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Abstract

The four-tanks system is well-known and a con-
siderable number of works study it in the existent
literature. This work proposes a nonlinear model
predictive control (NMPC) design to regulate the
water flow inputs of the four tanks system. As
an initial approach, the implementation is per-
formed in Simulinkr prior to a foreseeable real-
plant application of the proposed solution. Simu-
lation results are presented and discussed to show
the performance of the controller. Improvements
are enumerated and analysed.
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1 Introduction

The objective of the present work is to design a
controller to participate in the CEA challenge, the
first phase of which, consists in the design of a
controller and test its behaviour in a simulation
environment. However, the second phase of the
challenge includes the implementation of the pro-
posed solution in a real system. Because of this,
certain aspects of the design procedure will have
to take into account the applicability of the con-
troller to a real operating plant.

Since MPC is based on the mathematical model
of the plant (the four-tanks system in this case)
it is a technique very sensitive to model accu-
racy. This dependence on the model allows several
approaches when designing a MPC-based control
strategy: from the linear case [7], to the nonlinear
MPC (NPMC) [10], hybrid models [8] and piece-
wise affine (PWA) systems [2].

In this work, to achieve the control objectives, a
model based NMPC strategy is proposed to con-
trol the nonlinear system. The inclusion of the
nonlinearities of the plant in the controller allow
to perform the regulation of the studied plant. In

recent studies [9] these kind of approaches have
been analysed with good results and the computer
burden is low enough to consider real-time appli-
cations for the controllers.

The main contribution of this paper is a nonlinear
implementation of a model predictive control that
is sufficiently fast enough to be implemented in
the future. The discretization time and the con-
trol and prediction horizons are a key aspect to
take into account when performing the design and
tuning of the controller.

The rest of the paper is organised as follows. To
introduce the problem, the four tanks system de-
scription can be found in section 2. In section 3
the proposed NMPC strategy theoretical basis is
described. Simulation results are extracted and
studied in detail in section 4. Finally, in section 5
the conclusions of this paper are presented and
some improvements are proposed for the future.

2 System Description

The plant employed to design the controllers is the
four-tanks system described by [5]. It is a mul-
tivariable system with two manipulable variables
(water flows qa and qb) and four state variables
(water levels h1, h2, h3 and h4). Depending on
the aperture of de valves (determined by the val-
ues γa and γb) the system dynamics present non-
minimum phase dynamics and nonlinearities.

The differential equations that model the nonlin-
ear dynamics of the system can be expressed as
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Figure 1: Schematic of the four-tank system [3]

From equation (1) a control-oriented model will be
developed to implement the NMPC strategy as de-
scribed in the next section. A graphical schematic
of the four-tanks system is shown in figure 1.

3 Proposed Solution

3.1 The Nonlinear Model Predictive
Control Approach

The NMPC strategy is chosen with the objec-
tive of not losing accuracy due to the linearisa-
tion of the system needed in the traditional MPC
approach. The advantage of this formulation is
that it is possible to find the optimal control so-
lution of the real system at the cost of changing
a convex constrained optimisation to non-convex
optimisation. Usually the main drawback is the
time needed to find solutions, but given the sys-
tem’s sampling time, the computing time is small
enough to let the solver find a solution. Subopti-
mal solutions are found due to the flatness of the
gradient of the cost function, but this solutions
are close enough to the optimal solution for the
objective of this work and close enough to guar-
antee feasibility in the next time-step.

To guarantee the feasibility of the next time-stem
the imposition of terminal conditions can be added
to the control scheme. This addition increases the
computational effort to conditions where the so-
lution can not be found inside the sampling range
of time, hence it has been discarded from the
adopted solution.

3.2 Control-oriented Model

From (1), a control-oriented discretized model is
obtained
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where the state variables are the hi tank water
levels for 1 ≤ i ≤ 4. Moreover, the control in-
puts are u1 , qa and u2 , qb, corresponding to
the two input flows to the upper tanks. Letter k
determines the discrete-time variable.

3.3 System Constraints

The overall problem constraints are given in the
CEA challenge document [1]. The bounding state
constraints are defined as

0.2m ≤ xi ≤ 1.2m, i = 1, 2, 3, 4. (3)

In addition to the state constraints, there is an-
other set of hard constraints related to the input
water flows that feed the upper level tanks

0m3/h ≤ uz ≤ 2.5m3/h, z = a, b. (4)

3.4 Cost Function

The objective of the controller is to minimize the
function over the control horizon. The function
to minimize is J(h, q, c, p), given by the problem
statement of the CEA challenge

J(h, q, c, p) = (q2a + cq2b ) + p
Vmin

A(h1 + h2)
. (5)

To implement the NMPC algorithm the cost func-
tion expressed in (5) has to be discretized and ex-
pressed in state representation form

J(k) = (u1(k)2 + cu2(k)2) + p
Vmin

A(x1(k) + x2(k))
.

(6)



The cost function is computed over a given pre-
diction and control horizons (Hp and Hc).

3.5 NMPC Algorithm

Let
u(k) , (u(0|k), . . . , u(Hp − 1|k)) (7)

be the sequence of control inputs over a prediction
horizon Hp where there is also the dependence on

the initial condition x(0|k) , x0. The NMPC al-
gorithm proposed to regulate the water levels in
the four-tank system can be formulated as follows:

min
u(k)∈Rm×Hp

J(x0,u(k)), (8)

subject to

• system model (2) over Hp,

• state constraints (3) over Hp,

• input constraints (4) over Hp,

It is useful to relax the state constraints, this leads
to reduced computation time while it keeps the
states in the admissible range of operation. Ad-
ditional costs could be added to represent this re-
laxation of constraints but experiments showed it
was not necessary to add this additional weights
to the cost function.

To define the control horizon (Hp) it is necessary
to take into account the sampling time and the
dynamics of the system. If Hp is too small the
controller does not produce a significant impact
on the system due to the small optimization win-
dow, thus the cost of the control action is too big
compared to the final effect. In consequence, Hp

has to be at least big enough to be able to see
significant results in the relevant outputs, corre-
sponding to states x1 and x2. A critical issue in
the election of Hp is the stability of the closed loop
system, the values considered for Hp have never
presented stability problems. Finally the control
horizon (Hc) must be defined, the computation
time is not critical and allows to use Hc equal to
Hp. In table 1 the parameter configuration for the
simulations are presented.

4 Simulation Results

The initial state for all simulations is x0 =
(h1, h2, h3, h4) = (0.5955, 0.6616, 0.5384, 0.7682)
in [m]. The simulations have been carried out us-
ing fmincon in MATLAB R©R2011a (32 bits), run-
ning in a PC Intel R©CoreTM i7-3770 at 3.40GHz
with 8GB of RAM.

4.1 Controller Setup

One of the advantages of NMPC algorithms is the
high degree of configuration that they offer (con-
trol and prediction horizons, penalization terms,
etc.). Table 1 shows the controller setup parame-
ters and the computational effort for the simula-
tion scenario proposed for the CEA competition.

Table 1: NMPC setup parameters.

Parameter Variable Value
Prediction horizon Hp 120

Control horizon Hc 120
Sampling time Tm 5 s

Simulation time Tsim 4800 s
Computing time CPUt 10 min

Av. optimization time (figure 9) Topt 0.58 s

In figure 2, a general representation of the closed-
loop control scheme for the NMPC approach im-
plementation is showed.

Figure 2: Closed-loop control scheme

4.2 Results and Discussion

The computing time for each of the simulations is
around 10 minutes each time the algorithm runs to
study 80 minutes of the behaviour of the system.
The computing time is below the real response of
the system, hence the adapted solution is adequate
to be implemented in a real plant.

The behaviour of the water level of each tank ver-
sus the ideal trajectory planned by the reference
generator is represented in figures 3, 4, 5 and 6.
As it can be seen in previous figures, not always
the real tank level arrives to the ideal trajectory
with the same velocity. The prioritisation of the
minimal cost of the trajectory over the reference
tracking of the tank levels result in the shown wa-
ter dynamical behaviour.
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Figure 3: Tank 1 level
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Figure 4: Tank 2 level
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Figure 5: Tank 3 level
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Figure 6: Tank 4 level

Water flows can also be represented. In figure 7,
the behaviour of both qa and qb versus the ideal
trajectories q∗a and q∗b are shown.
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Figure 7: Water flows behaviour

The dynamical behaviour of the cost function is
shown in figure 8 where it can be seen that at each
change of the ideal trajectories, there is a varia-
tion of the cost. The cost function is returned to
zero approximately in 300-400 seconds after the
trajectory variation. Figure 8 shows the compu-
tation time at each simulation step during the case
study.
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Figure 8: NMPC cost function
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Figure 9: Optimization time at each simulation
step

Finally, the representation of the ID performance
index over time is included in figure 10. After the
simulation is completed, a final ID value of 431.2
is obtained.
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Figure 10: ID performance index value

5 Conclusions

A NMPC controller has been designed and imple-
mented to be applied to the four-tanks system.
The performance of the controller has been eval-
uated, obtaining low ID values in the simulation
scenario proposed in the contest. The proposed
controller minimizes a cost function that takes into
account two different control objectives: the mini-
mization of the energetic consumption of the plant
and the maximization of the accumulated water
volume in the lower deposits.

To implement the controller in the real plant, fur-
ther tuning will have to be performed in situ to
adjust the controller parameters in order to be-
have adequately taking into account real opera-
tion parameters and the possible disturbances that
may appear. Moreover, the proposed optimizer
function fmincon can be substituted and/or mod-
ified to improve the computation time by means of
optimization methods that are more appropriate
for the nonlinearities present in the studied case
study.
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Allgöwer, F. (2007). Real-time implementa-
tion of nonlinear model predictive control of
batch processes in an industrial framework.
In Assessment and Future Directions of Non-
linear Model Predictive Control (pp. 465-
472). Springer Berlin Heidelberg.

[10] Zavala, V. M., & Biegler, L. T. (2009). The
advanced-step NMPC controller: Optimality,
stability and robustness. Automatica, 45(1),
86-93.


