the FPS , 

existing algorithms usually approximate the FPS  using inner/outer simpler shapes as boxes, parallelotopes, ellipsoids or 

zonotopes (Milanese et al., 1996). The approximation set is called Approximated Feasible Parameter Set ( AFPS ).   

Outer approximation algorithms find the parameter set AFPS  that approximates the polytope FPS with a simpler shape (box, 

parallelotope, ellipsoid or zonotope) of minimum volume such that FPS AFPS . This type of algorithms usually implies an 

excessive computational cost and recursive forms have been proposed in order to reduce the computational cost. For instance, 

the one proposed by Vicino and Zappa (1996) in case of using parallelotopes and the one proposed by Bravo et al. (2006) in 

case of using zonotopes. In order to maximize the accuracy in fault detection, outer approximations try to minimize their 

volume.  

 

Inner approximation algorithms find the parameter set AFPS  of maximum volume such that AFPS FPS . In particular, in 

this work the recursive zonotope-based outer algorithm proposed by Bravo et al. (2006) will be used since it allows the 

following computation 

1out k out k k  A FPS A FPS                       (37) 

 
This approach has already been used for fault detection purposes in Blesa et al. (2011a). 
 
Alternatively, consistency test can be carried out by means of the direct test defined in (4) with  
 

   1( ),..., ( )nyk r k r kG                         (38) 

where  
( ) ( ) ( ) ( )i i i ir k y k k n k φ           1 yi n                  (39) 



 
 

     

 

 
 

5. MODEL CALIBRATION 
 

Given model (1) and taken into account transformation (21) for the yn  components, the structure of model (32) defined by 

matrix ( )kΦ  and vector   can be obtained directly. Then, the problem of model calibration boils down in determining bounds 

for additive error i  ( 1 yi n  ) and parameter set  . 

Additive error bounds  i  can be obtained easily from bounded set   because the dependence of  ( )kn  with ( )ke  is linear. 

But, on the other hand, as the relation between parameters   and   is nonlinear, the problem of finding   is very difficult to 

tackle directly from model (1).  

 
In the following, a methodology that describes how to find a set   consistent with data is presented. 
 
Let us consider a sequence of M regressor matrix values  ( )kΦ  and output measurements ( )ky  in a fault free scenario, the 

model of the system to be monitored parameterized as in (32) and the parameter set   described by a zonotope centered in a 

nominal model: 

 0 0 :n n    H Hz z                         (40)                 

where 
 

- 0 n   is the center of the zonotope that corresponds to the nominal model. 

-
n nH  is the shape of the zonotope (usually n n   and as the bigger n is, the more complicated relations between 

uncertainty component parameters can be taken into account). 

- n  is a unitary box composed by n unitary (  1,1  ) interval vectors.   

-  denotes the Minkowski sum. 

  

The aim is to estimate a nominal parameter vector 0  and their uncertainty (model set) defined by the matrix H  in such a way 

that all measured data in a fault free scenario satisfy feasibility of linear problem (36). 

 
Let us consider an initial set defined by physical limits  
 

 

 0 0
ini ini ini ini ini :n n    H H z z                     (41) 

 

and by using the outer algorithm (37) proposed in Bravo et al. (2006) with initial condition 

0 iniout A FPS         (42) 

 



 
 

     

 

 

the set 1out M A FPS , resulting from applying (37) to all the data,  defines the set  .  

 

6. ILLUSTRATIVE EXAMPLE 

6.1 Description of the system 
 

A two-tank process will be used to illustrate the results presented in this paper. A schematic diagram of the system is shown in 

Figure 1. The process inputs are 1v  and 2v  (input voltages to the pumps) and the outputs are the tank levels 1h  and 2h . The 

equations that describe the system are 

 

1 1 2 1
1 2 1

1 1 1

2 2 2
2 2

2 2

k
2 2

k
2

dh a a
gh gh v

dt A A A

dh a
gh v

dt A A

   

  
             (43) 

 

where 2
1 2 0.071a a cm  , 2

1 2 28A A cm  , 2981 /g cm s ,  3
1 2.33 /k cm Vs , 3

2 1.34 /k cm Vs  and assumed constants.  

 

 
Fig. 1. Two-tank system      

 
Eq. (43) can be discretised by the Euler method with sampling time 1t s  and linearized around an operating point defined 

by 0
1h  and 0

2h . Then, (43) can be expressed as in (1) through the following parameterisation 

 

   t
1 2( ) ( )k h k h kx ,    t
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1 0

0 1

 
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E  and    t
1 2( ) ( )k e k e ke  
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A
 . Variables 1 2( ),  ( )e k e k  contain the additive errors due to discretisation, linearisation and sensor noises 

that are bounded by constants 1  and 2 , respectively. 



 
 

     

 

 
 
6.2 Residual transformation 
 

Residuals (10) of model (43) can be transformed into residuals (13) with 
 

   11 22 11 22( ) 1= a a a a w                         (44) 

 
Then, the state space representation of model (43) is equivalent to MIMO model (31) with 
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and where  1 1 1
   w   and   2 2 1

   w  . 

 
6.3 Model identification 
 
In order to apply the calibration method presented in Section  5, a fault free scenario rich enough from the identification point 

of view has been simulated around an operating point given by  0
1 12.48h cm  and 0

2 1.52h cm . 

 

Considering maximum variation levels 1 0.5h cm  , 2 0.5h cm   and the physical limitation in parameters   the initial set 

(41) is computed as 

 

0
ini
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0.876
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 
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 
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 

  
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 
 
 
 

  

 
Then, applying (37) to the fault free identification data, the consistent set (40) obtained is defined by 
  

 t
1.873 0.876 0.083 0.075 0.0046 0.048 0.046   



 
 

     

 

, 

0.045 1.634 0 0.0331 0.018 0 0

0 1.621 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0.134 0 0 0

0 0 0 0 0.077 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0.003




 
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 
 
 

  
 
 
 
 
 

  

 

Figure 2 shows the initial set  ini  (defined by 0
ini  and ini ) and the consistent set   (defined by 0  and 0 ) obtained after 

the identification procedure. 
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Fig. 2. (1)- (2)   Projection of the initial and identified consistency sets: ini  (blue box) and   (red zonotope). 
 
6.4 Fault detection 

 
In order to illustrate the consistency test defined in Section 4 in several fault scenarios, two different kinds of faults have 

been considered: additive faults (in input and output sensors: uf  and yf ) and multiplicative faults (in parameters: f ).  

 
In the following, two fault scenarios have been simulated in the operation point presented in Figure 3 and the results of the 

fault detection procedure are shown. 
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Fig. 3. No faulty scenario 

 



 
 

     

 

 
Fault scenario1: “ 1y  sensor additive fault of 

1
0.25yf cm  at t=250s” 

 
Figure 4 shows the behaviour of the consistency test defined in (37) in fault scenario 1. In this figure, it can be noticed that the 

strip 1,250F  (given by output 1 at t=250s) does not intersect with the outer zonotope that bounds the consistent set. Thus, the 

fault is detected at the same instant. 
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Fig. 4. Consistency test in fault scenario 1. Outer zonotope (in red) and stripe 1,250F (bounded by the green and yellow lines) at 

instant t=250s. 
 
 

Fault scenario 2:  “ 1a  multiplicative fault of 
1

20.053af cm   at t=400s” 

 
Figure 5 shows the behaviour of the consistency test defined in (37) in fault scenario 2. In this figure, it can be noticed that the 

strip 1,400F  (given by output 1 at t=400s) does not intersect with the outer zonotope that bounds the consistent set. Thus, the 

fault is detected at the same instant. 
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Fig. 5. Consistency test in fault scenario 2. Outer zonotope (in red) and stripe 1,400F  (bounded by the green and yellow lines) at 

instant t=400s. 
 
 
 

7. CASE STUDY: WIND TURBINE 

 



 
 

     

 

7.1 Description  
 
This example is based on the realistic FDI case study proposed in “Wind turbine Benchmark” proposed in (Odgaard et al., 

2013) where the challenge is to detect and to isolate a set of pre-defined faults. 

From the subsystems (Blade & Pitch system, Drive Train, Generator & Converter and Controller) model presented in (Odgaard 

et al., 2013), the structural analysis proposed by Staroswiecki, presented in (Blanke et al., 2006a), can be applied using the 

SaTool (Blanke et al., 2006b). The variables considered as known are the measured outputs ( wv , r , g , 1 , 2 , 3 , g  and 

gP ) and controlled inputs ( gr  and gr ). r  is estimated from the wind velocity wv  using Eq. (5) in (Odgaard et al., 2013).  

7.2 Residual generation and fault isolation 
 

According to Blesa et al. (2011b), after applying structural analysis (Blanke et al., 2006) with the aid of the SaTool (Blanke 

and Lorentz, 2006) to the set of equations  provided in Odgaard et al. (2013) and considering the set of redundant sensors 

( _ 2r m , _ 2g m , 1_ 2m , 2 _ 2m  and 3_ 2m ), the following set of residuals can be generated  

 

1 _ 1 _ 2r m r mr     

2 _ 2 _ 2 _ˆ ( , , )r m r r m r g mr        

3 _ 1 _ 2g m g mr     

4 _ 2 _ 2 _ˆ ( , , )g m g g m r g mr        

5 1_ 1 1_ 2m mr     

6 1_ 2 1 1_ 2
ˆ ( , )m m rr       

                                                    7 2 _ 1 2 _ 2m mr                                                                                           (45)

8 2 _ 2 2 2 _ 2
ˆ ( , )m m rr       

9 3_ 1 3_ 2m mr     

10 3_ 2 3 3_ 2
ˆ ( , )m m rr       

11 _ _ˆ ( , )g m g g m grr        

12 _ _ 2 _ˆ ( , )g m g g m g mr p p     

 
where residuals r2, r4, r6, r8, r10, r11 and r12 follows from analytical redundancy relations . On the other hand, the remaining 

residuals are generated directly comparing the redundant sensors. 

 
Fault isolation consists in identifying the faults affecting the system. As proposed in classic FDI books (Gertler, 1998; 

Isermann, 2006), faults can be isolated on the basis of fault signatures generated by a fault detection test applied component-

wise to each single residual 

0 if ( )      is consistent
( )

1 if ( ) is not consistent
i

i
i

r k
k

r k


  


                                                                          (46) 

producing an observed fault signature ( )k : 



 
 

     

 

  1 2( ) ( ), ( ), , ( )nk k k k   


                                                                     (47)  

Then, the observed fault signature is supplied to the fault isolation module that has knowledge of the binary relation between 

the considered fault hypothesis set  1 2( ) ( ), ( ), , ( )
fnk f k f k f k f  and the observed fault signature ( )k . This relation is 

stored in what is called the theoretical binary fault signature matrix (FSM). An element FSMi;j of this matrix is equal to 1 if the 

fault hypothesis fj(k) is expected to affect the residual ri(k), that is, the related fault signal fi(k) is equal to 1 when this fault 

affects the monitored system. Otherwise, the element FSMi;j has a zero value. Analysing the effect of each of the faults 

proposed in (Odgaard et al., 2013) in the previous residuals (45) using fault sensitivity analysis (Gertler, 1998), the fault 

signature matrix presented in Table 2 is obtained.  

 

  f1 f2 f3 f4 f5 f6 f7 f8 

r1       x x       

r2 x x x   x x x x 

r3         x       

r4 x x x   x x x x 

r5 x               

r6 x               

r7   x             

r8   x       x     

r9     x           

r10     x       x   

r11               x 

r12     x    
 
Table 2: Theoretical signature matrix where “x” denotes that a residual is sensitive to a fault  
 
 
The accepted standard procedure involves finding a perfect matching between the observed fault signature and one of the 

theoretical fault signatures (Gertler, 1998). However, as discussed in (Tornil et al., 2013), this reasoning is not appropriate in 

an unknown but bounded context as the one considered in this paper. Here, the isolation scheme suggested by (Tornil et al., 

2013) is used, under single-fault assumption, considering that the fault that is actually present in the system has to affect all the 

residuals that have been found inconsistent according to the observed fault signature. The robustness of the fault isolation 

method can be improved by adding active FDI approaches that provides extra excitation by means of auxiliary input signals in 

order to activate the largest possible number of residuals when a fault has been occurred and thus increasing the 

distinguishability between faults (Tabatabaeipour, 2013). 

 
7.3 Residual transformation and calibration 
 
 
In order to apply the fault detection method proposed in this paper, the whole wind turbine system can be divided in 5 

subsystems that can be described by the state space models 
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with   0i D   and i E I , 1, ,5i    

 
where the five subsystems are: 
 
Pitch subsystems 1,2 and 3: related to residuals r6, r8 and r10 of Eq. (45) and can be modeled by 
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where coefficients of matrices  iA   and  i B    ( 1, 2,3)i   can be computed discretizing Eq. (6) in (Odgaard et al., 2013). 

 
 
Drive train subsystem: related to residuals r2 and r4 of Eq. (45) and can be modelled by  
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where    is an inner state of the drive train subsystem and coefficients of matrices  4A   and  4 B    can be computed 

discretizing Equations (8)-(10) in (Odgaard et al., 2013). 

 
Converter subsystem: related to residual r11 of Eq. (45) and can be modelled by  
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where coefficients 
1,1

5a  and 
1,1

5b  can be computed discretizing the generator and converter equation in (Odgaard et al., 2013). 

 
 
 
Following the methodology described in Section 3, residuals r2, r4, r6, r8, r10 and r11 are derived from the transformation of  

(48) and following the methodology described in Section 5, the obtained parity equations are calibrated in a fault free scenario. 

Finally, the consistency of the obtained residuals can be evaluated on-line in order to detect faults using consistency test 

defined in Section 4.  

 



 
 

     

 

Regarding static residuals r1, r3, r5, r7 and r10 and from redundant measurements and r12 from static power equation  in 

(Odgaard et al., 2013), additive error bounds i  have been calculated as the maximum value of the residuals in a fault free 

scenario. 

1,...,
max ( )i i

k M
r k


            1,3,5,7,9,12i               (49) 

 

where M is the length of the fault free scenario. 

 
Once the additive error bounds have been calibrated, the consistency of static residuals has been calculation of fault signature 

( )i k associated to residuals r1, r3, r5, r7, r10 and r12 can be computed by 
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i i

i

i i

r k
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r k


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                          (50) 

  
 
7.4 Results 
 
 
The proposed fault detection method and the isolation method described in previous section has been applied to the FDI 

Benchmark described in Odgaard  et al. (2013) with satisfactory results in all the proposed fault scenarios except fault scenario 

6 whose fault effects are very small. Table 3 summarizes the fault detection and isolation results using the proposed method 

and the results obtained with two other set-membership methods: the state space set-membership FDI method proposed in 

(Tabatabaeipour et al. 2012) and the interval observer FDI approach proposed in (Blesa et al. 2014). 

 
Fault 
scenario 

Fault appearance 
time 

Fault diagnosis time 
Proposed method 

Fault diagnosis time 
(Tabatabaeipour, 2012) 

Fault diagnosis time 
(Blesa, 2014) 

1 2000 s 2000.04 s 2000.01 s 2000.03 s 
2 2300 s 2307.38 s 2304.21 s 2300.06 s 
3 2600 s 2600.03 s 2600.01 s 2600.03 s 
4 1500 s 1500.08 s 1500.05 s 1500.03 s 
5 1000 s 1000.01 s   1000.01 s   1000.03 s   
6 2900 s 2977.63 s† 2951.69 s 2900.06 s 
7 3500 s 3547.11 s 3524.83 s 3511.60 s 
8 3800 s 3800.01s 3800.01s 3800.04s 

Table 3: Fault detection and isolation behaviour for the set of considered faults in the WT FDI competition using the proposed 
method and two other set-membership methods 

 
The behaviour of the proposed method presents similar results for Faults 1,2,3,4,5 and 8 compared to those of the two other 

methods and slightly worse in case of the Faults 6 and 7 . The poor behaviour of the parity space approach in case of these two 

last faults can be explained because the combination of two effects: First, the parity space behaves as a dead-beat observer (see 

Remark 4). This implies that after a number of samples (related to the order of the system) after the fault appearance, the 

                                                 
† Increasing 10% the magnitude of this fault to the one proposed in Odgaard  et al. (2013) 



 
 

     

 

residual tends to be small even the fault still is present. Second, Faults 6 and 7 present a smooth and slow dynamic effect in the 

residuals. However, as also noticed in (Ploix and Adrot, 2006), the parity space: 

 presents a lower computational cost compared to the state estimation methods (as the ones used for comparison in 

Table 3) and does not require to tune an observer gain. 

 is not affected by the wrapping effect (see Section 2.2.1). 

The previous advantages are the main motivation for using the parity space approach. 

 
In the following, the results of two of fault scenarios are shown in detail. 
 
Fault scenario 1: “Fixed value on Pitch 1 position sensor from t=2000s to t=2100s” 
 

Figures 6 and 7 show the nominal residuals 0
2r , 0

4r , 0
5r  and 0

6r (obtained using (39) with     and ( ) 0in k  )  and the 

observed fault signature components 2 , 4 , 5  and 6  obtained applying the consistency tests. The fault is detected at 

instant t=2000.04s and as the only signature components activated are 5 (permanently) and 6 (intermittently), and the fault is 

isolated at the detection instant. 
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Fig. 6. Nominal residuals 0

2r , 0
4r , 0

5r  and 0
6r  in fault scenario 1. 
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Fig. 7.  Observed fault signature components 2 , 4 , 5  and 6  in fault scenario 1. 



 
 

     

 

 
Fault scenario 5: “Scaling error on rotor speed sensor 2 and generator speed sensor 2 from t=1000s to t=1100s” 
 

Figure 8 and 9 show the nominal residuals 0
2r , 0

3r , 0
4r  and 0

12r  and the observed fault signature components 2 , 3 , 4  and 

12 . The fault is detected and isolated at instant t=1000.01s. 
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Fig. 8. Nominal residuals 0

2r , 0
3r , 0

4r  and 0
12r  in fault scenario 5. 
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Fig. 9.  Observed fault signature components 2 , 3 , 4  and 12  in fault scenario 5. 

 
 
 
 

8. CONCLUSIONS 

 

In this paper, a set-membership parity space approach for passive robust fault detection of linear uncertain dynamic systems 

has been proposed. This method obtains a set of parity relations derived from the parity space approach by means of a 

transformation derived from the system characteristic polynomial. As a result of this transformation, parity relations can be 

expressed in regressor form.  This allows that the parameter identification of those relations is performed using a zonotopic set-

membership algorithm. Moreover, it also allows to formulate the fault detection as a consistency test at every sampling time 



 
 

     

 

based on checking the non-existence of a parameter value in the parameter uncertainty set such that model  is consistent with 

all the system measurements. The proposed approach has been applied to two case studies one based on two-tank system and 

another, more realistic, based in wind turbine FDI benchmark in order to evaluate its effectiveness providing satisfactory 

results. 
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